
Burst Image Super-Resolution with Base Frame Selection

Sanghyun Kim∗ Minjung Lee∗ Woohyeok Kim Deunsol Jung Jaesung Rim
Sunghyun Cho Minsu Cho

Pohang University of Science and Technology (POSTECH), South Korea
{sanghyun.kim, minjlee, woohyeok, deunsol.jung, jsrim123, s.cho, mscho}@postech.ac.kr

Abstract

Burst image super-resolution has been a topic of ac-
tive research in recent years due to its ability to obtain
a high resolution image using complementary information
between multiple frames in the burst. In this work, we ex-
plore using burst shots with non-uniform exposures to con-
front real-world practical scenarios by introducing a new
benchmark dataset, dubbed Non-uniformly Exposed Burst
Image (NEBI), that includes the burst frames at varying ex-
posure times to obtain a broader range of irradiance and
motion characteristics within a scene. As burst shots with
non-uniform exposures exhibit varying levels of degrada-
tion, fusing information of the burst shots into the first frame
as a base frame may not result in optimal image quality. To
address this limitation, we propose a Frame Selection Net-
work (FSN) for non-uniform scenarios. This network seam-
lessly integrates into existing super-resolution methods in
a plug-and-play manner with low computational cost. The
comparative analysis reveals the effectiveness of the non-
uniform setting for the practical scenario and our FSN on
synthetic-/real- NEBI datasets.

1. Introduction
Burst image super-resolution (BISR) is a task to reconstruct
a high-resolution (HR) image with vivid details, utilizing a
rapid succession of low-resolution (LR) frames captured by
handheld devices [2, 19, 27, 43]. It spans a wide range of
computer vision problems such as medical imaging [15, 21,
29], satellite imaging [7, 9, 38], object detection [18, 30, 33]
and image generation [32, 34, 37].

In contrast to conventional single-image super-
resolution (SISR) techniques [10, 44, 45, 47] where the
inherent challenges of ill-posed problems constrain their
performance, BISR demonstrates the ability to achieve
high-quality images in terms of signal-to-noise ratio (SNR)
through the utilization of multiple images for restoration
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(a) 0.01s
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(f) {0.01s, …, 0.14s} 
PSNR: 32.003

(e) 0.14s
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Figure 1. Output quality decreases when a BISR model uses burst
shots taken at sub-optimal exposure times compared to optimal
time (c). On the other hand, as shown in (f), the model reconstructs
a high-resolution (HR) image as if it were captured using opti-
mally exposed burst shots by harnessing information from non-
uniformly exposed burst shots.

and enhancement. Despite the advantages conferred by
utilizing multiple input images for super-resolution, the
successive frames are usually acquired with uniform
exposure times [2, 19]. This may induce inferior-quality
outputs of the enhancement network utilizing the burst
shots captured at the suboptimal exposure time due to
inadequate camera noise and motion blur present in those
shots. As shown in Fig. 1, the output quality significantly
declines when utilizing burst shots acquired far from the
optimal exposure time in the uniformly exposed setting.
This approach becomes impractical in real-world scenarios
where ascertaining the optimal exposure time is challeng-
ing. Meanwhile, we observe that the model utilizing burst
shots acquired with non-uniform exposures can reconstruct
an HR image as if it uses the optimal exposure time.

Motivated by this observation, we explore using burst
shots with non-uniform exposures for super-resolution in
real-world scenarios, introducing a novel benchmark named
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Non-uniformly Exposed Burst Image (NEBI). Unlike exist-
ing burst image super-resolution benchmarks [2, 19], our
approach emphasizes non-uniform burst imaging, capturing
images at varying exposure times. This enables the acquisi-
tion of images with a broader range of irradiance and mo-
tion characteristics within a scene for practical scenarios.

