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Abstract

Existing shadow removal methods face challenges when
confronted with real-world scenes, particularly when
dealing with complex background information and high-
resolution images. To address these issues, we present a
shadow removal framework based on shadow generation
and Global Residual Free Unet (GRFUnet), which improves
shadow removal from both data and network perspectives.
For data enhancement, we train a generative adversarial
network for producing shadow masks, which are then mul-
tiplied with clean images to obtain new shadow images. The
additional shadow data produced by this structured gener-
ation approach allows for ample constraining of the net-
work in color aspects, thereby enhancing color consistency
in the images. In terms of network architecture, we de-
sign the Global Residual Free Unet that employs a convo-
lutional framework to sequentially conduct Spatial Interac-
tion and Channel Evolution for effective feature extraction.
Moreover, we eliminate the commonly used Global residual
connections in image restoration, as we discern their in-
effectiveness for the non-additive task of shadow removal.
Through this methodology, we achieve excellent shadow re-
moval results, both qualitatively and quantitatively. Our
method achieves the highest PSNR in the NTIRE24-Image
Shadow Removal Challenge and achieves commendable
and balanced outcomes across two tracks—placing third in
the fidelity track and fourth in the perceptual track.

1. Introduction

Shadow removal is an important research direction in com-
puter vision. Shadows are typically observed in various nat-
ural scenes when light sources are partially or completely
obstructed by objects. Inevitably, the presence of shadows
in images reduces the perceptual quality of background in-
formation. Consequentially, image shadows present a series
of challenges to subsequent advanced visual tasks such as
object tracking [32] and detection [30], semantic segmenta-
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Figure 1. Visualization comparison between the previous state-of-
the-art method [16] and our method. Our method demonstrates
superior background reconstruction and color consistency when
dealing with complex scenes at high resolutions.

tion [44]. The underlying shadow formation model essen-
tially describes a highly complex phenomenon, where the
intensity and shape of the shadows are determined by mul-
tiple factors, including the attributes of the light source, the
geometric shape of shadow-casting light, and the surface
properties of the shadow-casting object. Such a complex
yet significant system necessitates extensive research and
shadow removal has continued to garner significant atten-
tion in recent years.

Current methods for image shadow removal can be
broadly divided into two categories: traditional methods
based on physical models and solutions based on deep
learning. Early works typically rely on the physical char-
acteristics of the deterministic shadow formation model.
These works explore and utilize various physical priors,
such as illumination [38], image gradients [15], and re-
gions [18, 36] etc. While these methods have advanced the
understanding of the physics behind shadow removal, they
struggle to cope with real-world scenarios due to the high
complexity of real-world shadow formation models.
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Subsequently, with the advancement of deep learning
and its success in computer vision [9, 12, 25, 43, 45, 46],
this data-driven approach has been introduced into the field
of shadow removal and has achieved accomplishments. For
instance, Qu et al. [31] presented an automatic, end-to-end
deep neural network (DeshadowNet) that utilizes a con-
text architecture embedded with information from three
different perspectives to predict the output shadow mask.
Hu et al. [20] introduced an orientation-aware spatial at-
tention module and a growing dilated convolution strat-
egy for shadow removal, effectively using multiple con-
textual features. Guo et al. proposed a novel unsupervised
shadow removal solution based on diffusion [17], modeling
the shadow, non-shadow, and their boundary regions sep-
arately. These solutions have fostered development in the
shadow removal community and continuously inspire future
research. However, existing methods still encounter chal-
lenges in some real-world scenarios. Firstly, existing mod-
els often exhibit noticeable inconsistencies in color between
the shadow-removed and naturally clear regions when deal-
ing with complex images. Moreover, in cases where shad-
ows are unevenly distributed and concentrated, models not
only fail to obtain clean images but might even damage the
contour information of background areas [45]. Addition-
ally, most current models perform poorly in high-resolution
image shadow removal tasks.

