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Abstract

Blind image super-resolution (SR) aims to recover high-
resolution (HR) images from low-resolution (LR) inputs hin-
dered by unknown degradation. Existing blind SR methods
exploit computationally demanding explicit degradation es-
timators hinging on the availability of ground-truth infor-
mation about the degradation process, thus introducing a
severe limitation in real-world scenarios where this is inher-
ently unattainable. Implicit degradation estimators avoid
the need for ground truth but perform poorly. Our model re-
duces this performance gap with (i) a novel loss component
to implicitly learn the degradation kernel from the LR input
only, and (ii) a novel learnable Wiener filter module that ex-
ploits the learned degradation kernel to efficiently solve the
deconvolution task via a closed-form solution formulated in
the Fourier domain. Systematic experiments show that our
proposed approach outperforms existing implicit blind SR
methods (3dB PSNR gain and 8.5% SSIM improvement on
average) and achieves comparable performance to explicit
blind SR methods (0.6dB and 0.5% difference in PSNR and
SSIM, respectively). Remarkably, these results are obtained
using 33% and 71% less parameters than implicit and ex-
plicit methods.

1. Introduction
Image super-resolution (SR) is the task of enhancing low-
resolution (LR) to high-resolution (HR) images. It finds a
plethora of applications in various domains [7, 17, 23, 26,
29, 49], especially where capturing an HR image is con-
strained by physical factors such as hardware limitations or
bandwidth constraints.

The degradation process that relates a pair of LR and HR
images can be formally defined as

ILR = (IHR ⊛K) ↓S +n (1)

where ILR is the degraded LR image resulting from an i.i.d.
white Gaussian noise n added to the down-sampling ↓S ,
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Figure 1. PSNR and Multi-Add(G) comparisons of implicit (stars)
and explicit (dots) blind super-resolution methods. Results on the
Set14 dataset for scale factor (×4).

with scaling factor S, of the convolution (⊛) of the HR im-
age IHR with kernel K.

In recent years, Convolution Neural Networks (CNNs)
have become widely used for SR [7, 17, 17, 24, 32, 45,
45, 58–60]. These have achieved relevant performance im-
provements compared to traditional methods [6, 11] but face
two fundamental challenges: 1) CNNs apply the same con-
volution kernels across the image, lacking context-specific
adaptability; 2) CNNs are limited in capturing global con-
text due to its focus on local processing; To address these
challenges, Transformers [42], capturing long-range feature
dependencies, have been successfully explored [24, 53].

Despite the success of such architectures in SR, a vast
majority of methods [35, 36, 51, 55] assume a fixed and
ideal blur kernel in (1)–i.e., the bicubic kernel, referred to
as non-blind SR (Figure 3(a)). In real-world scenarios with
unknown blur kernels [3, 10, 52, 55], these methods sig-
nificantly underperform. Thus, addressing the challenge of
handling unknown blur kernels, commonly referred to as
blind SR, has become a focal point of research in the field.
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Existing blind SR methods (e.g., [27, 44]) either assume
the image degradation process outlined in (1) or consider
a broader range of degradation factors, such as blur, noise,
and JPEG compression (e.g., [46, 58]). Most of the ex-
isting blind SR methods (e.g., [14, 25, 27, 44, 46]) intro-
duce explicit degradation estimators that are computation-
ally intensive, rely on extensive parametrization, and, more
importantly, hinge on ground-truth degradation information
(Figure 3(b)). However, these ground-truth degradations are
impossible to obtain or unavailable in real-world scenarios.
This opened the recent exploration of implicit degradation
estimators [25], modeling the degradation process without
explicit ground-truth signals Figure 3(c)).

This paper introduces a novel computationally efficient
blind SR approach that overcomes the challenges of explicit
degradation estimation. The primary challenge in explicit
blind SR lies in its dependency on ground truth degrada-
tion kernels, which are unattainable in practical, real-world
environments. We introduced a novel loss and an implicit
degradation estimator to elegantly address this issue. The
novel loss directly exploits the degradation process in (1)
to guide the estimator toward learning the degradation ker-
nel directly from the low-resolution (LR) input image, thus
eliminating the need for ground truth kernel information.
The secondary challenge explicit blind SR approaches suf-
fer from is introduced by the computationally demanding
models that are required to perform the upscaling opera-
tion. Existing models hinge on multiple upscaling layers
(e.g., transposed convolution, pixel unshuffling, etc.) that
are required to gradually increase the spatial resolution of a
given input, hence having an impact on the network depth
(i.e., on the number of learnable parameters). With a novel
learnable Wiener filter module performing deconvolution in
the Fourier domain, we introduce an approach that bypasses
such a requirement by working on any bilinear upscaled
input to efficiently generate a high-resolution (HR) image.
This module exploits the implicit degradation estimator and
easily adapts to various degradation kernels by jointly learn-
ing multiple deconvolution filters. To enhance the HR im-
age reconstruction further, we also incorporated an efficient
transformer-based refinement module exploiting long-range
pixel dependencies that are relevant to SR. As shown in Fig-
ure 1, combining such three novel components outperforms
the existing implicit blind SR method and closes the gap
with explicit SR techniques [14, 16, 25, 27], with notably
reduced number of parameters.
Our contributions can be summarized as follows:
• We propose a novel loss for blind SR that is exploited

by our proposed kernel estimation module to predict the
degradation kernel without the need for ground truth in-
formation.