In contrast to burst shots with a uniform exposure, where
all frames exhibit similar levels of degradation (e.g., blur,
noise), burst shots with non-uniform exposures present
varying degrees of degradation. The degradation of the base
frame, which merges information from subsequent frames,
may interfere with the feature alignment and fusion pro-
cesses between the base frame and the other frames, re-
sulting in a noticeable decline in the output image quality.
However, existing methods [2, 3, 11] assume that the first
frame of the input bursts serves as the base frame without
considering the importance of the base frame on the image
restoration. As shown in Fig. 2 (a), the quality of the out-
put is decreased when the first frame is always used as the
base frame. To address this limitation, we also introduce a
Frame Selection Network (FSN) that automatically discerns
the most suitable base frame as shown in Fig. 2 (b). Our
FSN effectively eliminates the presumption that the first
frame is invariably the optimal choice, improving the over-
all image quality. Furthermore, our FSN seamlessly inte-
grates into prevailing burst enhancement networks, offering
plug-and-play compatibility. Our proposed method achieves
a noteworthy enhancement in quality compared to existing
stand-alone super-resolution methods, as demonstrated by
superior performance in perceptual metrics on synthetic and
real NEBI datasets.

The contributions of our paper are threefold:
• We employ non-uniformly exposed burst shots for practi-

cal scenarios where optimal exposure times are unknown
in the super-resolution task.

• We introduce the Non-uniformly Exposed Burst Image
(NEBI) benchmark, featuring varied exposure times.

• We propose a novel Frame Selection Network (FSN) that
selects the most suitable base frame for BISR in a plug-
and-play manner.

2. Related Work
Burst image enhancement. Burst denoising [8, 14, 28]
and burst deblurring [1, 42] have recently been studied
with the development of handheld cameras. In addition to
burst denoising, burst images have been utilized for low-
light denoising to enhance images captured in very dark
conditions [6, 19, 22, 27]. For the burst image super-
resolution, a seminal classical paper [41] proposes a restora-
tion model using multiple frames with known translation
between frames at the frequency domain. Many following
approaches [12, 13, 17, 23, 39] have extended it to the
spatial domain to solve burst image super-resolution. Cur-

(a) Previous approach

(b) Our approach
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Figure 2. (a) Previous methods [2, 3, 11] fix the base frame to the
first frame, which often suffers from degradation (e.g., noise, blur),
resulting in poor image quality. (b) Our approach dynamically se-
lects the base frame using a frame selection network, enhancing
the quality of the final output image. This adaptive strategy helps
the model generate a cleaner final output image.

rent learning-based methods [9, 24, 25] formulate the burst-
frame super-resolution joint learning to align burst frames.
DBSR [2] proposes a burst image enhancement benchmark
and sets the baseline model to predict a DSLR-quality im-
age from input bursts captured by a handheld device, and
Deep-rep [3] extends it by applying reconstruction loss
from image space to feature space. BIP-Net [11] obtains
a restored and enhanced output image by aligning frames
to use deformable convolution, exchanging information be-
tween burst features, and fusing the features progressively.
However, all the methods mentioned above do not take input
bursts with non-uniform exposures for practical scenario
and assume that the first frame among the input bursts is
a base frame.
Frame selection in an image sequence. Existing frame se-
lection methods mainly focus on video object segmentation
and action recognition in video. BubbleNet [16] chooses the
best reference frame to propagate the predicted segmenta-
tion map to the other frames for video object segmentation.
ATP [5] suggests using a single selected frame rather than
all frames to construct video representation in action recog-
nition. Dahary et al. [8] propose to learn exposure time in
burst shots by leveraging that the long-exposed image ob-
tains a high-SNR image and the short-exposed image is
sharp. Unlike the previous methods, we cover a scenario
of input bursts with dynamic exposure times and select the
base frame for each input dynamically.

One important baseline for selecting the base frame is
the Auto-Exposure (AE) algorithm. The common approach
to AE is to measure optimal exposure based on the image’s
histogram or entropy [40, 46]. Zhang et al. [46] selected
the best exposure time based on the highest entropy of the
histogram. Tedla et al. [40] combine the content-agnostic
and semantic AE algorithms.
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Figure 3. Visualization of the Synthetic-/Real-NEBI dataset. The left four columns display a subset of 14 input bursts, while the rightmost
column presents the ground-truth image corresponding to the first input frame. From left to right in the burst sequence, the exposure time
increases, resulting in decreased noise and increased blur. Best view to zoom.