To mitigate these challenges, we propose a shadow re-
moval method based on shadow generation and Global
Residual Free Unet. We find the cause of color incon-
sistency between shadow-removed and naturally clear re-
gions is primarily due to the limited number of shadow im-
ages corresponding to the same clean scene, making it dif-
ficult to sufficiently constrain the network in terms of color
restoration. Addressing this issue, we introduce an effective
shadow generation strategy. We train a generative adversar-
ial network to produce shadow masks, subsequently mul-
tiplying the masks with clean images to generate the final
shadow images. This strategy differs from directly gener-
ating shadow images, allowing for a more structured and
stable training process. Regarding the shadow removal net-
work, our goal is to design a simple yet effective shadow
removal network that can process high-resolution images
with minor computational expense. To this end, we devise
the Global Residual Free Unet (GRFUnet), employing the
classic U-shaped design. Emulating transformers, the foun-
dational blocks of GRFUnet sequentially perform Spatial
Interaction and Channel Evolution for effective feature ex-
traction, albeit employing a convolutional architecture. In
the foundational block, we develop the Simple Gate Module
(SGM) and Pooling Attention Module (PAM) to facilitate
feature extraction. Specifically, the former replaces Gated
Linear Units [8] (GLU) to retain information according to
temporal position to enhance performance, while the lat-

ter is a simple and efficient attention mechanism that intro-
duces global information into the image feature map. Be-
sides, we discarded the globally-used residual connections
commonly adopted in image restoration fields, finding them
to be ineffective for non-additive shadow removal tasks. In
this way, we achieve effective high-resolution shadow re-
moval. As shown in Figure 1, our method not only accu-
rately removes shadows but also achieves improved color
consistency in the restored images. In summary, our contri-
butions are as follows:
• We develop a shadow generation method based on

GAN and multiplicative operations, effectively alleviat-
ing the color inconsistency problem between the shadow-
removed and naturally clear regions.

• We propose the Global Residual Free Unet, a simple yet
efficient shadow removal network, which tackles high-
resolution image shadow removal tasks effectively with
a reasonable overall structure and efficient modules.

• Experiments on the validation and test datasets provided
in the NTIRE 24 Image Shadow Removal Challenge [35]
demonstrate the effectiveness of our method. Addition-
ally, our method achieves the highest PSNR in the chal-
lenge and obtains excellent and balanced results across
two tracks (ranking third in the fidelity track and fourth in
the perception track).

2. Related work
2.1. Shadow removal

In the field of computer vision, shadow removal remains
a pivotal task that has been assiduously explored over the
years. The persistence of shadows in digital imagery poses
a considerable challenge, often obscuring essential details
and affecting the visual fidelity of the scene. A diverse
array of methods has been brought to bear on this task,
with varying degrees of sophistication and success. Early
endeavors in shadow removal often relied on handcrafted
features, leveraging insights from image gradients, regional
illumination discrepancies, and occasionally user input to
distill shadow-free representations of images. Pioneers in
this realm, such as Finlayson et al. [10, 11], exploited
the gradient consistency principle to reconstruct shadow-
obscured visuals. Concurrently, approaches by Guo et al.
[18] and Gong et al. [13] proffered robust algorithms hing-
ing on relative lighting conditions and user-guided inputs,
respectively. The advent of Deep Neural Networks (DNNs)
heralded a renaissance in this domain, greatly augmented by
the availability of extensive, publicly curated datasets. Em-
blematic of this revolution, techniques like DeshadowNet
[31], CANet [4], and DSC [21] ingeniously integrated con-
text embedding, spatial attention mechanisms, and trans-
fer learning to bridge the gap between shadowed and non-
shadowed regions—exemplifying the breadth of deep learn-
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Figure 2. Global Residual Free Unet. Due to the non-additive nature of image shadows, we opt not to use global residual connections.

ing’s prowess. More contemporary methods underscore the
significance of retaining high-quality ground truth as an in-
strumental guide. Innovative networks, such as Shadow-
Former [16], have adeptly capitalized on transformer archi-
tecture to imbibe and extrapolate global contextual cues in
an end-to-end manner, showcasing a growing trend towards
transformer-based solutions. The orchestration of shadow
removal has also begun to intersect with the physical realm,
with some researchers opting to model physical illumina-
tion in tandem with shadow matte prediction. Notably, Le’s
[24] work accentuates this intersection, harnessing a linear
transformation model to parse the interplay between shad-
owed and non-shadowed regions. Despite these achieve-
ments, the reliance on large volumes of paired shadow and
shadow-free images for supervised learning introduces cer-
tain limitations. To mitigate these, unsupervised methods
deploying Generative Adversarial Networks (GANs) have
emerged, training models on unpaired datasets, albeit often
with less satisfactory restorative outcomes [23, 29].