• By reformulating the problem of learning a Wiener fil-
ter in the Fourier domain, for which we derived a closed-

form solution, we introduce a novel module that can adapt
to multiple degradations while performing efficient de-
convolution. Since the deconvolution is performed on a
bilinear upscaled input, our approach removes the need
for upscaling layers, thus enabling the generation of HR
images with any scale factor at zero cost.

• Through extensive experiments, we show that our effi-
cient approach outperforms the existing implicit blind SR
methods, with 3dB PSNR and 8.5% SSIM gain (on av-
erage), and achieves comparable performance to explicit
methods while having 33% and 71% fewer parameters,
respectively.

2. Related Work
2.1. Non-Blind Super Resolution

Over the past few years, several non-blind SR techniques [7,
17, 29, 49, 56] have achieved excellent results on bench-
mark datasets. However, their performance drops when
there is a gap between training and testing degradations.
Some methods address this by using additional ground truth
information like blur kernels and noise levels (e.g., [35, 36,
51, 55–57]) as inputs. While these techniques can handle
multiple degradation types with a single model, they rely on
accurately estimating degradation parameters. Differently,
our approach follows a blind super-resolution method, re-
quiring no prior knowledge of image degradations.

2.2. Blind Super Resolution

Several blind SR methods have been introduced to address
the challenge of handling unknown degradation(s).
Explicit degradation models (see Figure 3(b)) hinge on the
availability of ground-truth kernels. Some methods [10, 26]
combine a blur kernel estimator with SR networks, mak-
ing the model adaptable to images degraded by various
blur kernels [5, 20]. Others [27] introduced a reformulated
degradation model to enhance kernel estimation and high-
resolution restoration. These methods are specific to cer-
tain degradation types and require ground truth labels for
multiple degradations, which are hard (if not impossible) to
obtain in real-world settings. They can also be computation-
ally demanding, involving two or more networks [10, 14],
thus denying efficient inference. In contrast, we do not re-
quire knowledge of the ground truth degradation factors that
are implicitly estimated through our novel loss by a single
lightweight model.
Implicit degradation models (see Figure 3(c)) does not
hinge on the availability of ground truth degradation ker-
nels [18, 19, 61]. The initial exploration of this emerging
approach was conducted in [25], which exploited metric-
based learning to distinguish between various degradation
types. Differently, we propose a kernel estimator with a
novel loss formulation and a learnable Wiener filter that al-
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Figure 2. Illustration of the proposed IDENet. An LR image ILR is fed to the (a) Kernel Prediction Module, which generates a degradation
kernel K. Then the (b) Learnable Wiener Filter Module exploits the upsampled image IUP and the predicted kernel K to generate IDC .
This is finally considered by the (c) Refinement Module to estimate the super-resolved image ISR.
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Figure 3. Categorization of existing SR approaches. a) Non-blind
SR methods assume and use known degradation information dur-
ing the SR process. b) Blind-SR methods exploit ground-truth
degradation information to model it with full supervision. c) Blind
SR methods implicitly estimate the degradation information to
guide the SR process without the need for ground-truth supervi-
sion. Our proposed IDENet follows this approach.

low us to learn diverse degradation types exploited via effi-
cient deconvolution in the Fourier domain.

2.3. Wiener Filter

In the context of SR, some recent works have explored the
capabilities of the Wiener filter for deconvolution. In [37],
Wiener deconvolution was introduced as an initial image
preprocessing step, later employed in the feature space [8].
In [40], classical Wiener deconvolution was combined with
a conventional CNN-based approach, relying on ground
truth kernels during training and testing. All these meth-
ods have three notable limitations since they: (i) consider
non-learnable Wiener filters, (ii) are limited by the induc-
tive bias of CNNs, and (iii) assume a fixed and ideal kernel,
hence fall in the category of non-blind SR methods. In con-
trast, we propose a novel learnable Wiener filter designed
for implicit blind SR. We also perform the deconvolution
with a closed-form approach in the Fourier domain while
leveraging a self-attention mechanism to capture long-range
pixel dependencies for HR image reconstruction.

3. Method
Our blind-SR approach, shown in Figure 2, consists of
three main modules: the Kernel Prediction Module (KPM),
the Learnable Wiener Filter Module (LWFM), and the Re-
finement Module (RM). The KPM implicitly estimates the
degradation kernel K ∈ Rk×k from the LR input ILR ∈
RC×H×W , where C denotes the number of channels, H
and W are spatial dimensions. With a parallel stream, ILR

is then upsampled (via bilinear interpolation with scale fac-
tor S) to generate IUP ∈ RC×SH×SW . IUP and K are
the inputs to the LWFM. We derived a novel formulation
within such a module that leverages efficient operation in
the frequency domain to learn the Wiener filter parameters
with a closed-form solution. This computationally efficient
approach yields to IDC ∈ RC×SH×SW that the RM finally
exploits to generate the SR image ISR ∈ RC×SH×SW .