3. Benchmark

We propose a new benchmark for burst image super-
resolution with non-uniform camera settings (i.e., varying
the exposure time), named Non-uniformly Exposed Burst
Image (NEBI). By acquiring the burst frames with various
exposure times, our NEBI is able to capture a broader range
of irradiance and motion characteristics within a scene for
practical scenarios where the optimal exposure time is un-
known. Specifically, the benchmark consists of two tracks:
Synthetic-NEBI and Real-NEBI, where Synthetic-NEBI is
used for training and testing, and Real-NEBI is only used
for evaluation. Both benchmarks have heterogeneous image
noise and motion blur, and there are misalignments between
bursts that naturally occur from camera movement.

3.1. Synthetic-NEBI

We create Synthetic-NEBI to address the cost of obtain-
ing sufficient pairs of burst frames and the corresponding
ground-truth images in the real-world. To achieve this, we
utilize sharp frames from a video dataset [31] and synthe-
size a dataset with realistic blur and noise. Specifically, we
synthesize blur from gyro sensor data and inject realistic
noise using the Poisson-Gaussian noise model. We simulate
a longer exposure time by increasing the number of gyro
sensor data and decreasing the noise amount [8, 20, 26, 48].
This process results in a sequence of frames that resemble
a burst taken from short to long exposures, allowing us to

simulate non-uniform exposures and heterogeneous degra-
dation that occur in real-world shooting environments.

We simulate various degradations, including motion
blur, noise, and low-resolution, considering where they oc-
cur in the image acquisition process. During image acqui-
sition, the scene radiance emitted from the target scene is
first blurred by the relative motions between the camera and
the scene, and then is blurred by the lens and sampled by
the sensor. Then, it is mosaiced by the color filter array, and
processed by the ISP. To mimic this process, we first ap-
ply the inverse ISP to obtain synthetic scene radiance, fol-
lowed by applying blur synthesis, downsampling, and noise
synthesis sequentially. Specifically, we first extract 14 con-
secutive images from the video dataset [31] and convert the
images to the RAW color space through the unprocessing
pipeline [4]: inverse gamma compression, inverse gain, and
inverse CCM. We synthesize blur on the images by utiliz-
ing gyro sensor data collected from the Samsung Galaxy
S22. Specifically, considering different exposure times, we
randomly sample consecutive gyro sensor values matching
each burst image’s exposure. Next, we interpolate these val-
ues and then calculate homographies. We obtain a blurred
image by warping the ground truth sharp images corre-
sponding to each burst using the previously derived homo-
graphies and subsequently averaging them. Then, we apply
downsampling and synthesize realistic noise on the synthe-
sized blurred images. We randomly sample shot noise λshot

and read noise λread parameters of the burst images accord-
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Figure 4. (a) Overall architecture of frame selector. The network begins with a feature extractor followed by L Contextual Motion
Aggregation (CMA) blocks, each containing appearance and motion streams that produce image feature FL and motion feature ML. These
features are summed and further refined through a Global-Averaging-Pooling (GAP) layer and an MLP layer to predict the likelihood of
being the base frame. (b) Feature Correlation Module (FCM). Given the previous motion feature Ml−1, our FCM generates the motion
information Cl by computing the local feature correlation. The resultant Fl and Ml are obtained by propagating Cl.

ing to those of exposure times. Noisy images are synthe-
sized using the Poisson-Gaussian noise model [4] with the
noise parameters. Finally, we convert the burst images to the
Bayer pattern RAW images through mosaicing. Note that
the input video frames naturally contain shifting between
frames for hand motion, and this is sufficient to simulate
the misalignment of the synthetic burst frames. We finally
obtain a synthetic RAW burst sequence with heterogeneous
image noise and motion blur. More details for synthesizing
the dataset are provided in the supplementary.

