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Figure 1. HDR reconstruction from a single LDR image. By learning the receptive field of each overexposed pixel location so that the
receptive field can include non-overexposed information for restoring a overexposed object properly, our method restores the overexposed
objects such as power lines, a car and sky accurately. These differences are better visible in pdf version with zoom-in.

Abstract

Single image based HDR reconstruction methods us-
ing deep neural network have been proposed to mainly re-
store the lost details in the overexposed region. However,
they cannot restore the details well if the overexposed re-
gion becomes large because the receptive fields of their
networks are not large enough to cover the region. Also,
they cannot restore the partially overexposed small ob-
ject well if the non-overexposed portions of the object are
sparse. In this paper, we propose new deep neural network,
namely DCDR-UNet (Deformable Convolution Based De-
tail restoration via U-shape network), for single image HDR
reconstruction. By introducing a new block called De-
formable Convolution Residual Block (DCRB) and our loss
function, we show how deformable convolution can be well
utilized to solve the problems of the existing methods in sin-
gle image HDR reconstruction. Our experimental results
show that our method achieves much better results than all
the existing methods quantitatively and qualitatively.

1. Introduction

While modern displays can render HDR (High dynamic
range) content, SDR content, which includes only low dy-
namic range (LDR) of the HDR scenes, is still dominant
in the market. Therefore, there have been demands to
generate an HDR image from an LDR image. To sat-
isfy the demands, single-image based HDR reconstruction
methods using deep neural network have been proposed
[1, 2, 6, 16, 20–22, 28]. These methods enable the creation
of details in an HDR image from a single LDR image, with-
out requiring additional exposures or specialized hardware.
To do this, they use the multiple pairs of LDR and HDR im-
ages to train their networks, so their networks learn how to
restore the details and the tones in very bright region (over-
exposed) in the LDR images. Through their experiments
they show that the details and tones in the bright region in
an LDR image can be restored to match an HDR image.

Generally, there are two types of overexposed objects (or
regions) to be restored in an LDR image. The first one is
a partially overexposed object. Most of existing methods
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Figure 2. The examples of using deformable convolution and nor-
mal convolution for detail restoration

[1, 6, 16, 21, 22, 28] focus on restoring this type of over-
exposed object. When they restore this type of an object,
the non-overexposed region of the object is mainly used to
restore the overexposed region of it. For example, if there
are clouds in the sky and small portion of them are over-
exposed, the existing methods use the non-overexposed re-
gion of cloud to restore the overexposed region. However,
their methods show poor restoration results when the over-
exposed portion of the object is much larger than the non-
overexposed portion of it. In the 2nd and 3rd images of Fig-
ure 1, the large portions of the power lines and the car are
overexposed and the small portions of them are only visi-
ble. In these cases, one of the existing methods, HDRUNET
[1], cannot restore the object, which makes them to be seen
as unnaturally. That is because the fixed receptive field of
HDRUNET cannot handle the HDR image restoration from
small non-overexposed portion of the object in the 2nd im-
age. In the 3rd image, different non-overexposed pixels at
different overexposed pixels (blue and red point) are used
for restoration because of the limited and fixed receptive
field of HDRUNET.

The second type is an entirely overexposed object. This
is more challenging case than the partially overexposed ob-
ject. Especially, when the entirely overexposed region is
large and the size of a HDR reconstruction network is not
large, the reconstructed HDR image looks poor. The first
LDR image in Figure 1 shows that the large sky region is
entirely overexposed. Different from partially overexposed
objects, there is no hint to infer the entirely overexposed re-
gion as sky. To infer this region as sky, the HDR reconstruc-
tion networks are trained from the multiple pairs of LDR
and HDR images that includes a sky region next to build-
ings. However, if a network has a fixed receptive field (e.g.
HDRUNET) and it is smaller than the overexposed sky, the
reconstructed sky shows unnatural textures. Note that the
network with a fixed large receptive field can have similar
problems when the overexposed region becomes larger or
the image resolution becomes larger.

