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Abstract

The performance of light field (LF) image super-
resolution (SR) has been significantly improved with the de-
velopment of deep learning techniques. In recent state-of-
the-art methods, increasingly deeper and wider networks
with a massive number of layers are employed to improve
SR performance. However, these approaches often in-
cur heavy computational costs, hindering efficient infer-
ence and practical applications. In this paper, we address
the problem by introducing an efficient network for LF im-
age SR. Specifically, we propose an efficient progressive
disentangling block (PDistgB), where the intermediate LF
feature is progressively channel-wise split and selectively
domain-specific disentangled. The PDistgB can well incor-
porate the LF structure prior while requiring fewer compu-
tational costs compared with existing disentangling strate-
gies. In addition, we apply Transformer on the angular do-
main to incorporate angular correlations from all views for
further improving the SR accuracy. Experimental results
on public datasets demonstrate that our method achieves
state-of-the-art performance with high efficiency. Codes
and models are available at https://github.com/
GaoshengLiu/PDistgNet.

1. Introduction
Light field (LF) photography captures not only the inten-
sities of light but also the directions of the rays across a
scene. The additional dimension offers valuable 3D cues,
facilitating various downstream applications such as depth
prediction [39], digital post-focusing [6], and 3D observa-
tion [26]. However, as the 4D LF structure is multiplexed
on the 2D image sensor, existing LF imaging devices en-
counter difficulties in achieving dense sampling in the an-
gular domain while maintaining satisfactory spatial size. In
recent years, leveraging computational imaging techniques
to address the challenges has garnered significant atten-
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Figure 1. FLOPs vs. PSNR of different methods. The PSNR re-
sults are achieved on EPFL [29] for 4× LF image SR. The FLOPs
are calculated with a 5× 5× 32× 32 input.

tion [15, 23, 24, 40, 47, 50].
In this work, we focus on enhancing the spatial reso-

lution of LF images. To tackle this problem, various ap-
proaches [5, 12, 40, 44, 47, 50] have been introduced. The
conventional methods [2, 27, 44] formulate LF image super-
resolution (SR) as an optimization problem. Recently, the
learning-based methods have dominated the area of LF im-
age SR [12, 40, 47, 50]. These methods capitalize on
different perspectives of the 4D LF structure to incorpo-
rate the complementary angular correlations for improv-
ing the SR performance. Among them, the Transformer-
based methods [4, 18, 19] are leading the advancements.
In addition, there has also been a trend toward designing
deeper and wider networks [13, 31] to improve SR accuracy.
However, despite the remarkable performance achieved by
these approaches, they often require significant computa-
tional costs, limiting their flexibility and practical applica-
tions. For example, the floating-point operations (FLOPs)
of the winner approach [13] in the NTIRE 2023 LF image
SR challenge [41] reached up to 397.2 G measured using a
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5×5×32×32 input. Moreover, testing the entire LF image
with resolutions like 5×5×374×540 demands even more
substantial computing resources and inference time. There-
fore, there is a pressing need for more efficient solutions in
LF image SR.

In this paper, we present a simple yet efficient method to
mitigate the obstacle. Specifically, we introduce an efficient
progressive disentangling block (PDistgB) to leverage the
inherent LF structure priors. In PDistgB, the LF feature is
progressively split along the channel dimension into two in-
dependent parts. One part undergoes specific subspace dis-
entanglement, while the other part is further split for subse-
quent subspace disentanglement. After multiple splits and
disentanglement, we concatenate the disentangled features
and fuse them to enhance the feature representation. Addi-
tionally, considering that the macro-pixel patterns (i.e., an-
gular domain) reflect the angular correlations via recording
the directions of light rays, and given that the angular res-
olution is typically small, e.g., 5 × 5, we also deploy the
Transformer on angular domain to incorporate complemen-
tary information from all angular views while conserving
GPU memory.

Based upon PDistgB and angular Transformer block
(AngTB), we develop PDistgNet for efficient LF image SR.
Our method achieves superior performance while requiring
significantly lower computational costs. As shown in Fig-
ure 1, our PDistgNet and PDistgNet-L (the large version of
PDistgNet) achieve better PSNR and FLOPs trade-off com-
pared with state-of-the-art methods.

In summary, the contributions of this paper are as fol-
lows. (1) We address the problem of efficient LF image SR
with a simple yet efficient network, PDistgNet. (2) We pro-
pose an efficient progressive disentangling block (PDistgB)
to leverage the LF structure prior by progressively perform-
ing multiple subspace-specific disentanglement. (3) Exten-
sive experimental results on public datasets demonstrate the
superiority of our method over the state-of-the-art in terms
of both SR accuracy and efficiency.