3.1. Kernel Prediction Module (MK)

This module estimates the degradation kernel K =
MK(ILR; θMK

) needed to effectively leverage the capabil-
ities of the subsequent LWFM for deconvolution. θMK

rep-
resent the module learnable parameters. We designed such
a module as an encoder-decoder architecture (shown in Fig-
ure 2(a)). The encoder employs a combination of 3 × 3
Conv2D layers generating 64 feature maps via ReLU non-
linearity, followed by a set of 3 × 3 kernel residual blocks
with skip connections and MaxPool operators. The decoder
leverages the informative features computed by the encoder
through two sets of 3 × 3 Conv2D layers, residual blocks
with skip connections, and transposed convolutions for ker-
nel prediction.

In our setup, as done by [10, 14, 27], we assume that the
kernel downgrading HR to LR as in (1) is defined by a Gaus-
sian probability distribution (that is also exploited when ar-
tificially generating LR images). Following the spirit of
these existing methods, we added a softmax layer to ensure
that the predicted degradation kernel K satisfies the prob-
ability distribution characteristics. It is worth noticing that
this also prevents generation of negative (i.e., invalid) pixel
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values that may otherwise occur when the a kernel violating
the non-negativity constraint is used (e.g., the widely-used
bicubic kernel).

3.2. Learnable Wiener Filter Module (MW )

We introduce a learnable Wiener filter module to address
the blurring effects and to efficiently exploit the predicted
degradation kernel, through deconvolution. Deconvolution
is an ill-posed inverse problem that can be addressed via a
variational approach, i.e., by finding the minima or maxima
of a function via small changes in functions or functionals
(variational derivatives). Following such an intuition, we
derive a novel formulation that adapts to various degrada-
tion kernels learned through a closed-form solution.

We begin by assuming that the deconvolution task
can be addressed by a module computing IDC =
MW (IUP ,K; θMW

), where θMW
are learnable parameters.

To learn the model parameters, for the sake of mathemati-
cal derivation and without loss of generality, we assume that
IUP that has been raster scanned in lexicographical order to
obtain y ∈ RN . This allows us to define our optimization
objective as finding the variational approach

x̂ = argmin
x

1

2
∥y − K̂x∥22 +

α

2

d∑
i=1

∥Ĝix∥22︸ ︷︷ ︸
F (x)

(2)

where K̂ ∈ RN×N is the point spread function (PSF) (ob-
tained by symmetrically padding K) and Ĝi ∈ RN×N is a
learnable convolution kernel.

The minimization problem in (2) has a closed-form solu-
tion that corresponds to the Wiener-Kolmogorov deconvo-
lution filter [48]. This is

x̂ = (K̂⊤K̂+ α

d∑
i=1

Ĝ⊤
i Ĝi)

−1K̂⊤y (3)

where K̂⊤ and Ĝ⊤
i denote the adjoint matrices for K̂ and

Ĝi, respectively. Solving (3) requires the inversion of a
large matrix, which can be computationally slow. We re-
formulate the closed-form solution in the Fourier domain
to address this issue. This makes finding the Wiener filter
a fast and efficient method, enabling the restoration of the
underlying signal with low computational complexity.

Assuming periodic image boundary conditions, we can
treat K̂ and Ĝi as circulant matrices that can be diagonal-
ized in the Fourier domain as:

K̂ = F−1DK̂F DK̂ = FSK̂PK̂k

Ĝi = F−1DĜi
F DĜd

= FSĜi
PĜi

gi

(4)

where F ∈ CN×N and F−1 ∈ CN×N are the Fourier ma-
trix (DFT) and its inverse, respectively. DK̂ and DĜi

∈

CN×N are the diagonal matrices, SK̂ and SĜi
∈ RN×N

are the corresponding circular shift operators. Correspond-
ing zero-padding operators are PK̂ ∈ RN×M and PĜi

∈
RN×Li. k ∈ RM and gi ∈ RLi are the blurring kernel and
the regularization convolution kernel.

After reformulation of the problem in the Fourier do-
main, (3) can be rewritten as:

x̂ = F−1

(
D∗

K̂
F(y)

|DK̂|2 + eα
∑d

i=1 |DĜi
|2

)
(5)

with D∗
K̂

denoting the Hermitian transpose of the DK̂,
and division is performed element-wise. Following [34],
we consider the trade-off coefficient α a parameter to be
learned together with the kernels during training.