In this paper, we propose new deep neural network,
namely DCDR-UNet (Deformable Convolution Based De-
tail restoration via U-shape network), for single image HDR

reconstruction. In our method, we utilize a deformable con-
volution [4] to solve the problems of the existing methods.
The use of the deformable convolution enables our network
to learn the receptive field on each pixel location from train-
ing images. Note that the purpose of using deformable con-
volution is not simply increasing the receptive field of the
network but determining the receptive field adaptive to each
pixel. Figure 2 shows a good example of it. In this example,
an entire red line becomes disconnected and sky becomes
white in an LDR image because of overexposure. To restore
them using deformable convolution, the neighbor pixels of
the overexposed line pixel (green point) and sky pixel (blue
point) are collected from the line pixels (non-overexposed)
and the sky (overexposed) accordingly. Then, the same con-
volution filter, which is trained to convert white pixel to blur
and keep the red pixel as red, is applied to the LDR im-
age to reconstruct the HDR image. To utilize deformable
convolution effectively, we introduce a new residual block
called Deformable Convolution Residual Block (DCRB).
This block combines offset estimation, deformable convo-
lutions and SFT (spatial feature transform) layers [29] in
residual block fashion. For more accurate offset estimation,
which is very important for learned receptive field on each
pixel, the offset estimation in placed on the input path of
DCRB block while the deformable convolution is placed in
the residual path of it. To utilize our DCRB correctly, we
use the loss function that combines a pixel loss and a per-
ceptual loss. Our experiments show more clearly that the
combination of the DCRB and our loss function can gen-
erate great synergy, which can greatly improve the recon-
structed image quality. The main contributions of our work
can be summarized as follows:
• As far as we know, we are the first one that utilizes de-

formable convolution in single image HDR reconstruction.
•We show how to utilize deformable convolution effec-

tively for single image HDR reconstruction by introducing
both our DCRB and our loss function.
• We show how the overexposed object or region in an

LDR image is well reconstructed through our experimental
results and analysis.

2. Related Works
2.1. Multiple Exposure HDR Reconstruction
While modern displays are capable of rendering HDR con-
tent, SDR content is still prevalent. The common way to
obtain an HDR image is to fuse multiple SDR images with
different exposure, i.e. multi-exposure fusing (MEF) [5].
Those methods have achieved promising results, but they
also suffer from artefacts such as ghosting and tearing, es-
pecially when there is motion in the scene. Thus earlier
works [10, 12, 26, 27] focused on mitigating these kinds
of artefacts. With deep learning leading the way in many
research areas, researchers began using neural networks
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in HDR reconstruction. With the very first deep learning
based HDR reconstruction methods [15] performing image
alignment and merging by a convolutional neural network
(CNN), later improvements [25] were made by replacing
the conventional optical flow in the alignment step with
CNN. More recently end-to-end HDR reconstruction [32–
34] or reconstruction through generative adversarial net-
work [24] have also been studied. However, those ap-
proaches won’t work for large amount of existing legacy
content. Thus, in this paper we focus on single image HDR
reconstruction.

2.2. Single Image HDR Reconstruction
With the remarkable performance of neural networks in var-
ious image reconstruction tasks, a natural idea is to use deep
learning methods to reconstruct multiple exposure SDR im-
ages from a single SDR input, and then synthesize the HDR
image from the reconstructed ones. This strategy is also
branded as “reverse tone mapping” [8]. The reconstruction
of the multiple exposure images can be achieved via chained
sub-networks [19], and the synthesized image quality can
be further improved by using GAN style training [20, 21].

Another way in single image HDR reconstruction is to
directly predicting the lost details in the overexposed re-
gions, mostly use neural networks. In [6] the overexposed
region is first detected using pixel intensity, then the miss-
ing details in the overexposed region is restored using U-net
structure. This method does not consider the tone mapping
of normal exposed region between LDR and HDR images.
In [22] the reverse process of camera pipelines is learned
through multiple different networks. First, quantization er-
ror is restored through the first network. Then, inverse tone
mapping of normal exposed region is done. Last, the same
U-net structure of [6] is used to restore the details of the
overexposed region. In [16] the idea of recurrent neural net-
work is adopted in convolutional neural network (CNN). An
LDR image is run through CNN multiple times to generate
an HDR image. Through multiple iterations, this network
can increase the receptive field of its network with small
number of its parameters. However, the multiple iteration
also increases the inference time a lot. In [1] a condition net-
work with SFT layer is adopted in U-net for the detail recon-
struction in HDR image. Due to the SFT layer, the details in
the overexposed region can be adaptively restored for each
input. In [2], three different steps sequentially combined
to convert a SDR image to an HDR image. First, adaptive
global color mapping is performed using base network and
condition network. Then, ResNet structure is adopted to
perform local enhancement. Last, Unet structure is used for
highlight detail generation. Our work is also related to im-
age exposure correction. A complete survey of this topic is
beyond the scope of this paper and the reader is referred to
the literature[9, 13, 14, 30, 36] for further details.