2.2. Shadow generation

The generation of photorealistic shadows has attracted re-
markable interest over recent years, complementing shadow
removal research to achieve realistic scene relighting in
computer vision. Earlier shadow generation approaches
were focused on creating convincing shadows for virtual en-
tities within a scene [28, 41]. The integration of shadow
generation mechanisms within shadow removal networks
has been a progressive stride, with generative adversarial
networks (GANs) playing a pivotal role in this advance-
ment. G2R-ShadowNet [29] is imbued with a shadow
generation segment utilizing GANs [14] to innovate the
way shadows are cast over shadow-free areas. This as-
pect of work draws from precedents set by G2R [29] and
DHAN [6], whereby both synthesized numerous pseudo

shadow cases to aid network training. Similarly, Mask-
ShadowGAN [22, 29], inspired by the foundational work
of CycleGAN [1], hones the shadow synthesis through ad-
versarial learning, ensuring a semblance between the arti-
ficially crafted shadows and their real-world counterparts.
The advancement in shadow generation research is evident
in the realm of augmented reality as well. Works such as
ARShadowGAN [28] and those by Zhang et al. [41] show-
case GANs’ capacity to cast virtual shadows that coalesce
with the environmental lighting and context. These prac-
tices historically depend on fully-supervised learning, uti-
lizing paired datasets that span shadow, non-shadow, and
mask dimensions.

3. Methodology

3.1. Shadow generation

A pivotal challenge in the domain of shadow removal is the
task of rectifying color inconsistencies between areas where
shadows have been removed and those that are naturally
clear. This issue primarily arises due to the limited quantity
of shadow images corresponding to the same clean scene,
leading to insufficient constraints for the network in terms
of color restoration. To overcome this issue, we implement
a data augmentation strategy designed to enrich our dataset
with additional pairs of shadow-impacted images Ishadow
and shadow-free images Iclear. Our original dataset com-
prises 1,000 paired training images. From these, we extract
shadow masks M and input them into our network along-
side clean images, facilitating the synthesis of new shadow
images I ′shadow. This approach significantly broadens the
network’s capacity to handle diverse scenes.

To further refine the generation of shadow images, we
employed a Generative Adversarial Network (GAN) with a
specific focus on training a generator. We started by extract-
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Figure 3. Two custom-designed modules in the proposed network.

(a) Simple Gate Module. (b) Pooling Attention Module.

ing shadow masks from a collection of 1,000 training im-

ages, resulting in 1,000 shadow masks. These masks were

subsequently shuffled and paired with clean images before

being input into the generator. For training consistency, we

resized all images and masks to 1280×960, ensuring the use

of full, resized images for training. Our approach does not

involve directly generating shadow images; instead, the net-

work outputs shadow matting, by multiplying the shadow

matting with the clean images, we are able to obtain the

final shadow images, which as shown in Eq.1

I ′shadow = G(Iclear,M) · Iclear, (1)

where G(·) is the generator. To further refine our network’s

performance and ensure training stability, we have imple-

mented a paired-task training approach. This methodology

is particularly beneficial as it allows for a more structured

and stable training process. By employing this strategy, we

utilize three specific loss functions to optimize our network:

the L1 loss, Perceptual loss, and GAN loss. For the L1 loss,

we measure the pixel-by-pixel similarity between the gen-

erated shadow images and their corresponding real shadow

counterparts, as follows:

L1 =
1

n

n∑
i=1

|I ′shadow − Ishadow|, (2)

where n is the total number of the training images. For the

Perceptual loss, we employ VGG19 as the feature extractor,

leveraging features from five distinct scales, as follows:

Lp =
1

n

n∑
i=1

5∑
k=0

λk‖V GGk(I
′
shadow)−V GGk(Ishadow)‖1,

(3)

where k represents different layers. To guarantee that the

distribution of the generated shadow images closely aligns

with that of the real shadow images, we incorporate GAN

loss as a constraint mechanism within our network:

LGAN =
∑

[log (D (Iclear, I
′
shadow))

− log (D (Iclear, Ishadow))]
(4)

where D represents the Patch Discriminator from Cycle-

GAN, allowing the discriminator to focus more on the lo-

cal details of the image. Additionally, the two inputs in

D are concatenated along the channel dimension. The fi-

nal objective of our method can be summarized as follows:

L1 + λLV GG + αLGAN . Empirically, we set α to 0.1 and

β to 0.05. We trained the generator for a total of 60 epochs.