3.3. Refinement Module (MR)

To improve the LWFM deconvolution output IDC , which
is based on a shallow network, we introduce a refinement
module computing ISR = MR(IDC ; θMR

). As shown
in Figure 2, it has one component for shallow features, an-
other for extracting deep features via a self-attention mech-
anism capturing long-range dependencies, and a last one for
the generation of ISR. Parameters of all such components
are denoted as θMR

.
Shallow and deep features extraction components start
with a 3 × 3 Conv2D layer extracting shallow features
F0 ∈ RC×SH×SW . We adopted a single convolution layer
cause it has been proven beneficial in initial visual pro-
cessing, enhancing optimization stability and superior out-
comes [50]. Deep features are efficiently obtained through
γ Residual Swin Transformer blocks (RSTB) [24], denoted
as LRSTBi

(·), followed by a 3× 3 Conv2D layer, denoted
as Lconv . We compute the deep features

F̂ = Lconv(Fγ) ∈ RC×SH×SW (6)

with Fi = LRSTBi(Fi−1), for i = 1, 2, 3, .., γ.
HR image reconstruction is performed by aggregating the
shallow and deep features as

ÎSR = LREC(F0 + F̂) (7)

where LREC(·) is 3× 3 Conv2D reconstruction layer.
As discussed in [24], shallow features predominantly en-

compass the low-frequency components, whereas deep fea-
tures concentrate on restoring the high-frequency details
that may have been lost. By incorporating the long skip con-
nection, the refinement module facilitates the direct trans-
mission of low-frequency information to the reconstruction
module. This arrangement assists the deep feature extrac-
tion module in prioritizing high-frequency information and
enhancing training stability.

To finally obtain the super-resolved image ISR, we
adopted a residual learning approach computing ISR =
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GT Image HR Patch Bicubic CARN ZSSR IKC AdaTarget DAN DCLS DASR Ours

PSNR/SSIM 21.15/0.7592 21.52/0.7816 21.45/0.7804 25.82/0.9079 27.11/0.9403 27.72/0.9486 28.88/0.9565 23.28/0.8402 27.36/0.9459

PSNR/SSIM 22.64/0.6174 23.89/0.6774 22.82/0.6503 27.09/0.7669 27.53/0.7752 27.73/0.7814 27.92/0.7844 21.69/0.5687 27.25/0.7806

Img 005 in Urban100

zebra image  in Set14

Figure 4. Visual comparison of img 005 and zebra (×4 SR factor) from Urban100 and Set14 dataset. The isotropic kernel widths are set to
2.6 and 1.8, respectively.

ÎSR + IDC . By doing this, we stabilize the gradients,
achieving more efficient training and improved perfor-
mance.

3.4. Optimization

We train our model using an end-to-end strategy optimizing

Ltotal = λ1LSR + λ2Lk + λ3LTV (8)

where
LSR = ∥IHR − ISR∥1 (9)

is the image reconstruction loss quantifying the accuracy of
the super-resolved output ISR against the HR ground-truth
IHR ∈ RC×SH×SW .

The novel kernel estimation loss, Lk, is a key component
in our work. Considering the blurring process assumption
in (1), we designed the function

Lk = ∥ILR −
(
IHR ⊛MK̂(ILR)

)
↓S ∥1 (10)

which, through the L1 penalty, forces the model to learn
a kernel that convolved with the ground truth HR would
generate the same LR input sample, thus bypassing the need
for explicit kernel definition.

To complement this, the total variation loss

LTV = ∥▽IHR − ▽ISR∥1 (11)

computes the difference between horizontal and vertical
gradients (denoted with ▽) to encourage smoothness of
the image by minimizing the variations in pixel intensities,
hence reducing noise and unwanted artifacts. λ1, λ2 and λ3

are balancing parameters.

4. Experiments
4.1. Datasets

Following [10, 14, 27], for all the experiments, we
trained our model on 3450 2K HR images combined from
DIV2K [1] and Flickr2K [39]. We adopted the protocol
of [10, 14, 27] to synthesize LR images using the next two
settings.

Isotropic Gaussian kernels are used to blurry downsam-
pled ground-truth images to obtain the corresponding LR
samples. We followed [10] and generated 21 × 21 fil-
ters with a kernel width uniformly sampled from [0.2, 2.0],
and [0.2, 4.0] for SR scale factors ×2 and ×4, respectively.
For evaluation, we used the Gaussian8 [10, 27] kernel set-
ting [10] on five SR benchmarks: Set5 [4], Set14 [54],
BSD100 [30], Urban100 [13] and Manga109 [31].

Anisotropic Gaussian kernels of size 11× 11 and 31× 31
for scale factors ×2 and ×4 are considered, as defined
in [3]. During training, the anisotropic Gaussian kernels
are generated by first selecting a random kernel width in
(0.6, 5), then by applying a random rotation in [−π, π]. We
also apply uniform multiplicative noise and normalize it to
sum to one. For evaluation, we used the DIV2KRK [3]
dataset.