3. Proposed Method
To utilize deformable convolution for single image HDR
reconstruction, we choose the network architecture of
HDRUNET as a baseline and modify it for our purpose.
The reason why we choose HDRUNET as a baseline is
that this architecture has separate sub-networks for each of
overexposed regions and normal regions, which can help to
train its network efficiently on many HDR reconstruction
datasets that have different tones for a overexposed region
and a normal exposed region. Also, it has shown good per-
formance in many previous works [1, 28] while its size is
relatively small compared to other methods.

Similar to HDRUNET, our DCDR-UNet consists of
three modules such as restoration net, condition net and
tone net. The restoration net mainly focuses on restoring the
lost details of overexposed objects or regions. This network
is a U-shape structure and uses an LDR image input with
3 condition maps generated from condition net to restore
the details. It mainly consists of multiple special blocks,
namely DCRB (Deformable Convolution Residual Block),
which combines offset estimation, deformable convolution
and SFT layer in residual block. Through the offset esti-
mation, which predicts the relative 2D locations of neigh-
bor pixels to be convolved with a deformable convolution
filter, in DCRB, our network learns the proper receptive
fields on each pixel location. The deformable convolution
filter then determines how the neighbor pixels within the
receptive fields should be used for the best restoration qual-
ity. The DCRB is the main difference between our network
and HDRUNET. Due to the restoration capability of DCRB,
we can improve the reconstructed HDR quality much more
than HDRUNET even though we use the less number of
DCRBs (8) than the number of the residual blocks (12) in
HDRUNET. It eventually makes our network smaller than
HDRUNET. To utilize the DCRB correctly, the loss func-
tion is very important. In this paper, we combine pixel loss
and perceptual loss for HDR images which are encoded
with hyper tangent. Note that the perceptual loss is also
used in [2, 16, 22], but no one uses the loss with any de-
formable convolution based module like DCRB. It is well
described in 3.4 and 4.3. The condition network gener-
ates different condition maps for each scale (× 1, × 0.5,
× 0.25), and the condition maps are used as inputs for SFT
layer and DCRB in the restoration net. Through condition
maps, our restoration network can generate the lost details
in the overexposed region more adaptively. Different from
HDRUNET, our condition network downsamples the image
first and apply multiple convolutions followed by upsam-
pling, which makes our condition map be smooth and be
generated with larger neighbor regions. For LDR and HDR
images, there are generally tone differences in not only an
overexposed region but also a normal exposed region. To
force the restoration net to be utilized in restoring the lost
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Figure 3. Overall block diagram of DCDR-UNet

details and tones in the overexposed region, we also need a
separate network that matches tones between the normal ex-
posed regions of LDR and HDR images. For this purpose,
we need a tone network. The entire network is well shown
in Figure 3.

Let NetR(), NetC (), and NetT () be the restoration net,
condition net, and tone net respectively. Then, our DCDR-
UNet, NetDCDR(), can generate an HDR image (Ihdr),
which restores the lost details in the overexposed region
in an LDR image (Ildr), by adding the two outputs of the
restoration net and the tone net:

Ihdr = NetDCDR(Ildr) = NetR(Ildr, NetC(Ildr)) +NetT (Ildr)

(1)
Note that NetC (Ildr ) generate three scale condition maps
and NetR accepts multiple inputs including the condition
maps as well as Ildr.

3.1. Restoration Net
The main role of restoration net is to restore details in the
overexposed region. In this network, not only an input im-
age but also multiple condition maps generated from the
condition net are utilized to restore the lost details in the
overexposed region. As shown in Figure 3, our restoration
net has a U-shape network with three scales. In the first
scale (× 1), several convolution layers with two SFT layers
are used to encode low level features and reconstruct the lost
details from the encoded image features. In the second and
third scale (× 0.5, × 0.25), multiple DCRBs are used to en-
code and decode the images features to restore the missing
details in the overexposed regions.

3.1.1 Spatial Feature Transform (SFT) Layer

During training, our network learns how to restore the lost
details in the overexposed regions from multiple similar
training images. However, the similar training images have

some variations. For example, there would be multiple
training images that include sky but the sky have many
variations such as different colors, textures or clouds. To
make our network learn these variations better, we adopt
SFT layer [29].