The synthetic-NEBI consists of 2,750 synthetic non-
uniformly exposed RAW bursts. We split the dataset into
2,200 bursts for training and 550 bursts for the test set, us-
ing GoPro [31] as a source dataset. Each burst sequence
consists of 14 RAW frames center-cropped to 640 × 640
pixels, and the source frames are downsampled by 4 to pro-
duce 4 × 80 × 80 input bursts. The size of the correspond-
ing GT images is 3× 640× 640 pixels. The images on the
left of Fig. 3 (a) demonstrate the effect of the shorter ex-
posure, which is sharp but noisy, while the images on the
right demonstrate the effect of the longer exposure, which
is high-SNR but blurry. Overall, the Synthetic-NEBI dataset
provides a comprehensive representation of non-uniform
exposures shooting environments.

3.2. Real-NEBI

We create Real-NEBI to evaluate the quality of the result
of super-resolution captured in real-world. To collect the
Real-NEBI dataset, we use a dual-camera system similar
to [35, 36, 49, 50], which consists of two camera modules
and a beam-splitter. The beam-splitter equally splits pho-
tons into two camera modules; the dual-camera system can
simultaneously capture burst frames with different exposure
and corresponding sharp frames at the same time. We install
a 5% neutral density filter (ND filter) on the camera mod-
ule used to capture the burst frames to ensure stable han-

dling of long exposure time [49]. Using the camera system,
we capture real-world burst frames with non-uniform expo-
sures and the corresponding sharp and high-SNR ground-
truth frame.

Specifically, one of the two camera modules captures
14 frames with gradually increasing exposure times from
0.01 to 0.14 seconds, and the other camera module captures
the corresponding sharp images with 0.005 seconds of ex-
posure time. We inverse-proportionally decrease the gain
value of each burst frame to maintain the same brightness
level as the corresponding sharp frame. We collect all im-
ages in the RAW format and perform spatial and photomet-
ric alignments, as done in [36]. The burst frames are down-
sampled for the input of the enhancement pipeline, and the
GT frames undergo only demosaicing.

The Real-NEBI dataset consists of 96 burst sequences
with heterogeneous degradation by non-uniform exposure
times. A burst set consists of 14 burst frames, and the
input bursts and the ground-truth image have shapes of
4×148×238 and 3×1184×1904, respectively. Figure 3 (b)
shows the examples of our Real-NEBI dataset. Detailed de-
scriptions of our Synthetic- and Real-NEBI generation are
in the supplementary material.

4. Frame Selection Network
The goal of BISR is to reconstruct a high-quality image by
merging the information from successive frames. However,
inevitable misalignments between frames occur as burst im-
ages are rapidly captured by handheld devices. This discrep-
ancy hampers the fusion of their complementary informa-
tion, resulting in ghosting and blurring artifacts in the output
image [11, 43]. While existing methods primarily concen-
trate on developing burst alignment algorithms to address
this issue, they focus on aligning the other frames with the
first frame rather than determining which frame best aligns
with the others. In this section, we present FSN that auto-
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matically discerns the most suitable base frame that aligns
best with the others.

Given raw burst frames I ∈ RN×H×W×4, the objective
of FSN is to predict an index k, indicating the position of
the optimal base frame, where N , H , and W represent the
burst size, height, and width of a burst frame, respectively.
After the frame selection, the burst frames pass through a
super-resolution network, producing an enhanced image by
merging complementary information from the input burst
frames into the selected base frame.

As depicted in Figure 4, FSN first constructs the im-
age feature of each frame using Convolutional Neural Net-
work (CNN). The constructed image feature is fed into our
Correlation-based Motion Aware (CMA) blocks, which up-
date the image feature based on motion information ex-
tracted from the burst frames. To extract motion informa-
tion from the burst frames, we propose Feature Correlation
Module (FCM), which computes the local correlation along
both spatial and temporal axes. Finally, the output features
from the last CMA block are then passed into the classi-
fier to predict the likelihood of being the base frame. The
remainder of this section presents the details of the fea-
ture extractor (Sec. 4.1), CMA block (Sec. 4.2), and FCM
(Sec. 4.3) and the training procedure (Sec. 4.4).