3.2. Network Architecture

Our goal is to architect a simple yet efficient network for

shadow removal. To balance network simplicity with ef-

fectiveness, we employ a classic U-shaped network archi-

tecture with skip connections, named Global Residual Free

Unet (GRFUnet), as illustrated in Figure 2. The GRFUnet

consists of several Deeper Feature Extraction (DFE) blocks

that utilize a two-stage structure akin to that of a trans-

former. Within a DFE block, an image sequentially un-

dergoes Spatial Interaction and Channel Evolution for ex-

tensive information interchange. We have actualized these

processes through custom-designed modules such as the

Pooling Attention Module (PAM) and Simple Gate Module

(SGM), alongside foundational elements like convolutions

and layer normalization. During Spatial Interaction, an im-

age is first subjected to Layer normalization to stabilize the

training—a technique inspired by numerous state-of-the-art

methods. Subsequently, the image proceeds through a 1×1
convolution followed by a 3× 3 convolution to extract spa-

tial features. Thereafter, the SGM and PAM are applied for

additional refinement, as shown in Figure 3. As for Channel

Evolution, Layer Norm, 1×1 convolution, and the SGM are

employed to process the image.

The skip connections within the U-net and between the

functional blocks ensure a smoother network training pro-

cess. It is noteworthy that we refrain from using global

residuals typically employed in image restoration, which

has enabled us to achieve enhanced performance. While

each element in our design is trivial in isolation, the combi-

nation of these elements yields a robust baseline that secures

the best PSNR on the NTIRE 2024 Image Shadow Removal

Challenge test set. Furthermore, we opt for a CNN-based

network over transformers to conserve computational re-

sources: high-resolution images impose an excessive com-

putational load on transformers.

3.3. SGM and PAM

Simple Gate Module (SGM). We observe that many state-

of-the-art methods [27, 33, 40] implement Gated Linear
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I n p ut G T w/ o s h a d o w g e n er ati o n w gl o b al r esi d u al O urs

Fi g ur e 4. Vis u ali z ati o n of v ari o us v ari a nts of o ur m et h o d.

U nits [ 8 ] ( G L U), w hi c h c a n b e e x pr ess e d as:

G L U( X) = f (X ) ⊙ σ (g (X )) , ( 5)

w h er e X d e n ot es t h e i n p ut i m a g e f e at ur e, f (·) a n d g (·)
ar e li n e ar tr a nsf or m ers, ⊙ is el e m e nt- wis e m ulti pli c ati o n,
a n d σ r e pr es e nts a n o n-li n e ar a cti v ati o n f u n cti o n. H o w-
e v er, i n c or p or ati n g G L U i nt o o ur n et w or k w o ul d i n a d v er-
t e ntl y es c al at e its c o m pl e xit y. N A F N et [3 ] h as r e c o g ni z e d
t h at t h e G L U its elf e m b o di es n o nli n e arit y a n d is n ot c o n-
ti n g e nt o n σ : e v e n wit h t h e o missi o n of σ , t h e o p er ati o n
G at e ( X ) = f (X ) ⊙ g (X ) still r et ai ns n o nli n e arit y. Gi v e n
t his i nsi g ht, w e pr o p os e a si m pli fi e d v ersi o n of G L U, w h er e
a f e at ur e m a p is di vi d e d i nt o t w o h al v es a cr oss t h e c h a n n el
di m e nsi o n a n d t h e n m ulti pli c ati v el y c o m bi n e d, as s h o w n i n
Fi g ur e 3 , k n o w n as t h e Si m pl e G at e M o d ul e ( S G M). S G M
a c hi e v es a n ef fi ci e nt G L U-li k e o p er ati o n t hr o u g h el e m e nt-
wis e m ulti pli c ati o n. T h e pr o c ess c a n b e writt e n as f oll o ws:

S G M( X ) = X 1 ⊙ X 2 , ( 6)

w h er e X 1 a n d X 2 ar e i m a g e f e at ur e m a ps of t h e s a m e si z e.
P o oli n g Att e nti o n M o d ul e ( P A M). T h e att e nti o n m e c h a-
nis m is a wi d el y a d o pt e d m et h o d i n t h e fi el d of c o m p ut er vi-
si o n, wit h n u m er o us v ari ati o ns, i n cl u di n g t h e s elf- att e nti o n
m e c h a nis m i n tr a nsf or m ers. Stri vi n g f or ef fi ci e n c y, w e s e e k
a n att e nti o n a p pr o a c h t h at is a m e n a bl e t o hi g h-r es ol uti o n
i m a g es. [4 0 ] m o di fi es t h e s p ati al- wis e att e nti o n t o c h a n n el-
wis e, w hi c h cir c u m v e nts t h e c o m p ut ati o n al b ur d e n w hil e
pr es er vi n g gl o b al i nf or m ati o n i n e a c h f e at ur e. T his c a n b e
c o nsi d er e d a disti n ct v ari a nt of c h a n n el att e nti o n [ 1 9 ]. I n-
s pir e d b y [ 4 0 ] a n d N A F N et [3 ], w e r e ali z e t h at or di n ar y
c h a n n el att e nti o n f ul fills o ur crit eri a of c o m p ut ati o n al ef-
fi ci e n c y a n d i n c or p or ati o n of gl o b al i nf or m ati o n i nt o f e a-
t ur e m a ps. H e n c e, w e c o nt e m pl at e i nt e gr ati n g c h a n n el at-
t e nti o n i nt o o ur n et w or k. T y pi c all y, c h a n n el att e nti o n first
c o m pr ess es s p ati al i nf or m ati o n i nt o t h e c h a n n el s p a c e t h e n
e m pl o ys m ulti-l a y er p er c e ptr o ns t o c o m p ut e t h e c h a n n el at-
t e nti o ns, w hi c h ar e s u bs e q u e ntl y us e d t o w ei g ht t h e f e at ur e
m a ps [ 3 ]. T his pr o c ess c a n b e writt e n as

C A( X ) = X ∗ σ (W 2 m a x ( 0 , W1 p o ol (X ))) , ( 7)

w h er e X r e pr es e nts t h e i n p ut f e at ur e m a p, p o ol d e n ot es t h e
gl o b al a v er a g e p o oli n g o p er ati o n, σ st a n ds f or t h e n o nli n-
e ar a cti v ati o n f u n cti o n Si g m oi d, a n d W 1, W 2 ar e f ull y c o n-
n e ct e d l a y ers s e p ar at e d b y R e L U.

A c c o u nti n g f or t h e pr es e n c e of a n a cti v ati o n f u n cti o n
a n d t w o li n e ar l a y ers i n E q u ati o n 7 , w e pr o p os e a si m pli-
fi c ati o n a n al o g o us t o t h at a p pli e d t o E q u ati o n 5 , p ari n g it
d o w n t o i n v ol v e o nl y a p o oli n g l a y er a n d a li n e ar o p er a-
ti o n. T h e r es ulti n g si m pli fi e d m o d ul e is o ur pr o p os e d P o ol-
i n g Att e nti o n M o d ul e ( P A M), w hi c h c a pt ur es t h e ess e n c e
of c h a n n el att e nti o n, s p e ci fi c all y t h e a g gr e g ati o n of gl o b al
i nf or m ati o n a n d c h a n n el i nt er a cti o n. T h e o p er ati o n of P A M
c a n b e e x pr ess e d as

P A M( X ) = X ∗ C o n v 1 × 1 (p o ol (X )) , ( 8)

w h er e C o n v 1 × 1 (·) d e n ot es a 1 × 1 c o n v ol uti o n, a n d p o ol
r e pr es e nts gl o b al a v er a g e p o oli n g.