As shown in Figure 3, we utilize the SFT layer in all the
scales of the restoration net. At the first scale, we use the
two SFT layers: one in the encoder and the other one in
the decoder side. At the second and third scale, we utilize
the SFT layer in DCRB. In each DCRB, two SFT layers
used with two deformable convolutions. The SFT layers
help the DCRB to be able to generate the different details
for different image contents better. Let x and y be inputs
for our SFT layer: x is a feature map from previous layer
in the restoration net and y is a condition map at a certain
scale from the condition net. Then, our SFT layer is defined
as:

SFT (x, y) = x+ cv2(y)� x+ cv2(y) (2)

where cv2(y) = cv ◦ cv(y) is two sequentially connected
convolutional layers which have a 3 × 3 filter size and one
leaky ReLU between them and� is the element-wise multi-
plication. With a residual style of the SFT layer, our training
is more stable.

3.1.2 Deformable Convolution Residual Block (DCRB)

Our DCRB has mainly three components such as offset es-
timation, SFT layer and deformable convolution. First, the
offset estimation predicts the relative 2D locations of k × k
neighbor pixels, which will be convolved with a deformable
convolution filter, for each pixel. It will generate an offset
feature map with 2 × k × k channels. This feature map is
then used in a deformable convolution that has the k × k
filter size. For example, our deformable convolution has the
3× 3 filter size, then the offset estimation generates an off-
set feature map that has 18 channels. Estimating the correct
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offset is very important in DCRB because choosing the best
neighbor pixels for deformable convolution is the key point
of learning the receptive field on each pixel. Let z be an in-
put feature map for DCRB. The offset in the DCRB is then
estimated by:

o(z) = cv(z) (3)

where o(z) is the offset feature map with 18 channels and
cv(z) is a convolution operation with 3× 3 filter size on z.

When the offset is estimated, the input feature map, z,
is skipped to the output of the block. Also, the same input
passes through the first SFT layer followed by the first de-
formable convolutional layer that uses the estimated offset
as another input. Then, the output of the first deformable
convolutional layer goes through the second SFT layer fol-
lowed by the second deformable convolutional layer. The
output of the second deformable convolutional layer would
be added to the z. Note that different from original de-
formable convolutional layer [4] that estimates the offsets
using the direct input of the deformable convolution layer,
we estimate the offset from the input of DCRB and use the
same offset for the first and second deformable convolu-
tion layers. That is because the direct inputs of the de-
formable convolutional layers have only residual informa-
tion and they are not enough for estimating accurate offsets
while the input of DCRB has entire information of restored
details in previous DCRB. Let z and y be the inputs for
DCRB: z (an input feature map of DCRB), y (an input con-
dition map from the condition net). The DCRB is then de-
fined as:

DCRB(z, y) = z + dcv(o(z), SFT (dcv(o(z), SFT (z, y)), y))

(4)
where dcv(in1, in2) is the deformable convolution using
two inputs: in1 and in2 represent an offset feature map and
a feature map generated from the previous SFT layer.

3.2. Condition Net
In this network, we generate 3 scales condition maps, which
will be used in the restoration network. By providing the
condition maps, our restoration network can better recon-
struct the details for different image contents. First, the
down-sampled input passes through multiple convolution
layers to generate feature maps and the feature maps are
up-sampled to generate different scale feature maps. Then
the feature map at each scale passes through another multi-
ple convolutional layers to generate final condition map at
each scale. Given an input LDR image Ildr, the condition
map at each scale is defined as:

ys = NetC(Ildr) = cv2(up1/s(cv
3(d4(Ildr))) (5)

where ys is a condition map the s ∈ 1, 0.5, 0.25 scale, d4()
is a downsample operation by 4, and up1/s() an upscale
operation by 1/s.

3.3. Tone Net
In general, there is an image tone difference between LDR
and HDR images. To force our restoration net to focus on
restoring the lost details in an overexposed region, we have
a tone net. The tone net mainly matches the images tones of
the non-overexposed region between LDR and HDR. Given
an input LDR image, Ildr, the tone net is defined as:

NetT (Ildr) = Ildr � TG(Ildr) (6)

where TG(Ildr) = cv4(Ildr) is the local tone gain map
and cv4 is four sequentially connected convolutional layers
which have a 3 × 3 filter size. Note that the last convolu-
tional layer does not have ReLU after convolution. To show
that the tone net mainly works for restoring the tones of the
non-overexposed region of LDR, we visualize the outputs
of the tone net and restoration net in the supplementary ma-
terial.