4.1. Feature Extractor

Given raw burst frames I, we use two-layer CNN to extract
the image feature F = [f1; ...; fN ] ∈ RN×H′×W ′×D, where
fi ∈ RH′×W ′×D is the feature of each frame and [·; ·] is a
concatenation operator. H ′, W ′, and D denote the height
and width of the image feature and the feature dimension,
respectively. The constructed image feature F is fed into the
first CMA block as input.

4.2. Correlation-based Motion Aware Block

To ascertain which frame aligns best with the others, the
model must consider not only the degrees of degradation of
each frame, as degradation contributes to misalignment is-
sues, but also the motion information, as the alignment be-
tween frames captured by handheld devices should consider
the motion trajectory.

To address this challenge, we propose a novel
Correlation-based Motion Aware (CMA) block designed
to enable the model to efficiently fuse noise information
within a frame and motion information across frames. A
CMA block has a two-stream architecture: an appearance
stream and a motion stream. The appearance stream updates
the image feature to consider the degradation of a frame.
Simultaneously, the motion stream extracts the motion in-
formation in the frames using the Feature Correlation Mod-
ule (FCM) (described in Sec. 4.3) and conveys motion infor-
mation to the next block, independent of the image feature
of the appearance stream. The motion information is then

propagated to the image feature, enabling the model to con-
sider noise and motion information when selecting a base
frame. Specifically, the l-th CMA block takes the previous
results of image feature Fl−1 and motion feature Ml−1, and
outputs updated Fl, and Ml. In the appearance stream, the
previous image feature Fl−1 is updated using correlation
feature Cl as follow:

g(·) = ReLU(Conv2D(·)) (1)
Fl = Fl−1 + g(g(Fl−1) + Cl), (2)
Cl = FCM(Ml−1). (3)

For the sake of simplicity, we omit the subscript that indi-
cates different weights in g. In equation 3, the correlation
feature Cl is extracted from the previous motion feature
Ml−1 using the FCM. Similar to the appearance stream, the
motion feature is also updated by using Cl as follows:

Ml = Ml−1 + g(Cl). (4)

At the first CMA block, the image feature F is utilized as
F0 and M0.

4.3. Feature Correlation Module

Traditional super-resolution methods typically utilize opti-
cal flow techniques to extract motion information for align-
ing input burst frames[2, 3]. However, these approaches use
an off-the-shelf network pre-trained in the RGB space, re-
sulting in inaccurate alignment when applied to RAW im-
ages, thus negatively impacting generated outputs and in-
curring high computational costs. To mitigate the issue, we
utilize local feature correlation with spatial-temporal neigh-
bors to extract motion information.

In detail, given a motion feature M, feature correlation
map S ∈ RN×H′×W ′×U×V×W is computed as follow:

St,x,y,u,v,w = sim(Mt,x,y,Mt+u,x+v,y+w), (5)

where sim(·, ·) is similarity function (e.g., cosine similar-
ity). U , V , and W is the local window size of the time,
height, and width axes, respectively. (t, x, y) is the position
of a query point and (u, v, w) is a offset from the query
point. For the sake of simplicity, we omit the subscript l in
M. Then, A correlation feature C ∈ RT×X×Y×D, which
contains motion information, is extracted from S using a
series of 3D convolution along with U , V , and W axes as:

h(·) = ReLU(Conv3D(·)) (6)
C = (h ◦ · · · ◦ h)(S). (7)

We omit the subscript that indicates different weights in h
for simplicity.
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4.4. Base Frame Estimation and Network Training

FL and ML, the outputs of the last CMA block, are fed
into MLP after the summation to predict the probability as
the base frame p ∈ RN as follow:

p = σ(MLP(GAP(FL +ML))), (8)

where GAP is a global average pooling over spatial dimen-
sion and σ is a softmax operation. During inference, the in-
dex with the highest probability in P is selected as a base
frame.

To train our FSN, we employ the cross-entropy between
the ground-truth pGT, which one-hot vector with ground-
truth base frame index set to 1, and the predicted p as fol-
lows:

LFrame =
∑

(−pGT ∗ log(p)). (9)

The ground-truth base frame index is determined by select-
ing the frame with the highest metric (i.e., PSNR, SSIM,
LPIPS) among the input burst frames. Unless otherwise
stated, we select the ground-truth based on the PSNR.