4.2. Implementation Details1

We trained our model with 32 × 32 LR image patches for
500k iterations. We used a batch size of 12 with the Adam
optimizer [21] having β1 = 0.9, β2 = 0.999, and ϵ = 10−8.
We set the learning rate to 10−4, then reduced it by a fac-
tor of 2 after 250k, 400k, 450k, and 475k iterations. All
Conv2D layers and residual blocks in the model have 3× 3
kernels producing 64 output feature maps, except for LREC

emitting 3 feature maps. Within the RM module, we use
γ = 4 RSTB blocks, each composed of 6 STL layers [24]
with 96 feature maps. The LWFM considered d = 24 with a
learnable wiener filter size of 5× 5 [40], whose weights are
initialized using the discrete cosine transform (DCT) basis.
Random vertical and horizontal flipping and 90° rotations
were used as data augmentation strategies. Following [41],
we set λ1 = 10.0 while assigned λ2 = λ3 = 1.0, respec-
tively. We report on the PSNR and SSIM [47] evaluation
metrics computed for the luminance channel of the YCbCr
color space.

1Code will be made available upon acceptance.
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GT Image HR Patch Bicubic CARN ZSSR IKC AdaTarget DAN DCLS DASR Ours

PSNR/SSIM 30.99/0.8742 25.49/6044 31.39/0.8830 31.56/0.8993 34.94/0.9242 32.47/0.8998 35.07/0.9239 31.98/0.8872 34.88/0.9212

PSNR/SSIM 29.99/0.9195 30.14/0.9221 30.16/0.9216 33.99/0.9416 35.76/0.9484 34.58/0.9446 37.50/0.9515 33.46/0.9314 36.83/0.9489

Img 015 in DIV2KRK

Img 096  in DIV2KRK

Figure 5. Visual comparison of img 015 and img 096 (×4 SR factor) from DIV2KRK dataset.

Degradation Estimation Approach Method Scale Set5
PSNR↑/SSIM↑

Set14
PSNR↑/SSIM↑

BSD100
PSNR↑/SSIM↑

Urban100
PSNR↑/SSIM↑

Manga109
PSNR↑/SSIM↑

#Params
(M) ↓

Multi-Adds
(G)

Inference Time
(s)

Non Blind + Blind SR †

Bicubic

x2

28.82/0.8577 26.02/0.7634 25.92/0.7310 23.14/0.7258 25.60/0.8498 - - -
CARN[2] 30.99/0.8779 28.10/0.7879 26.78/0.7286 25.27/0.7630 26.86/0.8606 - - -
Bicubic + ZSSR[35] 31.08/0.8786 28.35/0.7933 27.92/0.7632 25.25/0.7618 28.05/0.8769 - - -
Deblurring[33] + CARN[2] 24.20/0.7496 21.12/0.6170 22.69/0.6471 18.89/0.5895 21.54/0.7946 - - -
CARN[2]+ Deblurring[33] 31.27/0.8974 29.03/0.8267 28.72/0.8033 25.62/0.7981 29.58/0.9134 - - -
MogaSRN[9] 38.19/0.9611 33.82/0.9196 32.30/0.9013 32.72/0.9340 39.16/0.9779 - - -
Omni-SR[43] 38.22/0.9613 33.98/0.9210 32.36/0.9020 33.05/0.9363 39.28/0.9784 - - -

Explicit Blind SR ††
IKC[10]

x2

37.19/0.9526 32.94/0.9024 31.51/0.8790 29.85/0.8928 36.93/0.9667 5.32 - -
DANv1[14] 37.34/0.9526 33.08/0.9041 31.76/0.8858 30.60/0.9060 37.23/0.9710 4.33 - -
DANv2[28] 37.60/0.9544 33.44/0.9094 32.00/0.8904 31.43/0.9174 38.07/0.9734 4.71 - -
DCLS[27] 37.63/0.9554 33.46/0.9103 32.04/0.8907 31.69/0.9202 38.31/0.9740 13.63 - -

Implicit Blind SR ††† DASR[25]
x2

NA NA NA NA NA 5.84 - -
IDENet (Ours) 37.16/0.9521 32.84/0.9025 31.65/0.8848 30.22/0.9004 36.86/0.9697 3.9 - -
Improvement NA NA NA NA NA -33.22%

Non Blind + Blind SR †

Bicubic

x4

24.57/0.7108 22.79/0.6032 23.29/0.5786 20.35/0.5532 21.50/0.6933 - - -
CARN[2] 26.57/0.7420 24.62/0.6226 24.79/0.5963 22.17/0.5865 21.85/0.6834 - - -
Bicubic + ZSSR[35] 26.45/0.7279 24.78/0.6268 25.97/0.5989 22.11/0.5805 23.53/0.7240 - - -
Deblurring[33] + CARN[2] 18.10/0.4843 16.59/0.3994 18.46/0.4481 15.47/0.3872 16.78/0.5371 - - -
CARN[2] + Deblurring[33] 28.69/0.8092 26.40/0.6926 26.10/0.6528 23.46/0.6597 25.84/0.8035 - - -
HPUN[38] 32.24/0.8950 28.66/0.7828 27.60/0.7371 26.12/0.7878 30.55/0.9089 - - -
MogaSRN[9] 32.50/0.8987 28.81/0.7872 27.72/0.7417 26.53/0.8005 31.05/0.9154 - - -
Omni-SR[43] 32.49/0.8988 28.78/0.7859 27.71/0.7415 26.64/0.8018 31.02/0.9151 - - -