3.4. Loss Function
In [1], L1 distance between the predicted HDR and ground
truth HDR, which are encapsulated with hyper tangents,
(called Tanh L1 distance) shows better restoration results
than simple L1 or L2 distance. We also adopt this loss in
our loss function. However, we find that using this loss
function only is not sufficient to utilize our DCRB well. If
we use this loss function, which is one type of pixel loss,
only to train our network, our network mainly focuses to re-
store a dominant part such as sky in the large overexposed
region but not partially overexposed small object like thin
power lines. For example, an LDR image in the second row
of Figure 4 shows that the over exposed region is mostly
sky, but the thin power lines are partially overexposed. For
the image, our network with Tanh L1 loss restores the sky
regions well but does not restore the partially overexposed
power line correctly. This is because Tanh L1 loss is not
enough to emphasize small or thin objects compared to a
large sky region. For this problem, we adopt additional
VGG loss used in [18] and combine it with the Tanh L1
loss. Since the VGG loss is a perceptual loss that helps to
restore the object in perceptually correct way and it shows
the effectiveness in super resolution task in [18], we use this
loss as an additional loss. The VGG loss,LV GG, is defined
as:

LV GG(I
pred
hdr , I

gt
hdr) =

∑
(i,j)∈S

1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I
pred
hdr )x,y − φi,j(I

gt
hdr)x,y)

2 (7)

where Ipredhdr is a predicted HDR image from our net-
work, Igthdr is a ground truth HDR image, φi,j is the
feature map obtained by the jth convolution before the
ith maxpooling layer in the VGG19 network, Wi,j and
Hi,j describe the dimensions of the φi,j , and S =
{(1, 2), (2, 4), (3, 8), (4, 12), (5, 16)} is the set of the fea-
ture map indexes to be selected. Then, our final loss
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function,Lfinal, is defined as:

Lfinal(I
pred
hdr , I

gt
hdr) = |Tanh(I

pred
hdr )− Tanh(Igthdr)|

+ wvgg · LV GG(I
pred
hdr , I

gt
hdr) (8)

where wvgg = 0.1 is the weight that makes a balance be-
tween the Tanh L1 loss and the VGG loss. By minimizing
this loss, our network is trained to achieve a detail restora-
tion on not only the large exposed region but also the par-
tially overexposed small object within the region.

4. Experimental Results
4.1. Experimental Setup
4.1.1 Dataset
To validate the effectiveness of our network, we use the pub-
lic dataset from [3]. According to [7], the unknown maxi-
mum peak luminance causes us hard to use the quantitative
metrics such as PSNR and SSIM. The maximum peak lu-
minance of the HDR image in this dataset is within 16 bit
depth (many of LDR/HDR datasets use ”hdr” file extension
for HDR images, where the maximum peak luminance is
unknown). To evaluate our method more quantitatively, we
mainly use this dataset here. This dataset includes 2975 and
1525 pairs of LDR (8 bits) and HDR (16 bits) images for
training and test respectively. This dataset includes the pairs
of LDR and HDR images, which of them are geometrically
aligned, for many HDR scenes. Also, the size of overex-
posed regions in the images in the dataset varies from small
to large, which is effective to validate our network. Note
that the HDR images have 16 bits linear color depth, so the
normal exposed regions in the HDR images look very dark.
For training, we use all the 2975 pairs of LDR and HDR
images from training set. First, we collect multiple pairs of
512×512 patches from the pair of LDR and HDR image.
To prevent the case that the patches are not selected from
overexposed region, we split the entire image into the non-
overlapped sub-regions so that the size of each sub-region
becomes 512×512. For test, we generate two sets from all
the 1525 test images. For the first set (Test set1), we use all
the 1525 images to evaluate our network. However, we re-
alize that there are many LDR images that have small over-
exposed regions in this test set. To evaluate how much our
network can restore the lost details from large overexposed
regions as well, we collect the LDR images with large over-
exposed regions and the corresponding HDR images. To
select the LDR images with large overexposed regions, we
first convert a RGB LDR image to a grayscale LDR im-
age. Then, we count the number of the grayscale pixels that
have larger intensity than threshold, Tbright. If the ratio of
the number of the bright pixels and the total number of the
pixels in the image is larger than λ, we select the LDR im-
age with the corresponding HDR image. Tbright = 240 and
λ = 0.029 are empirically chosen to find enough number of

images. The total 424 pairs of LDR and HDR images are
chosen for this set. We call this set as Test set2.

