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Abstract

Shadow removal is one of essential tasks among im-
age restoration tasks which aims to eliminate the visual se-
mantic information hidden or obscured by the shadow in
the image to the largest extent. Variations in lighting and
the diverse complexity of shadow depth and color result-
ing from random background factors are common in the
shadow removal task. To address these challenges, this pa-
per proposes a novel interactive shadow removal architec-
ture based on the diffusion model, semantic segmentation
and multimodal large language model. Our method utilizes
a powerful diffusion model to generate shadow-free images
with fewer artifacts and super-resolution models to enhance
image details. A universal semantic segmentation model
is also involved to reduce percpetual dissonance caused by
slicing inference. Furthermore, we integrate the capabili-
ties of multimodal large language models to realize prior
rule-based optimization. Leveraging the exceptional gener-
ative capability of diffusion model and elaborate coopera-
tion among all the modules, our method achieves outstand-
ing perceptual performance on WSRD dataset. We conduct
comprehensive experiments to demonstrate the effectiveness
of our approach and share insights gained during the par-
ticipation in the NTIRE 2024 Image Shadow Removal Chal-
lenge.

1. Introduction

In the field of image enhancement, shadow removal is an
important and challenging task, which has consistently at-
tracted significant attention due to its impact on the aes-
thetic quality of images and its potential to interfere with
visual tasks such as object recognition, tracking, and im-
age segmentation [4, 8, 15, 22, 42]. The challenges are
mainly reflected in two aspects: lighting changes and com-
plex backgrounds. Firstly, the position and intensity of the

(a) Input (b) Ground Truth

(c) ShadowFormer (d) Ours

Figure 1. Results of ShadowFormer [7] and the our method. The
proposed method achieves a much cleaner shadow-free image.

light source, along with the reflection from the surrounding
environment affect the formation and appearance of shad-
ows. As a result, shadows of the same object may show
different depths and shapes in different scenes or at dif-
ferent shooting times, which increases the complexity of
shadow removal. Secondly, the background color, texture,
and lighting conditions influence the formation of shadows,
causing the color of the shadow to differ from the actual
color of the object, and even exhibit color shifts. In such
cases, a single color model or processing method is usually
unable to effectively remove shadows. For example, con-
ventional methods based on convolutional neural networks
or transformer architecture often lead to varying degrees of
artifacts, as shown in Figure1(c).

Early shadow removal methods mainly relied on image
processing technology and the physical understanding of
shadow formation models [6, 35, 40]. Their goal is to re-
store the original shadow-free image by transferring the
local statistics of shadow-free image segments to shadow-
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affected areas. With the advancement of deep learning tech-
nology and the emergence of large-scale datasets, shadow
methods based on deep learning [2, 7, 12] have become the
focus of research. However, these methods usually require
accurate shadow masks as input, and obtaining shadow re-
gion masks is an equally difficult task.

A potential solution is to employ diffusion models to ad-
dress the above difficulties. Diffusion model has power-
ful image generation capabilities [20], and has been suc-
cessfully applied in many fields such as images and videos.
Diffusion-model-based methods for shadow removal have
demonstrated excellent performance in terms of perceptual
quality. Despite the technological advancements in these
methods, most existing shadow removal datasets still fo-
cus on simplified scenes and primarily involve natural hard
shadows formed on flat surfaces under controlled lighting
conditions, which limits the model’s ability to generalize to
more complex situations. In order to solve the problem of
generalization, text instructions based image enhancement
methods [3, 18] have shown higher flexibility and attrac-
tiveness. Methods that combine text instructions with dif-
fusion models [5, 14, 38] further show powerful potential,
which generally need to be combined with the Image Con-
troller [41], and then use the control vector to guide image
restoration based on the diffusion model.

In this paper, we propose a shadow removal method
based on diffusion, segmentation and super-resolution mod-
els to deal with the above concerns. Our approach leverages
a robust diffusion model [14] to generate shadow-free im-
ages with minimal artifacts by employing a super-resolution
model [1] to enhance image details and utilizing a versatile
semantic segmentation model [9] to seamlessly integrate
shadows during slice inference. Additionally, we harness
the capabilities of a large multi-modal language model [11]
to optimize our shadow removal model based on predefined
rules. The overall architecture of our method is shown in
Figure 2.