2. Related Works

2.1. Efficient Image SR

Image SR is a long-standing problem in image restoration.
The efficient image SR technique aims at reducing the com-
putational cost of image SR methods for fast inference. To
achieve this, a variety of strategies have been proposed. For
example, Aha et al. [1] proposed a cascaded residual net-
work with point-wise and depth-wise convolutions, which
largely reduced the parameters compared with the original
residual block [7]. Hui et al. [10] proposed a feature distilla-
tion strategy, which splits the intermediate feature along the
channel dimension and applies convolutions on these sepa-
rate features to reduce the number of parameters. In their

later study [11], an information multi-distillation network
(IMDN) is introduced, in which the intermediate feature is
progressively split and processed with convolutions. Liu et
al. [25] proposed a residual feature distillation block with
3× 3 and 1× 1 convolutions. Wang et al. [33, 34] explored
the sparsity in image SR to improve the inference efficiency
of SR networks.

2.2. LF Image SR

LF image SR aims at enhancing the resolution of each view
of an LF and simultaneously preserving the angular con-
sistency. Yoon et al. [48] stacked adjacent views and ap-
plied convolutions to leverage the complementary informa-
tion. Yeung et al. [47] utilized alternating 2D convolution
on spatial and angular domains to replace the 4D convolu-
tion, which achieves better performance and has lower com-
putational costs. Wang et al. [36] introduced a bidirectional
recurrent network to propagate the axial views in a recurrent
manner, where angular correlations are implicitly incorpo-
rated. Instead of considering only the axial views, Zhang et
al. [50, 51] proposed to model the multi-directional epipo-
lar correlations with a multi-branch network. Jin et al. [12]
developed an all-to-one method for LF image SR and per-
formed structural consistency regularization to preserve the
LF parallax structure. Wang et al. [37] decoupled the LF
image into spatial and angular features and designed a fea-
ture interaction strategy to incorporate the spatial-angular
correlations. In their extended study, spatial-angular decou-
pling is advanced to a disentangling mechanism [40] to fur-
ther leverage the structure prior for improving the SR per-
formance. Wang et al. [38] addressed the disparity varia-
tions by using deformable convolution [53] for view align-
ment. Liu et al. [22] proposed an intra- and inter-view in-
teraction strategy to incorporate the angular correlations.
Later, they further proposed to explicitly utilize the dis-
parity information to guide the SR process [21]. Mo et
al. [28] introduced a dense dual-attention network to in-
corporate long-term information from shallow to deep lay-
ers. Apart from these CNN-based methods, the Transformer
techniques work on spatial-angular domains [4, 19] and
epipolar-plane domain [19, 35] have been exploited, leading
the recent advancements. Very recently, super-resolving the
LF images under real-world degradation [43, 46] has also
been explored.

However, increasing computational costs of recent meth-
ods limit their practical applications. In this paper, we aim
to explore efficient solutions for LF image SR.

3. Method
3.1. Preliminary

The LF image can be represented as a 4D function
L(u, v, h, w) ∈ RU×V×H×W , where U × V and H × W
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Figure 2. The framework of our proposed method. A 3 × 3 LF image is shown as an example. The SpaConv indicates the convolution
works on the spatial, i.e., H × W domain and shares weights for different views. To be consistent with previous works, our method
performs on only the Y-channel component of LF images.

represent angular and spatial resolutions. The (u, v) and
(h,w) denote angular and spatial locations. This work aims
at enhancing the spatial resolution of L and reconstruct-
ing LSR(u, v, h, w) ∈ RU×V×rH×rW , where r is the up-
sampling factor.

3.2. Network Architecture

The architecture of our proposed method is depicted in Fig-
ure 2. Concretely, our method contains three steps, i.e., ini-
tial feature extraction, spatial-angular correlation learning,
and reconstruction. The initial feature extraction consists
of a 1 × 1 convolution and a feature extraction (FE) mod-
ule to extract the intra-view correlations. Then we intro-
duce cascaded block, which is composed of angular trans-
former block (AngTB) and progressive disentangling block
(PDistgB), to leverage the inherent spatial-angular correla-
tions of LF. After N cascaded blocks and a skip connec-
tion, we up-sample the spatial resolution of LF feature to
generate high-resolution (HR) LF image. A global residual
connection with bicubic interpolation is deployed to feed
low-frequency information to the output.