4.1.2 Evaluation metrics
To evaluate our method with the existing methods, we use 5
metrics: PSNR-L [1], PSNR-µ [1], SSIM [31], LPIPS [35],
and HDR-VDP2 [23], which are widely used in many exist-
ing methods [1, 2, 6, 16, 22, 28], for quantitative evaluation.
For PSNR-µ, we use µ = 10 while µ = 5000 is used in
[1] because higher µ can remove the restored details in the
overexposed region again. For HDR-VDP2, the linear rgb
normalized within [0,1] is used with the option “rgb-native”
and the “pixels per degree” is set to 24.

4.1.3 Implementation Details
To train our network, the LDR (8 bit) and HDR (16 bit)
patches are normalized within [0,1]. During training, the
batch size set to 16 and the number of training iteration is
set to 2 × 105. All the network parameters are randomly
initialized using Kaiming initialization [11] and optimized
using Adam optimizer [17].

4.2. Ablation Study
We performed an ablation study on three main components
for our DCDR-Net in Table 2: DCRB, tone net and con-
dition net. By comparing the entire model with the model
without each of three components, we show how much each
component contributes to final HDR image reconstruction.
Note that ”no DCRB” means that we use a normal resid-
ual block, which is defined in [1]: the offset estimation
is removed and the deformable convolutions are replaced
with normal convolutions in DCRB. For ”no condition net”
case, since condition net is removed, every SFT layer in the
restoration net is also replaced with a normal convolutional
layer. Table 2 shows that the all the components contribute
to improve the reconstructed HDR image quality, but the
DCRB improves the most compared to the other two com-
ponents. It proves that how important DCRB is in our net-
work.

4.3. Effectiveness of DCRB and VGG Loss
We performed additional experiments to see how important
the combination of DCRB and an additional VGG loss is for
single image HDR reconstruction. The results are shown in
Table 3 and Figure 4. Table 3 shows that the improvement
is more significant between (b) and (a). That is because the
large overexposed objects such as overexposed sky or over-
exposed building are well restored using DCRB with simple
Tanh L1. However, if there are sparse non-overexposed
pixels of the partially overexposed small object in the LDR
image, DCRB with simple Tanh L1 does not restore it well
as shown in Figure 4 (b). As shown in Figure 4 (c), the
additional VGG loss helps the small object be restored bet-
ter. However, when the DCRB is used with the additional
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Test Set1 Test Set2
Method PSNR-L↑ PSNR-µ ↑ SSIM↑ LPIPS↓ HDR-VDP2↑ PSNR-L↑ PSNR-µ ↑ SSIM↑ LPIPS↓ HDR-VDP2↑ No.Param↓

HDRCNN [6] 47.69 48.15 0.9973 0.0057 62.73 40.64 43.40 0.9930 0.0121 59.40 27.8M
SingleHDR [22] 39.97 39.57 0.9937 0.0077 64.80 34.63 37.36 0.9890 0.0146 61.10 61.0M

FHDR [16] 46.54 46.84 0.9963 0.0046 66.58 37.96 40.57 0.9905 0.0113 61.45 0.6M
HDRTV [2] 49.36 50.77 0.9975 0.0037 67.75 39.74 43.16 0.9935 0.0097 62.71 37.2M
KUNet [28] 48.03 49.43 0.9975 0.0043 64.82 38.87 42.11 0.9935 0.0106 59.98 1.1M

HDRUNET [1] 50.41 52.00 0.9980 0.0036 65.47 40.78 44.29 0.9945 0.0095 60.87 1.7M
Proposed Method 52.47 54.71 0.9985 0.0026 68.68 43.25 47.09 0.9959 0.0072 63.43 1.5M

Table 1. Quantitative performance comparison (Red : the best, Blue : the second, Green : the third)

Test Set1 Test Set2
DCRB × ×

Tone Net × ×
Condition Net × ×

PSNR-L 51.08 52.01 52.29 52.47 41.01 42.96 42.76 43.25
PSNR-µ 52.66 53.69 54.39 54.71 44.54 46.56 46.48 47.09

Table 2. Ablation study on main three components.