Explicit Blind SR ††

IKC[10]

x4

31.67/0.8829 28.31/0.7643 27.37/0.7192 25.33/0.7504 28.91/0.8782 5.32 150.5 1.89
DANv1[14] 31.89/0.8864 28.42/0.7687 27.51/0.7248 25.86/0.7721 30.50/0.9037 4.33 78.10 0.25
DANv2[28] 32.00/0.8885 28.50/0.7715 27.56/0.7277 25.94/0.7748 30.45/0.9037 4.71 77.38 0.26
AdaTarget[16] 31.58/0.8814 28.14/0.7626 27.43/0.7216 25.72/0.7683 29.97/0.8955 16.70 21.96 0.14
DCLS[27] 32.12/0.8890 28.54/0.7728 27.60/0.7285 26.15/0.7809 30.86/0.9086 13.63 31.01 0.31

Implicit Blind SR ††† DASR[25]
x4

28.03/0.8061 25.65/0.6763 23.22/0.6628 25.51/0.6349 25.26/0.7955 5.84 1.13 0.27
IDENet (Ours) 31.57/0.8846 28.27/0.7678 27.35/0.7235 25.39/0.7585 29.88/0.8988 3.9 14.27 0.08
Improvement 3.54/0.0785 2.62/0.0915 4.13/0.0607 -0.12/0.1236 4.62/0.1033 -33.22%

Table 1. Quantitative comparison on public SR benchmark datasets with Gaussian8 kernels. Improvements (in bold) are shown concerning
the state-of-the-art methods that use the same implicit blind degradation estimation approach as our IDENet. For scale factor ×2, there is
no implicit blind SR method reporting on the performance of the benchmark datasets, hence the shown improvement values.

4.3. Comparison with State-of-The-Art Methods

We report on the results achieved by our direct competitors
(i.e., implicit blind SR methods, denoted with †††) as well as
on the performance achieved by solutions that either assume
the availability of the ground-truth kernel at training time
(i.e., explicit blind SR methods, denoted with ††) or at test
time (i.e., non-blind SR methods, denoted with †).
Isotropic Gaussian kernels evaluation is conducted using
the Gaussian8 kernels defined in [10, 27]. Table 1 shows
that some non-blind SR methods significantly underperform
with respect to the blind SR alternatives. Among the lat-
ter, the best performances are obtained by explicit blind
SR methods, particularly by DCLS [27]. These methods,
however, hinge on the availability of ground-truth blur ker-
nel information that is unattainable in real-world scenarios
and often have many parameters (e.g., AdaTarget [16] has
17M and DCLS [27] has 13M), thus limiting their adop-
tion in computationally constrained settings. The best im-
plicit blind SR method, i.e., DASR [25], performs poorly

with similar results to non-blind SR methods. In contrast,
our approach achieves comparable performance (e.g., less
than 0.6dB PSNR and 0.5% SSIM difference on average for
scale factor ×4) with explicit blind SR methods. Most no-
tably, we outperform our direct competitor, i.e., DASR [25],
with an average gain of more than 3dB. All this with a
model that has the smallest number of parameters with re-
spect to every existing work, i.e. 33% and 71% fewer pa-
rameters than the best explicit (DCLS) and implicit (DASR)
methods, respectively. These results highlight the ability
of our approach to predict the isotropic kernels that are the
foundation for the subsequent learnable wiener filter and re-
finement modules.

We also conducted a qualitative comparison consider-
ing different datasets. Results depicted in Figure 4 show
that our IDENet method produces clearer and visually more
pleasing results than many the blind SR methods, including
our direct implicit blind SR competitor i.e., DASR [25].
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Degradation Estimation
Approach Method DIV2KRK

x2
PSNR↑/SSIM↑

x4
PSNR↑/SSIM↑

Non Blind + Blind SR †

Bicubic 28.73/0.8040 25.33/0.6795
Bicubic+ZSSR[35] 29.10/0.8215 25.61/0.6911
EDSR[26] 29.17/0.8216 25.64/0.6928
RCAN[59] 29.20/0.8223 25.66/0.6936
DBPN[12] 29.13/0.8190 25.58/0.6910
DBPN[12]+Correction[15] 30.38/0.8717 26.79/0.7426
KernelGAN[3]+SRMD[55] 29.57/0.8564 27.51/0.7265
KernelGAN[3]+ZSSR[35] 30.36/0.8669 26.81/0.7316

Explicit Blind SR ††

IKC[10] NA 27.70/0.7668
DANv1[14] 32.56/0.8997 27.55/0.7582
DANv2[28] 32.58/0.9048 28.74/0.7893
AdaTarget[16] NA 28.42/0.7854
KOALAnet[20] 31.89/0.8852 27.77/0.7637
DCLS[27] 32.75/0.9094 28.99/0.7946

Implicit Blind SR ††† DASR[25] NA 26.21/0.7082
IDENet (Ours) 32.57/0.9010 28.59/0.7850
Improvement 32.57/0.9010 2.38/0.0768

Table 2. Quantitative comparison on DIV2KRK dataset. Improve-
ments (in bold) are shown concerning the state-of-the-art methods
that use the same implicit blind degradation estimation approach
as our IDENet. For scale factor ×2, there is no implicit blind SR
method reporting on the performance of the benchmark datasets,
hence the shown improvement values.