5. Experiment
We demonstrate the effectiveness of the use of non-
uniformly exposed burst shots in practical scenarios and our
proposed frame selection network when integrated into ex-
isting super-resolution models [2, 3, 11].

5.1. Quantitative Results

Uniform vs. non-uniform exposure settings. Table 1 com-
pares PSNR scores of BIPNet [11], Deep-sr [2], and Deep-
rep [3] trained on uniformly-exposed burst images at var-
ious exposure times. The results show that image quality
increases as the model utilizes an exposure time close to
the optimal. It suggests that it is crucial to use optimally-
exposed burst shots to generate high-quality images in
image restoration. However, obtaining such optimally-
exposed burst shots in real-world conditions poses inherent
challenges due to the dynamic nature of lighting conditions.
Interestingly, when utilizing non-uniformly-exposed burst
shots, the model exhibits comparable results to those ob-
tained with optimal exposure times. This demonstrates that
bursts captured at non-uniform exposure settings are bene-
ficial in practical scenarios where determining the optimal
exposure time is challenging.
Effect of FSN on Synthetic-/Real-NEBI. Table 2 shows a
quantitative comparison between existing super-resolution
models and their variants with our FSN on Synthetic-/Real-
NEBI. On the Synthetic-NEBI, the existing models exhibit
subpar performance due to designating the first frame as
the base frame. Compared to existing models, their vari-
ants incorporating our FSN consistently demonstrate per-
formance improvements. These results indicate that select-

Model PSNR
0.01 0.02 0.04 0.14 NEBI

BIPNet [11] 33.276 33.311 34.017 32.749 33.774
Deep-sr [2] 33.170 33.288 33.732 32.845 33.516

Deep-rep [3] 33.580 33.631 34.082 32.918 34.059

Table 1. Perfomance comparison on uniform/non-uniform ex-
posure settings. The table shows PSNR scores for a vanilla BISR
network [2, 3, 11], trained on the uniform exposure time from 0.01
to 0.14, and NEBI. When the model utilizes the burst shots close
to the optimal exposure time, the quality of outputs is increased.
When the optimal exposure time is unknown, it is beneficial to use
the non-uniformly exposed burst shots.

Dataset Model Frame selection PSNR↑ SSIM↑ LPIPS↓

Synthetic-NEBI

BIPNet [11] - 33.774 0.920 0.108
FSN 33.878 0.922 0.106

Deep-sr [2] - 33.516 0.917 0.117
FSN 33.872 0.921 0.107

Deep-rep [3] - 34.059 0.925 0.103
FSN 34.313 0.928 0.099

Real-NEBI

BIPNet [11]
- 33.957 0.904 0.143

AE 34.184 0.900 0.157
FSN 34.367 0.901 0.157

Deep-sr [2]
- 31.084 0.908 0.180

AE 30.914 0.901 0.195
FSN 31.149 0.907 0.180

Deep-rep [3]
- 31.088 0.911 0.174

AE 30.861 0.903 0.193
FSN 31.308 0.904 0.194

Table 2. Results on Synthetic-/Real- NEBI. ‘AE’ and ’FSN’
stands for Auto Exposure and Frame Selection Network, respec-
tively. The best score is highlighted in bold.