3. 4. Gl o b al R esi d u al F r e e

Gl o b al r esi d u al c o n n e cti o ns ar e a c o m m o n n et w or k d esi g n
t e c h ni q u e i n t h e i m a g e r est or ati o n fi el d, f a cilit ati n g t h e n et-
w or k’s dir e ct l e ar ni n g of t h e r esi d u al b et w e e n d e gr a d e d a n d
cl e a n i m a g es. T y pi c all y, t his t e c h ni q u e is q uit e eff e cti v e,
as l e ar ni n g t h e r esi d u al i nf or m ati o n is si m pl er t h a n l e ar ni n g
h o w t o r e c o v er t h e cl e a n i m a g e dir e ctl y fr o m t h e d e gr a d e d
o n e. H o w e v er, w e h a v e dis c o v er e d t h at i n o ur t as k-s h a d o w
r e m o v al — gl o b al r esi d u al c o n n e cti o ns pr o v e t o b e u n n e c es-
s ar y. As ill ustr at e d i n Fi g ur e 4 , t h e r est or ati o n r es ult wit h o ut
gl o b al r esi d u al c o n n e cti o ns s ur p ass es t h e r es ult wit h l ar g e
s ki p c o n n e cti o ns. We c o nj e ct ur e t h at t his m a y b e d u e t o t h e
f a ct t h at i m a g e s h a d o ws d o n ot c o nstit ut e a d diti v e d e gr a-
d ati o n, w hi c h c o m pli c at es t h e t as k of l e ar ni n g t h e r esi d u al
b et w e e n cl e a n a n d s h a d o w e d i m a g es.

3. 5. O pti mi z ati o n

T h e tr ai ni n g of o ur G R F U n et is di vi d e d i nt o t hr e e st a g es
(s e e S e c 4. 2 f or d et ails), w h er ei n t h e first t w o st a g es e m-
pl o y t h e C h ar b o n ni er l oss [ 2 ] a n d a l oss b as e d o n fr e q u e n c y
d o m ai n i nf or m ati o n. T h e C h ar b o n ni er l oss is d esi g n e d t o
e ns ur e i m a g e fi d elit y a n d c a n b e c o m p ut e d as f oll o ws:

L c =
1

n

n

n = 1

∥ I g t − I o u t ∥
2

+ ϵ 2 , ( 9)

w h er e I g t a n d I o u t r e pr es e nt t h e gr o u n d tr ut h a n d s h a d o w-
fr e e i m a g es pr e di ct e d b y t h e n et w or k, r es p e cti v el y. ϵ is s e e n
as a ti n y c o nst a nt ( e. g ., 1 0 − 5 ) f or st a bl e a n d r o b ust c o n v er-
g e n c e, a n d n r e pr es e nts t h e t ot al n u m b er of i n p ut i m a g es i n
a si n gl e it er ati o n.
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In addition to spatial domain constraints, we have im-
posed a loss function in the frequency domain to enhance
the recovery of frequency domain information. Specifically,
we utilize the FFT loss based on the Fast Fourier Transform,
which can be expressed as

Lf =
1

n

n∑
n=1

∥F (Igt)−F (Iout)∥1, (10)

where the F(·) represents Fourier Transform.
During the first and second stages of training, we employ

the two aforementioned losses as constraints, which can be
expressed as follows:

Lstage1,2 = Lc + λLf , (11)

where λ denotes the balanced weight. In particular,λ is set
to 0.02 empirically.

In the third stage of training, to further enhance the qual-
ity of image restoration, we utilize the SSIM loss. The
SSIM loss relies on the structural similarity index, a metric
that quantifies the similarity between two images by consid-
ering a combination of luminance, contrast, and structural
similarity. The SSIM loss can be calculated as:

LSSIM =

(
2µIgt

µIout
+ η1

) (
2σIgtIout

+ η2
)(

µ2
Igt

+ µ2
Iout

+ η1

)(
σ2
Igt

+ σ2
Iout

+ η2

) ,
(12)

where µ and σ denote the mean and standard deviation of
image intensities, respectively. The σIgtIout

represents the
covariance between the two images. And the constants η1
and η2 are included to prevent division by zero. Addition-
ally, the third stage of training also employs the Charbon-
nier loss. The loss for the third stage can be expressed as:

Lstage3 = Lc + ψLSSIM , (13)

where ψ is the parameter to balance the two terms in the
loss function and we empirically set it to 0.02 as default.