The high-resolution image shadow removal challenge in
complex situations [27, 28] represents the pinnacle of the
shadow removal task. We have conducted sufficient experi-
ments on the WSRD dataset [25] to verify the effectiveness
of our method. Experimental results prove that our method
can generate shadow removal results with fewer artifacts
and no traces of slice splicing thereby offering better visual
perception. In summary, the contributions of this article are
as follows:

• We proposed an image shadow removal method based
on the diffusion model, and further optimized the re-
sults by combining super-resolution, segmentation and
multi-modal large language models. With the joint ef-
fect of all the components, the best perceptual effects
are presented.

• We conducted sufficient experiments on the high-

resolution image shadow removal dataset WSRD in
complex situations, verified the effectiveness of the
proposed method and each module, and inspired fur-
ther research.

2. Related works

2.1. Image Restoration

Image enhancement or restoration refers to improving the
visual quality of images or increasing the information con-
tent of images, making them more suitable for specific
applications or easier for human observation. Traditional
methods typically involve operations such as enhancing im-
age contrast, reducing noise, adding details, and adjusting
brightness and color balance. Conversely, deep learning
methods utilize high-quality (HQ) and low-quality (LQ) im-
ages to optimize end-to-end enhancement models. There
are many independent tasks in this field, such as image
super-resolution [33], denoising [24], haze removal [23],
rain removal [37], deblurring [39], shadow removal [30],
and dark light enhancement [34], compression enhance-
ment [36], dynamic range enhancement [32]. In recent
years, all-in-one image enhancement is an emerging and
booming research field [3, 10, 16]. These methods use a
single deep blind restoration model to handle degradation
of different types and degrees.

2.2. Shadow removal

Shadow removal methods typically involve two key steps:
shadow detection and shadow removal, based on the de-
tected shadow mask [7, 19]. Prior-based methods often
rely on simple graphical techniques, initially identifying
shadow areas and subsequently illuminating these dark re-
gions. In contrast, deep learning-based methods effectively
utilize masks or global information to identify shadow re-
gions and remove shadows accordingly.

For example, DeshadowNet mainly focuses on using
the CNN to detect and remove the shadow, which is the
very first neural network model to solve to deshadow task
in an end-to-end manner, it as well proposed the SRD
dataset [19]. ShadowFormer has demonstrated state-of-
the-art performance on the public shadow removal dataset
(SRD [19], ISTD [31]).

With the proposal of DiT [17] and LDM [21], the dif-
fusion model occupies a prominent position in image gen-
eration. This kind of method effectively enhances the abil-
ity of image processing models, especially those for image
generation. For example, general-purpose image restora-
tion IR-SDE [13] achieves highly competitive performance
in quantitative comparisons on image deraining, deblurring,
and denoising, setting a new state-of-the-art on two derain-
ing datasets.
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Figure 2. Framework of our method. Generally, we have separate pipelines for our image processing. The primary operation begins by
sub-sampling the input image to resize it in a controlled manner, which is then fed into the shadow removal model. For the output, we
employ a super-resolution model to restore the image to its original size, enhancing it with additional features and details. Another pipeline
is the patch processing. And for the unique foreground object like keyboard, we utilize SAM and LLaVA to filter them out. These patches
and objects are then integrated with the output from the previous step.

2.3. NTIRE Challenges

The NTIRE Image Shadow Removal Challenge builds a
high resolution image shadow removal dataset, named
WSRD [26]. In this dataset, the complexity of the fore-
ground increases and the placement of foreground objects
is more complex and independent. Lighting conditions also
vary widely in different images. In addition, the interaction
between objects and lights is enhanced. Moreover, objects
in images often have diverse forms of details, which poses
great difficulties for model learning.

The report [27, 28] highlights numerous innovative
methodologies in the shadow removal task. In the latest
edition, LUMOS introduced a two-stage method employing
a ViT-based model for initial deshadowing followed by a
NAFNet-based network for refining the output; the Shadow
R team developed a ConvNext-based U-Net architecture for
initial shadow processing and incorporated a transformer-
based enhancement and refinement module to further im-
prove the images; the LVGroup HFUT employed a NAFNet
backbone with a creative merging strategy, integrating out-
puts from different checkpoints by the well-designed loss
function.