ing an appropriate base frame contributes to the perfor-
mance increase, facilitating improved alignment and fusion
among the burst frames. For the Real-NEBI, we evaluate
the performance of our FSN on Real-NEBI while train-
ing on Synthetic-NEBI as acquiring labeled data for super-
resolution is challenging and costly. Similar to Snythetic-
NEBI, Our FSN consistently improves the PSNR values
of existing super-resolution models on the real-world burst
examples of non-uniform exposure conditions, despite be-
ing trained on Synthetic-NEBI. These results show the im-
portance of frame selection even in real-world scenarios,
demonstrating the effectiveness of our FSN. Our FSN also
shows comparable results on SSIM and LPIPS metrics.
Auto-Exposure (AE) vs. FSN. To demonstrate the effec-
tiveness of our FSN, we also compare FSN with the AE
algorithm. Following previous AE methods [40, 46], we se-
lect the base frame with the maximum entropy calculated
based on the image’s histogram. In Table 2, we observe
marginal PSNR improvement or even declines when using
AE. This suggests that AE is sub-optimal in selecting the
base frame, emphasizing the effectiveness of FSN.
Target frames for FSN training. As we train the FSN to
select the frame that yields the highest PSNR on Synthetic-
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NEBI, the FSN may exhibit sub-optimal results on other
metrics, such as SSIM and LPIPS, when applied to Real-
NEBI. In Table 3, we explore using different target frames
in training FSN and evaluate its effect on performance in
Real-NEBI. Specifically, we trained FSN to select the frame
that yields the highest PSNR, SSIM, and LPIPS on the
Synthetic-NEBI and evaluate the FSN on Real-NEBI. The
results show that training based on SSIM yields high SSIM
performance, while training based on LPIPS yields high
LPIPS performance.

5.2. Qualitative results

We visualize super-resolution results and the selected base
frame to verify the effectiveness of our FSN in Figure 5.
The first and second columns show first frames, which
are typically used as a base frame, and frames selected
as base frames by FSN, respectively. We observe that our
proposed method selects frames with less degradation. Ad-
ditionally, we note increased qualities of super-resolution
results when applying FSN to Deep-rep (third vs fourth
columns). These results indicate that selecting an appropri-
ate frame for the base frame increases the image quality in
the super-resolution task. For example, when the base frame
is noisy, the legs appear blurry in the first row. However,
when selecting a frame with less degradation, the legs ap-
pear sharp compared to the Deep-rep [3].

5.3. Ablation Study of FSN

We explore the impact of each individual component of
FSN. For the ablation study of FSN, we adopt Deep-rep [3]
trained/tested on Synthetic-NEBI as a super-resolution net-
work. Specifically, we attach variants of FSN to Deep-rep
and evaluate their performance.
Number of CMA blocks. We utilize the CMA block to en-
code visual features with motion information. To investi-
gate the impact of the number of CMA blocks, we grad-
ually increase the number of CMA blocks to a vanilla
FSN that has CMA blocks. Comparing the baseline (solo
super-resolution network) and the baseline variants with the
vanilla FSN, there is notable performance gain as shown
in the first and second rows of Table 4. This result demon-
strates that selecting an appropriate base frame contributes
to the model’s ability to generate high-quality images. Fur-
thermore, the addition of CMA blocks increases the perfor-
mance gap between the baseline and the baseline with the
FSN. we observed that employing two CMA blocks yields
the best performance across all metrics.

We also increase the capacity of the vanilla FSN to have
a similar number of parameters with the FSN with 2 CMA
blocks (i.e., 0∗) to investigate whether the improvement is
due to an increased number of parameters or the effective-
ness of our CMA block. The results show that even though
the capacity of the vanilla FSN is increased, the FSN with

Frame selection PSNR↑ SSIM↑ LPIPS↓
- 33.957 0.904 0.143

FSNP 34.367 0.901 0.157
FSNS 34.675 0.907 0.155
FSNL 34.053 0.905 0.143
oracle 35.650 0.912 0.142

Table 3. Comparison of training strategies on Real-NEBI. The
table illustrates how performance varies when different metrics
are employed to select the ground-truth frame in the Real-NEBI
dataset The subscription P, S, L denote frame selection strategies
based on PSNR, SSIM, and LPIPS score respectively.

# of CMA block PSNR↑ SSIM↑ LPIPS↓
- 34.059 0.925 0.103

0 34.174 0.926 0.101
0∗ 34.164 0.926 0.101
1 34.252 0.927 0.101
2 34.313 0.928 0.099
4 34.248 0.927 0.100

Table 4. Ablation study on the number of CMA Blocks. The
first row represents the baseline, i.e., vanilla super-resolution net-
work, while the subsequent five rows explore the impact of varying
numbers of CMA blocks. * denotes the balanced model size as the
number of parameters when there are two of the CMA block.