4. Experiments
4.1. Dataset

In our study, we employ the NTIRE 2024 Image Shadow
Removal Challenge dataset, building upon the WSRD
dataset [34] from prior iterations. The WSRD dataset sig-
nifies a leap forward in exploring complex shadow inter-
actions, featuring surfaces of increased complexity and de-
tailed content. The NTIRE 2024 version includes a pre-
processing stage of image alignment using homography es-
timation, and strategically excludes 25 samples from the
WSRD testing split, preserving only the samples that pose
the greatest challenge. Distributed through the official

NTIRE channel, this dataset encompasses 1000 training im-
ages, 100 validation images, and 75 test images, each with
a resolution of 1440 x 1920 pixels in RGB format.

Furthermore, we integrate the NTIRE 2023 dataset [34]
into our training regime, amalgamating it with 24 training
samples from the previous year to amplify the diversity and
complexity, thereby bolstering the robustness of our model
against a gamut of shadow scenarios.

To enrich our training resources further, we include im-
ages with shadows generated by traditional methods and
those synthesized by GANs [7] for specific scenarios. By
treating the initially restored images as pseudo-labels added
to the training set, we extract shadow masks from the orig-
inal dataset that contains pairs of shadow and non-shadow
images. These masks are then fed into the network along
with clean images, enabling the generation of new shadow
images and facilitating the training process focused on
shadow synthesis and subsequent removal.

4.2. Implementation Details

Our training approach progressively sharpens the learning
process, scaling up patch sizes while decreasing learning
rates for optimization, applying gradient accumulation for
larger patches, and incorporating generated shadow data to
improve shadow removal performance. Details for each
stage are provided.

Stage 1: Utilizing the Adam optimizer, we commence
with a batch size of 4 and an initial patch size of 512× 512.
The learning rate begins at 4 × 10−4 and is modulated us-
ing the Cosine Annealing scheme over the course of 1000
epochs. This initial stage is carried out on an NVIDIA 4090
device, with the finest resultant model serving as the foun-
dation for the subsequent stage.

Stage 2: We continue employing the Adam optimizer;
however, we reduce the batch size to 1 and amplify the patch
size to 960× 960. Starting with a learning rate of 4× 10−5,
we apply the Cosine Annealing scheme through 300 epochs.
Performed on the NVIDIA 4090 device and incorporating
gradient accumulation, the premier model obtained at this
juncture initializes the following stage.

Stage 3: Transitioning to the SGD optimizer, we main-
tain a batch size of 1 while significantly expanding the patch
size to 1920×1920. The learning rate is set at 2×10−5 and
undergoes adjustment in accord with the Cosine Annealing
scheme, spanning 200 epochs. This final stage is executed
on an NVIDIA A40 device and persistently employs gradi-
ent accumulation.

When it comes to the testing phase, we employ the fine-
tuned model to attain the optimal state of performance. To
further elevate the model’s output, we engage an input-
ensemble strategy. The testing procedure is meticulously
carried out on an NVIDIA A40 device.
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Table 1. Results of top six methods on the fidelity track. Our method achieves the highest PSNR and ranks third overall among 18 teams.

Team Name PSNR↑ SSIM↑ LPIPS↓ Params.(M) Rank
LUMOS 24.78(2) 0.832(2) 0.110(4) 23 1/18

Shadow R 24.58(3) 0.832(1) 0.098(2) 376 2/18

ShadowTech Innovators (Ours) 24.81(1) 0.832(3) 0.111(5) 26 3/18

LVGroup HFUT 24.35(4) 0.823(6) 0.082(1) 17 4/18

USTC ShadowTitan 24.04(5) 0.827(4) 0.104(3) 83 5/18

GGBond 23.87(6) 0.824(5) 0.127(6) 8.895 6/18

Table 2. Results of the top six methods on the perceptual track.
Our method achieves the highest PSNR and a fourth-place ranking
in perceptual performance among nineteen teams.

Team Name PSNR↑ MOS↑ Rank
Shadow R 24.59(3) 7.750(1) 1/19

LVGroup HFUT 24.23(4) 7.519(2) 2/19

USTC ShadowTitan 24.05(5) 7.444(3) 3/19

Ours 24.81(1) 7.436(4) 4/19

GGBond 23.05(6) 7.400(5) 5/19

PSU Team 22.22(12) 7.400(6) 6/19

Table 3. Ablation results on ntire24 validation dataset using dif-
ferent variants of our method.