It’s worth noting that our method also participated in this
competition and ranked 9th in the perceptual track1. While

1NTIRE24 Image Shadow Removal Challenge-Track 2 (perceptual)

it may not have achieved top rankings among all the entries,
we have conducted more study and analysis in this paper
and provide valuable insights for this track. For example,
we introduce the SAM masks [9] to eliminate edge artifacts
caused by stitching during slice inference, resulting in a per-
formance increase of 0.4 dB. Also, diffusion models may
not perform well when handling shadows on black objects
or deep shadows.

3. Methods
As shown in Figure 2, our method consists of four modules,
namely the diffusion-based shadow removal network [14],
SAM-based foreground optimization [9], Super-resolution
based detail enhancement [1]), and the multimodal-large-
language-model (LLaVA [11]) based specific regions selec-
tion. In this section, we will introduce the pipeline in detail.

For any input image Iin, the model’s processing process
is mainly divided into two branches: shadow removal and
foreground optimization.

3.1. Shadow removal branch

The input image Iin ∈ RH×W×3 is sub-sampled using bi-
linear interpolation method with factor 2 with the results
denoted as Ids ∈ RH

2 ×W
2 ×3. The main motivation of this

operation is that we believe the full image inference is nec-
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essary for the shadow removal task. However, the GPU
memory is always limited during inference. For example,
the resolution of images in WSRD [26] is 1920 × 1440,
which is too high for GPUs weaker than NVIDIA A100.

Then, the down-sampled image Ids is processed by the
diffusion-based shadow removal network (section 3.1.1),
which needs to be trained on the experimental dataset, then
we get the reconstructed shadow free image, denoted as
Irecon ∈ RH

2 ×W
2 ×3. Next, the resolution of the recon-

structed image is increased by the super-resolution model
(section 3.1.2) to be consistent with the input image, where
the output is recorded as ISR ∈ RH×W×3.

3.1.1 Diffusion-based Shadow Removal Network

The diffusion-based shadow removal network shown in Fig-
ure 2 is built from DA-CLIP [14] and IR-SDE [13]. Inspired
by the multitasking image restoration model, we combine
DA-CLIP and ICB module [3] to make sure shadow re-
moval model not only have the creativity from diffusion
but also be strongly guided in processing different image
restoration tasks.

DA-CLIP utilizes a pre-trained vision-language model
and a text guided diffusion model to enhances the details of
the generated images. The pre-trained CLIP is used to en-
code low quality images into text descriptions of their corre-
sponding degradation types. However, we remove the CLIP
module from DA-CLIP and just use its diffusion module as
our diffusion-based shadow removal network.

3.1.2 Super-Resolution Up-scaling

The reverse process of ×2 down-sample operation is super-
resolution. The simplest solution is bi-linear interpolation
up-sampling. Further, the current state-of-the-art super-
resolution model HAT [1] could enhance more details of the
low resolution images. The original spatial dimensions of
the images are restored by applying a ×2 super-resolution
to the results Irecon output by the shadow removal network.

3.2. Foreground enhancement branch

This branch is mainly based on the general segmentation
network SAM [9]. For special foreground objects like key-
boards, we observe significant deficiencies compared to the
ground truth. The keyboard has multiple black keys and
white letters. However, diffusion-model-based shadow re-
moval methods tend to reconstruct tiny details in the image,
which causes a large loss in consistency with the ground
truth.

Thus, we introduce the powerful segmentation model
SAM to generate the masks of objects. The masks would
be used for two optimization operations: patch foreground

Figure 3. A general pipeline for the proposed patch processing.
Step 1, the SAM initially extracts the masks from the input image,
and we filter out unqualified masks which are meaningless. Step
2, the input image is cropped into four 1024×1024 intertwined
slices. Step 3, the filtered masks are utilized for the classification
of the patches. Step 4, the patches are separated into 2 classes,
one for the patches with complete foreground items inside and
the other for the items exceed the boundaries to some extent. For
the second class of patches, we calculate the size of it and check
whether its size is within 1024×1024 and enough for a new patch
the contain. If it is qualified in patch size, we will create a new
patch of the same size for it and include it to the original patches.
Finally, these patches will be sent to the shadow removal model.

enhancement and input foreground enhancement. The for-
mer is related to the patch splitting during inference ( 3.2.1)
and the latter is based on the built prior rules ( 3.2.2).