Appear. Motion Motion Feat PSNR↑ SSIM↑ LPIPS↓
- - - 34.174 0.926 0.101
✓ - - 34.123 0.926 0.103
- ✓ PWCNetraw 34.104 0.926 0.102
- ✓ PWCNetrgb 34.088 0.925 0.102
- ✓ FCM 34.266 0.927 0.101
✓ ✓ FCM 34.313 0.928 0.099

Table 5. Impact of appearance & motion streams. We compare
the performance of our frame selector with different combinations
of appearance and motion streams. The ’Motion Feat’ column in-
dicates the ways of extracting the motion feature.

the CMA blocks outperforms the vanilla FSN. These results
demonstrate the effectiveness of our CMA block.
Appearance & motion streams. Our CMA block consists
of the appearance stream to update the image feature and the
motion stream to encode the motion information in the input
burst frames. To investigate the impact of each stream, we
gradually add each stream to the baseline,where neither ap-
pearance nor motion stream is applied (i.e., vanilla FSN) in
Table 5. The appearance stream in isolation fails to demon-
strate discernible improvement compared to the baseline as
there is a misalignment between the burst shots. However,
the contribution of the motion stream is significant, indi-
cating that motion information is crucial to the base frame
selection. Notably, leveraging both appearance and motion
streams provides the best performance as the image feature
in the appearance stream is updated by using the correct
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First Frame Selected Frame Ground TruthBIPNet BIPNet + FSN

Figure 5. Qualitative comparison on synthetic-NEBI (top two rows) and real-NEBI (bottom row). BIPNet [11] with our frame selector
enhances high-frequency image details by merging effectively complementary information from multiple frames into the selected base
frame, while BIPNet [11] predicts blurry images due to the severe degradations in the first frame. Best view to zoom.

Model Params. FLOPs

BIPNet [11] 6.67M 1.67T
Deep-sr [2] 13.01M 544.86G

Deep-rep [3] 12.13M 1.28T

FSN 1.59M 18.53G

Table 6. Parameter comparison between existing methods and
FSN. We analyze the number of parameters and FLOPs of FSN in
contrast to previous burst enhancement models.

sub-pixel information aligned by the FCM.
Impact of FCM. In Table 5, we replace the FCM with an
off-the-shelf optical flow network, PWCNet, to investigate
the effectiveness of our FCM. Following Deep-sr [2], we
utilize the raw image to obtain the optical flow, PWCNetraw.
The result shows that utilizing optical flow for motion in-
formation extraction leads to a decrease in the model’s per-
formance compared to utilizing our FCM. Since the opti-
cal flow network is trained on RGB, it may result in in-
accurate predictions on raw images, negatively impacting
the model’s performance. Therefore, we also utilize the
RGB image to obtain the optical flow, PWCNetrgb. Inter-
estingly, the model’s performance is degraded compared to
PWCNetraw. These results indicate that optical flow may not
be suitable for extracting motion features for frame selec-
tion, highlighting the effectiveness of FCM.
Parameter Analysis. Applying our FSN to existing super-
resolution networks may increase computational costs, po-
tentially impacting performance metrics such as FPS and

memory usage. We conduct an analysis of the number of pa-
rameters and FLOPs in Table 6. FSN has a compact model
size and small FLOPs compared to existing burst enhance-
ment methods [2, 3, 11]. This guarantees plug-and-play in-
tegration of FSN into existing models with a low computa-
tional overhead.

6. Conclusion
We have explored using burst shots with non-uniform ex-
posures for practical scenarios where the acquisition of an
optimal exposure time is challenging. By using burst shots
with non-uniform exposures, the model reconstructs a high-
resolution image. As burst shots with non-uniform expo-
sures present various degrees of degradation, we introduce
a base frame selection model to improve the performance.
Our evaluations on the Synthetic- and Real-NEBI datasets
demonstrated the effectiveness of using non-uniformly ex-
posed burst shots for practical scenarios and the importance
of selecting a proper base frame. We believe that our pro-
posed dataset and method can contribute to the advance-
ment of super-resolution methods and pave the way for fur-
ther research in this field.
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