Test Set1 Test Set2
(a) (b) (c) (d) (a) (b) (c) (d)

DCRB × × × ×
VGG loss × × × ×
PSNR-L 50.46 51.24 51.08 52.47 40.70 42.26 41.01 43.25
PSNR-µ 52.21 53.57 52.66 54.71 44.20 45.98 44.54 47.09

Table 3. Effectiveness of DCRB and VGG Loss. The improve-
ment is significant when both DCRB and VGG loss are used (d)
compared to using either DCRB (b) or VGG loss (c) solely.

Figure 4. Visual analysis of DCRB and VGG Loss

VGG loss (d), the quality of the reconstructed HDR image
is much improved. It proves that our DCRB should be used
with the additional VGG loss.

4.4. Performance Comparison
4.4.1 Implementation of existing methods

We compare our method against 6 existing methods [1, 2,
6, 16, 22, 28]. Note that the existing methods that provide
publicly available training codes are chosen here for fair
comparison. Therefore, we retrain all of them using their
official implementation on our training dataset. The same
512 × 512 patches are used as well. For [6], which does
not consider the different tones of normal exposed region
between LDR and HDR in default setting, we modify its
setting so that its network can be used for entirely region,
not only for overexposed regions.

4.4.2 Comparison with existing methods

The Quantitative results are shown in Table 1. According
to Table 1, our method achieves much better performances
than all the existing methods over all the metrics. Espe-
cially, our method achieves better scores than HDRUNET

and HDRTV, which are the state of the art in single im-
age based HDR reconstruction, by 2.06 and 2.71 and by
3.11 and 3.94 in test set1 on PSNR-L and PSNR-µ. Also,
it achieves better scores than them by 2.47 and 2.80 and
by 3.51 and 3.93 in test set2 on PSNR-L and PSNR-µ.
The number of training parameters of our network is 1.5M,
which is smaller than that of HDRUNET and HDRTV. Even
though two existing methods of FHDR and KUNet have less
number of parameters than our method, their performances
are much lower than our method.

Figure 5 shows the visual quality results of all the meth-
ods. Note that we do not apply any tone mapping algorithm
to all the images here because a tone mapping sometimes
faints the artifacts and details in the restored overexposed
region. Because of this, normal exposed regions in all the
images look very dark. Instead, we include all the tone
mapped results of the same images in the supplemental ma-
terials. The images on the 1st, 5th and 7th column show
that our method can restore the partially overexposed small
objects such as the tower, power line and leaves as well as
the large overexposed sky better than all the existing meth-
ods. For the images on the 2nd, 4th and 6th column, the
overexposed objects such as cars and buildings are restored
very close to the ground truth in our method compared to
the existing methods. More qualitative comparisons can be
found in the supplementary material.

5. Conclusion

In this paper, we propose a DCDR-UNet that firstly uti-
lized deformable convolution in single image HDR recon-
struction. Thanks to the combination of DCRB and our
loss function, our network can learn the receptive field
for each overexposed pixel effectively from training im-
ages, which helps our network to restore the lost details
in the overexposed region regardless of the size of the re-
gion. Our experimental results show that our DCDR-UNet,
which has less parameters than the most existing methods,
can restore the details of both entirely and partially over-
exposed objects/regions even when they are very large or
small. Also, our network achieves the best quantitative re-
sults against all the existing methods over all the 5 met-
rics.
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Figure 5. Qualitative Comparison. Our results show much better visual quality against all the existing methods. Note that the lower
left region of each image is zoom-in region of the red bounding box of each image. From the 1st, 5th and 7th column images, we can
see that our method can restore very thin objects as well as the overexposed sky naturally while all the existing methods restore the thin
object partially or unnatural sky. Especially, for the 5th column images, our method can reconnects the disconnected power lines partially
overexposed in LDR while all the existing methods cannot do. For the 2nd and 6th column images, our method can restore the color
and texture of the overexposed cars much closer to GT against all the existing methods. For the 3rd image, our method restores sky with
partially overexposed object naturally while many of existing methods produce halo artifacts around the partially overexposed object. Note
that we do not apply any tone mapping algorithm to all the images here because tone mapping sometimes faint the artifacts and details
in the restored overexposed region. Therefore, normal exposed regions in all the images look very dark. Instead, we include all the tone
mapped results of the same images in the supplemental materials. These differences are better visible in pdf version with zoom-in.
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