3.2.1 Patch foreground enhancement

In this branch, the input image Iin ∈ RH×W×3 is first
fed into the SAM [9] to generate foreground masks M =
{mi ∈ RH×W , i = 0, 1, 2, · · · }. Then, we split the in-
put image into overlapping patches Ipatches = {Ikpatch ∈
R1024×1024×3, k = 0, 1, 2, · · · } with size 1024× 1024. For
images in WSRD[26] dataset, our splitting rule results in
four image patches including the upper-left, the upper-right,
the lower-left, and the lower-right patches. The size of the
patch is determined by the GPU memory size.

Next, we enrich the number of patches by the segmenta-
tion masks to ensure that all salient objects in the input im-
age Iin are completely contained in at least one patch. This
needs the following two steps. One is cleaning the output
masks M , retaining only sufficiently significant and appro-
priately sized blocks to control model inference complexity
and GPU memory usage. The other is adding a patch ac-
cording to the selected masks by judging whether a mask
lies in a patch completely or not. If not, we generate a new
patch with size 1024× 1024 centered on this mask.

Finally, the patches Ipatches of the input image are fed
into the diffusion-based shadow removal network, and out-
put shadow-free image patches Icleanpatches with size 1024 ×
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1024.

3.2.2 Input foreground enhancement

By analyzing the model output Irecon, we found that the
shadow removal model cannot handle some specific objects,
like keyboards, towels, and black cloths. To solve this prob-
lem, we decided to keep the original regions of these objects
and merge them with the output Irecon.

Thus, we filter out the masks containing specific ob-
jects with the powerful visual question-answer model
LLaVA [11]. For example, for input images Iin or image
patches Ipatch, we set the question ”Is there a keyboard in
the picture?”. According to the answer of LLaVA, we could
find the images or patches containing specific objects. The
following rules are found to be useful for our model. How-
ever, these prior rules may be varied when the shadow re-
moval model is updated.
• Keep the keyboard region unchanged.
• Keep the towels region unchanged.
• Keep the black cloths region unchanged.

The masks obtained by the prior rules is denoted as
Mpriors and will be used for the final merging step.

3.2.3 Merging

Now, we have ISR, Icleanpatches, and Mpriors. The merg-
ing operation, shown in Figure 2, takes them all as in-
puts, and output an image Ioutput, where Ioutput =
Merge(ISR; I

clean
patches,Mpriors).

The merging operation is straightforward, that is, replac-
ing part of the reconstructed image with the object area of
patches or input according to the corresponding mask.

4. Experiments
4.1. Settings

The experiments are mainly conducted on the validation set
of the NTIRE 2024 Image Shadow Removal Challenge [27,
29]. The dataset is updated for improved pixel alignment
and some new contents based on the WSRD dataset [26].

To validate the effectiveness of our method, we com-
pare its performance with the current state-of-the-art meth-
ods, including SpA-Former [43], ShadowFormer [7]. We
train ShadowFormer on the challenge dataset using its offi-
cial training code2. Because of the necessity of the masks
of shadow for the method of ShadowFormer, we leverage
HSV thresholding and morphological operations to pro-
vide masks under elaborated parameters for WSRD dataset,
which is not equipped with masks originally. For SpA-
Former, we use the random cropping strategy for training.

2https://github.com/GuoLanqing/ShadowFormer

Table 1. Results on the validation dataset of the NTIRE24 Image
Shadow Removal Challenge. It is important to note that the results
with ∗ presented here are trained by ourselves using their official
training code.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
SpA-Former∗ 22.09 0.7436 0.1471 78.92
ShadowFormer∗ 23.82 0.8156 0.2190 60.62
Ours 23.91 0.7772 0.3101 49.55

Experiments are conducted on a high-performance work-
station featuring an NVIDIA A100 GPU, enabling swift
training and inference. Our shadow removal model is im-
plemented using the PyTorch deep learning framework,
capitalizing on its versatility and computational efficiency.
During training, we utilized a batch size of 8 and employed
the AdamW optimizer with a learning rate of 2×10−4. Ad-
ditionally, we incorporated cosine annealing learning rate
decay to enhance training stability and convergence. The
input patch size for training was set to 570× 570, with ran-
dom horizontal and vertical flips applied as augmentations
to diversify the training datasets and enhance robustness.