Models PSNR↑ SSIM↑
w/o shadow generation 25.499 0.836

w global residual 25.967 0.843
Ours 26.565 0.844

4.3. Results of Challenge

Table 1 presents our method’s comparison against the top
six teams in the fidelity track of the NTIRE 2024 Image
Shadow Removal Challenge [35]. Our approach achieves
the highest PSNR and is competitive in other metrics as
well, such as SSIM, where it is only 7.77E-04 lower than the
first place and merely 2.73E-06 lower than the second. Our
comprehensive ranking in the fidelity track is third. Besides,
we also secure a commendable position in the perceptual
track, attaining fourth place as shown in Table 2.

4.4. Ablation Study

To validate the effectiveness of our proposed Global Resid-
ual Free Unet (GRFUnet) and shadow generation technique,
we performed assessments on the validation and test sets of
NTIRE 2024, utilizing Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM) as objective quality met-
rics. Specifically, our ablation study is structured into three
main parts: a) Forgoing the use of shadow generation (w/o
shadow generation); b) Utilizing global residual connec-
tions (w global residual); c) Employing the proposed ap-
proach, which entails the absence of global residuals and
the incorporation of shadow generation (Ours).

Qualitative and quantitative comparisons are illustrated

Table 4. Quantitative comparison of our method with existing
methods on the ntire24 validation dataset.

Method PSNR↑ SSIM↑
ShadowFormer [16] 22.907 0.819

SwinIR [26] 23.257 0.814
ShuffleFormer [39] 24.724 0.821

Ours 26.565 0.844

Table 5. Quantitative comparison of our method with existing
shadow removal methods on ISTD [37] dataset.

Method PSNR↑ SSIM↑
DSC [20] 26.62 0.845
DHAN [5] 27.21 0.921

SpA-Former [42] 27.73 0.931
ShadowFormer [16] 30.47 0.935

Ours 30.91 0.938

in Figure 4 and Table 3, respectively. It can be seen that
the proposed method achieves superior color consistency
compared to the variants without shadow generation, ow-
ing to the generated shadows which facilitate the network’s
ability to robustly constrain color restoration. Additionally,
compared to the variant with global residuals, the proposed
method exhibits enhanced detail preservation, attributable
to the disuse of global residual connections which are typ-
ically ill-suited for non-additive shadow tasks. Regarding
quantitative outcomes, the proposed method outperforms
both variants in terms of PSNR and SSIM, which emphati-
cally validates the efficacy of our design.

4.5. Comparisons

Structural Similarity Our proposed method is compared
against several state-of-the-art image shadow removal ap-
proaches, including ShadowFormer [16], SwinIR [26], and
ShuffleFormer [39]. We employ Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) as the evalu-
ation metrics, with higher values indicating superior per-
formance. To ensure a fair assessment, we utilize the
same training data and methodology for all compared meth-
ods and evaluate their performances on the same test set
(ntire24-valid). Comparative visual results are presented in
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GTInput Ours(a) (c)(b)

Figure 5. Visualization comparison results of shadow removal on the ntire24 validation dataset. (a) to (c) are the predicted results from
SOTA methods: ShadowFormer [16], SwinIR [26], ShuffleFormer [39], respectively.

Figure 5, while a quantitative comparison is provided in
Table 4. Our method can be seen to possess superior fi-
delity capabilities and is more adept at managing complex
background information. Moreover, we conduct quantita-
tive comparisons on the ISTD dataset with previous meth-
ods of shadow removal. As shown in Table 5, our method
continues to demonstrate superior performance.”

5. Conclusion

In this paper, our study introduces a novel framework for
shadow removal, combining shadow generation with Global

Residual Free Unet (GRFUnet) to tackle complex and high-
resolution images. Our use of GAN-generated shadow
masks enhances color consistency, and our modified UNet
architecture performs effective feature extraction. Besides,
considering the non-additive attributes of image shadows,
we eliminate global residual connections to further improve
performance. Validated by the NTIRE 24 Image Shadow
Removal Challenge results, our method not only achieves
the highest PSNR but also ranks highly in both fidelity and
perception tracks. This work contributes to the domain of
image shadow removal and provides insights for future de-
velopment in the field.
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