Anisotropic Gaussian kernels present a more generalized
and challenging scenario. Table 2 provides quantitative re-
sults on the DIV2KRK dataset. Similarly to what is ob-
tained using the isotropic Gaussian kernel setting, our pro-
posed IDENet outperforms the direct implicit degradation
blind SR competitor, i.e., DASR [25], with a gain of 2dB
and a 7% improvement in PSNR and SSIM, respectively.
Moreover, we perform remarkably similarly to the best ex-
plicit method (i.e., less than 1% SSIM difference) with 71%
fewer parameters.

Figure 5 visually demonstrate that our IDENet exhibits
superior sharpness and cleanliness compared to DASR and
other explicit blind SR methods.

Anisotropic kernels are complicated and diverse kernels.
Results under this setting show that (i) our novel loss term
is effective for driving the degradation kernel prediction,
and that (ii) the novel learnable Wiener filter module greatly
handles the diverse nature of anisotropic kernels. This sub-
stantiates the importance of these two components in pro-
ducing an already upscaled input for the final refinement.

4.4. Ablation Study

We performed the ablation study on the three modules of
our architecture. We also explored the impact of the var-
ious losses and the effects of learning the Wiener filter in
the feature space rather than in the image space2. All the
experiments have been carried out following the Isotropic
Gaussian kernels settings with scale factor ×4.
IDENet Modules. To analyze the importance of the three
IDENet components, we altered our architecture by turning
on and off the MK, MW , and MR modules. Results in Ta-
ble 3 shows that using the kernel estimator and the Wiener
filter alone we achieve similar performance to our closest

2For additional experiments please refer to the supplementary.

’butterfly’ HR Patch 1 HR Patch 2      

Figure 6. Visual comparison of Wiener Filtering in feature and
RGB space on Image ’butterfly’ (×4) from Set5 dataset. The kernel
width is 3.2.

DASR competitor. Using the refinement module alone sig-
nificantly enhances the performance but the joint exploita-
tion of all modules yields the best results with an average
PSNR/SSIM gain of about 0.22dB and 1% over all bench-
mark datasets respectively. MK and MW bring improve-
ments (e.g., Manga109 +0.48/+0.0107 PSNR/SSIM) at a
negligible computational cost: MK and MW account only
for 0.50 GFLOP and 0.82M parameters, thus demonstrat-
ing the ability of such two modules to correctly estimate the
blur kernels for deconvolution. Such an analysis might indi-
cate that the learnable Wiener filter module is not sufficient
to capture all the different degradation effects with a shal-
low network, which thus calls for a deeper module to refine
the deconvolved image.
Impact of Losses. Table 4 presents the quantitative results
for various combinations of the losses we used in (8). Per-
formance demonstrates that each of the loss terms adds up
to the final result, with the best performance achieved when
all are jointly considered. To verify that the terms we intro-
duced are complementary and relevant to SR, we analyzed
the impact of adding the common perceptual loss (Lper)
function [17] to our optimization objective. This caused a
drop of approximately 1dB in PSNR and 0.02% in aver-
age SSIM, respectively. Such a result strongly supports the
choices we made, demonstrating the complementarity of the
selected components for SR.
Wiener Filter. To assess the specific value of the Wiener
deconvolution module, we analyze its performance in two
different spaces: the standard image space and a deep fea-
ture space. For the deep feature space evaluation, we con-
sidered [8], where the Wiener deconvolution is applied to
deep features rather than image pixels. In such a case, the
refinement module utilizes the deconvolved deep features
instead of the upsampled RGB image. Table 5 shows that
performing Wiener deconvolution in the image space results
in higher PSNR and SSIM values, i.e., an average respective
gain of 0.8dB and 2%, compared to deconvolution in the
deep feature space. This might indicate that the filter better
handles noise on colors, textures, and structures specific to
the RGB representation, rather than in a feature space where
artifacts are likely to be controlled by the learnable model
parameters (see Figure 6 for some samples).
Kernel Estimation. To get more insights about the abil-
ity of the novel implicit kernel estimation loss, we com-
puted the results in Figure 7. It shows the degradation ker-
nels predicted by state-of-the-art methods while also report-
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Method MK MW MR
Set5

PSNR↑/SSIM↑
Set14

PSNR↑/SSIM↑
BSDS100

PSNR↑/SSIM↑
Urban100

PSNR↑/SSIM↑
Manga109

PSNR↑/SSIM↑

IDENet ✓ ✓ ✗ 27.86/0.7918 25.72/0.6823 25.64/0.6463 22.74/0.6315 24.17/0.7575
IDENet ✗ ✗ ✓ 31.41/0.8796 28.10/0.7601 27.27/0.7155 25.14/0.7442 29.40/0.8881
IDENet (Ours) ✓ ✓ ✓ 31.57/0.8846 28.27/0.7678 27.35/0.7235 25.39/0.7585 29.88/0.8988

Table 3. Analysis of the impact of each proposed IDENet module. The best result for each dataset is in blue, and the second best is in red.