We use four metrics to evaluate various aspects of the
quality of the generated images, such as PSNR (Peak
Signal-to-Noise Ratio), SSIM (Structural Similarity Index),
LPIPS (Learned Perceptual Image Patch Similarity), and
FID (Fréchet Inception Distance), which is the same as to
DA-CLIP [14].

4.2. Results

The results are presented in Table 1. Our method out-
performs the compared methods in both PSNR and FID
metrics. As PSNR provides a quantitative measure of re-
construction quality, our method has higher fidelity to the
ground-truth images. Lower FID values indicate that the
generated images by our method are closer to the ground-
truth images in terms of both visual appearance and statisti-
cal properties.

However, ShadowFormer achieves the highest SSIM,
which indicates that ShadowFormer holds the best struc-
tural similarity between the ground-truth images by com-
paring their luminance, contrast, and structure. While
LPIPS captures more nuanced differences between images,
SpA-Former shows much more similarity of deep features
between the output images and the ground-truth images.
Our method fails these two metrics, suggesting that our
method cannot balance the luminance, contrast, structure,
deep feature embedding factors between the shadow re-
moval and the image construction. This could be considered
a limitation of diffusion-based image generation methods,
and be addressed by further controlling strategies.

On the other hand, these metrics alone cannot compre-
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Figure 4. Comparison with ShadowFormer, SpA-Former and GT. Our method can remove the shadow accurately without significantly
affecting the information in the shadow regions and we retain more details and textures based on patch processing and utilization of
segmentation.
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Figure 5. These illustrations highlight the discrepancy between
metric and perceptual. Our method produces better pictures de-
spite maintaining lower metrics.

hensively evaluate a model’s performance. Therefore, we
conducted a qualitative comparison of the results on the val-
idation set, as shown in Figure 4. From the visual inspec-
tion, it can be observed that our method maintains better
shadow removal performance than the compared methods.
In contrast, the compared methods still leave traces of shad-
ows in most result images.

It should be emphasized that metrics such as PSNR,
SSIM, and LPIPS may not fully reflect the effect of shadow
removal. Figure 5 shows several examples of shadow re-
moval effects. Our method lags behind in these metrics
but has better shadow removal effects, which also demon-
strates the importance of qualitative evaluation in perfor-
mance evaluation of shadow removal methods. Through
this visual comparison, we gain valuable insights into the
true effectiveness of our approach, which may not be ade-
quately captured by numerical metrics alone.

Overall, despite that the quantitative metrics show some
discrepancies, the qualitative assessment indicates the su-
periority of our method in terms of visual perception. This
underscores the importance of considering both quantitative
metrics and qualitative evaluations when assessing model
performance.

4.3. Ablation study

The proposed method for shadow removal consists four
modules, as shown in Table 2, namely the diffusion-based
shadow removal network (Diffusion [14]), SAM-based for
inference based on original image patches (SAM [9]),
Super-resolution based detail enhancement (bilinear-SR or
HAT-SR [1]), and multimodal large language models based
specific regions selection (LLaVA [11]). This section brings
the ablation studies of these modules.
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Figure 6. Visual effects of ablation study. (a) Diffusion+path-
splitting demonstrates clear stitching traces. (b) and (c) shows
much better shadow removal results than (a).

Firstly, we utilize patch splitting inference due to the lim-
ited GPU memory, named Diffusion + patch-splitting in the
first line of the results in Table 2. This method achieves
the best results for all metrics. However, most of the result
images show traces of cleaned slices and splicing, which
greatly affects the visual effect, as shown in Figure 6.

We adopt down-sampling strategy to address this prob-
lem, which down-scales the input image by ×2, shadow re-
move, and up-scale the results by the HAT-SR model. Start-
ing from this baseline model Diffusion+HAT-SR, we grad-
ually add SAM and then LLaVA (see section 3). The PSNR
metric is improved by 0.439 dB and 0.0034 dB respectively,
indicating that the Diffusion-based shadow removal models
prefers to generate higher fidelity results using the patch-
based inference method.

Next, we focus on explaining the slight improvement
based on LLaVA. We carefully compared the shadow re-
moval results of the initial model and found that the initial
model did not perform well in removing shadows on black
objects, such as keyboards, black clothes, etc. We used
the multimodal large language model LLaVA to identify
these images and segmented the black object areas based
on SAM, directly pasting them onto the result image with-
out any processing. We select two images with black key-
boards3 from the validation set of the NTIRE2024 shadow
removal challenge. The above operation improves the re-
sults by 0.1178 dB and 0.2226 dB respectively, showing
nice improvement.

Finally, we replaced the HAT model with a simpler bi-
linear up-sampling method, resulting in an average perfor-
mance improvement of 0.0492 dB. Although this improve-
ment is relatively small, through comparing with model’s
output results, we discovered valuable insights, where HAT

30056.png, 0057.png
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Table 2. Ablation study of proposed pipeline. The comparison indicates that SAM is an useful technique, while bilinear upsampling is
much better than HAT-SR model.

Diffusion patch-splitting HAT-SR SAM LLaVA bilinear-SR PSNR SSIM LPIPS FID

✓ ✓ 24.8280 0.7820 0.2123 45.8000
✓ ✓ 23.4157 0.7211 0.3575 60.7929
✓ ✓ ✓ 23.8547 0.7368 0.3089 52.3047
✓ ✓ ✓ ✓ 23.8581 0.7370 0.3085 52.4310
✓ ✓ ✓ 23.9039 0.7770 0.3105 49.5052
✓ ✓ ✓ ✓ 23.9074 0.7772 0.3101 49.5479

(a) GT (b) Diffusion+HAT-SR (b) Diffusion+bilinear-SR

Figure 7. These illustrations highlight the difference between
HAT-SR and bilinear-SR. Comparing (b) and (a), we can infer that
the HAT-SR model outperforms the interpolation-based bilinear-
SR method (c) in super-resolving text image content.

(a) GT (b) Diffusion+HAT-SR (b) Diffusion+bilinear-SR

Figure 8. These illustrations highlight the difference between
HAT-SR and bilinear-SR. HAT-SR model amplifies errors in the
reconstructed images from the diffusion model, leading to greater
deviations from the ground truth (GT).

model performs well on text image content, but after replac-
ing it with bilinear, the performance of this image decreases
(see Figure 7). However, for content with extremely com-
plex details, since there may be errors after shadow removal
by the Diffusion model, HAT model amplifies these errors,
leading to a decrease in overall performance (see Figure 8).

In summary, we found that SAM contributes to improv-

ing the performance of the Diffusion-based shadow removal
network, while bilinear upsampling operation relative to the
massive HAT super-resolution model helps improve aver-
age performance. The HAT super-resolution model ampli-
fies the errors reconstructed by the Diffusion model, result-
ing in performance degradation. Moreover, combining mul-
timodal large language models to carefully process the re-
sults of the above models according to specific rules will
further improve the effects of specific images. The deeper
mechanism will be further studied in future work.

In addition, this article focuses on exploring how to im-
prove the visual effect of shadow removal. The parameters
of several modules introduced are relatively large and time-
consuming, as shown in Table 3. The efficiency optimiza-
tion is also one of our future research works.

Model Parameters (Million) Inference (seconds)

Diffusion 52.21 44.97
HAT-SR 40.70 10.55

SAM 641.09 75.60

Table 3. Number of Parameters and inference times of each mod-
ule in our framework

5. Conclusion
In this study, we proposed a novel shadow removal frame-
work based on diffusion, super-resolution, segmentation,
and LLaVA. Through extensive experiments, we have
demonstrated the effectiveness of our approach in address-
ing the challenging task of shadow removal in images. Our
method contributes to this research domain by presenting
an effective solution to the challenging task of shadow re-
moval. We believe that our proposed method has the poten-
tial to facilitate advancements in various applications.
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