Method LSR Lk LTV Lper
Set5

PSNR↑/SSIM↑
Set14

PSNR↑/SSIM↑
BSDS100

PSNR↑/SSIM↑
Urban100

PSNR↑/SSIM↑
Manga109

PSNR↑/SSIM↑

IDENet ✓ ✗ ✗ ✗ 31.41/0.8796 28.10/0.7601 27.27/0.7155 25.14/0.7442 29.40/0.8881
IDENet ✓ ✓ ✗ ✗ 31.36/0.8829 28.14/0.7670 27.32/0.7234 25.22/0.7542 29.65/0.8954
IDENet (Ours) ✓ ✓ ✓ ✗ 31.57/0.8846 28.27/0.7678 27.35/0.7235 25.39/0.7585 29.88/0.8988
IDENet ✓ ✓ ✗ ✓ 30.17/0.8558 27.52/0.7402 26.61/0.6909 24.59/0.7311 28.47/0.8728
IDENet ✓ ✓ ✓ ✓ 30.43/0.8579 27.53/0.7395 26.70/0.6912 24.63/0.7278 28.40/0.8701

Table 4. Impact of the different optimization loss terms. The best result for each dataset is in blue, and the second best is in red.

Method Set5
PSNR↑/SSIM↑

Set14
PSNR↑/SSIM↑

BSDS100
PSNR↑/SSIM↑

Urban100
PSNR↑/SSIM↑

Manga109
PSNR↑/SSIM↑

IDENetFEA 31.18/0.8762 27.72/0.7541 27.09/0.7121 24.37/0.7136 27.65/0.8547
IDENetRGB (Ours) 31.57/0.8846 28.27/0.7678 27.35/0.7235 25.39/0.7585 29.88/0.8988

Table 5. Performance comparison obtained by performing Wiener deconvolution in the standard RGB space and in the deep feature space.

0.2797 0.0677 0.1110 0.0789

LR Image GT Kernel KernelGAN Danv2 DCLS IDENet (Ours)

L1 Distance

Figure 7. Visual results of estimated kernels of img 001 and img
004 from DIV2KRK datasets by different estimation methods.

ing on the L1 distance between the predicted kernels and
the ground-truth kernels. The noisy values are due to how
we implicitly estimate the degradation kernels through our
novel loss –without the need for the ground truth degrada-
tion kernels. The implicit kernel loss term in (10) mini-
mizes the difference between the GT (ILR) image and the
downsampled GT (IHR) image (filtered with the learnable
kernel K). This does not guarantee the kernel is smooth: the
bilinear downsampling operator (denoted as ↓S) smooths
neighboring values, thus canceling out the ”imperfections”
resulting from the noisy filter. Despite the noisy values
shown in our estimated kernels (last column), the computed
L1 distances demonstrate that our approach is notably bet-
ter than KernelGAN and DCLS while performing very simi-
larly to DANv2 ( 0.01 L1 difference). Our proposed implicit
loss term is thus proven to accurately deduce the kernel,
eliminating the dependency on ground-truth data (unavail-
able in real-world scenarios), which is a major leap forward
in blind SR.
Performance on Real World Images. To showcase the
effectiveness of our method in real-world scenarios where
ground truth HR images and blur kernels are unavailable,
we ran the experiment suggested in [27] using the historical
images from [22]. The sample result in Figure 8 shows that

(a) LR image (b) Bicubic (c) DCLS (d) DASR (e) Ours)

Figure 8. Comparison of image 006 (×4) from historic dataset.
our IDENet generates sharp edges and fine details, simi-
larly to what the best explicit blind-SR method preserves,
i.e., DCLS [27]. Our implicit blind-SR competitor, i.e.,
DASR [25], produces a similar-looking result but with less
details. These visual results are aligned with the quantita-
tive (e.g., Table 1) and qualitative (e.g., Figure 4) perfor-
mance shown so far, thus, once again, demonstrating the
ability of our model in producing excellent SR images with
an efficient approach that overcomes the requirement for
ground-truth blur kernel data.

5. Conclusion
In this work, we proposed an implicit degradation es-
timation network for blind image SR. We introduced
a novel implicit kernel loss term that allowed us to
design a network module estimating the blur kernel
without the supervision of ground-truth data, which is
unattainable in real-world settings. We also proposed
a novel learnable Wiener module that leverages such a
predicted kernel to perform deconvolution in the Fourier
domain, via a closed-form solution. To further refine
the deconvolved image, we added an efficient refinement
module that exploits the attention mechanism to capture
the long-range feature dependencies, crucial for SR image
generation. Extensive experiments on different benchmark
datasets show that our proposed approach outperforms
the implicit blind SR state-of-the-art method and achieve
comparable performance to explicit blind SR approaches,
with a substantially lower number of learnable parameter.
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