3.2.1 Initial Feature Extraction

The initial feature extraction aims at mapping input low-
resolution (LR) LF image to the feature domain and explor-

ing spatial correlations. To achieve this, a 1 × 1 convolu-
tion is first applied for channel expansion. Then two 3 × 3
convolutions with LeakyReLU activation are formed as an
FE module, generating LF feature F ∈ RU×V×C×H×W ,
where C is the channel dimension of F .

3.2.2 Spatial-Angular Correlation Learning

To leverage spatial and angular correlations for enhancing
SR accuracy, we deploy cascaded AngTBs and PDistgBs
for deep spatial and angular correlation learning.
Angular Transformer Block. The macro-pixel pattern of
LF image is a set of pixels with the same point but cap-
tured at different angular locations, in which angular cor-
relations are reflected. Meanwhile, the macro-pixel pattern
usually has a relatively small size, e.g., 5 × 5. Therefore,
applying Transformer on macro-pixel patterns is an effi-
cient choice for incorporating the angular correlations. In
this work, we extend the basic framework in [18] to for-
mulate our AngTB, whose structure is depicted in Figure 2
(c). Specifically, the input feature F ∈ RU×V×C×H×W

is converted into a sequence of “angular token”, T i ∈
RUV×C , i ∈ {1, · · · , HW}. In practice, the T i are stacked
as T ∈ RHW×UV×C , and HW is regarded as the batch di-
mension. We adopt the sinusoidal position encoding [18] to
encode the angular locations to P . Then the query Q and
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Figure 3. The architecture of PDistgB. The 64, 48, and 16 all represent the output channels of the convolution layer. Each 1×1 convolution
is followed by a LeakyReLU activation (which is omitted for simplicity). The Spa-DConv is the depth-wise convolution that works on the
spatial domain. The angular dimension indicates U and/or V .

key K is generated by performing layer normalization (LN)
on (T + P ), while the value V is assigned as T . Then the
Q, K, and V are linearly projected to a embedding dimen-
sion of D by multiplying projection matrix, WQ ∈ RC×D,
WK ∈ RC×D and WV ∈ RC×D, respectively. We fol-
low the setting of multi-head self-attention (MHSA) [32] to
evenly divide the Q, K, and V into M segments along the
D dimension, and performing self-attention on correspond-
ing segment, Qj , Kj , and Vj , j ∈ {1, · · · ,M}, which is
given by:

T̂j = Softmax(
Qj ⊗KT

j√
d

)⊗ Vj , j ∈ {1, · · · ,M}, (1)

where ⊗ denotes matrix multiplication, and d = D/M .
Then the T̂j ∈ RHW×UV×d, j ∈ {1, · · · , N} are concate-
nated to generate T̂ ∈ RHW×UV×D.

Following previous Transformer [32], T̂ is added with
input tokens T and sequentially processed by a LN and a
multi-layer perception (MLP), which is given by:

T̃ = MLP(LN(T̂ + T )) + (T̂ + T ). (2)

After that, the angular tokens T̃ are reshaped back to LF
features F̃ ∈ RUV×C×H×W and processed by two spatial-
wise 3 × 3 convolutions. Finally, the residual learning is
applied to generate the output of AngTB.
Progressive Disentangling Block. The disentangling
mechanism is designed to incorporate the LF structure prior
by performing domain-specific disentanglement, which has
shown its effectiveness in both LF SR and depth predic-
tion [40, 43]. In previous works [14, 40, 43], the input

LF feature is directly separately subspace-specific disentan-
gled. Then the disentangled outputs are concatenated and
fused using convolutions. However, the separate disentan-
gling requires large computational costs. To mitigate the
obstacle, we introduce a more efficient progressive disen-
tangling strategy to reduce the computational costs.

The structure of our PDistgB is depicted in Figure 3. The
input feature is first processed by a 1×1 convolution, whose
output is channel-wise split, obtaining two components, i.e.,
Fspa ∈ RU×V×C1×H×W and F1 ∈ RU×V×C2×H×W .
The Fspa is sent for spatial disentangling using spatial-wise
convolutions. F1 is preserved and processed by a 1 × 1
convolution to expand the channel numbers, whose out-
put is further divided into Fang ∈ RU×V×C1×H×W and
F2 ∈ RU×V×C2×H×W . Fang is reshaped into macro-pixel
pattern features with resolution of HW × C1 × U × V
and sent for angular disentangling. We follow previous
work [40] to adopt an angular-domain aggregation&up-
sampling strategy for angular disentangling. Concretely, we
first apply convolution to aggregate each macro-pixel pat-
tern feature from the resolution of C1 × U × V to that of
C1 × 1 × 1 and then utilize the PixelShuffle layer to up-
sample it to the resolution of C1 × U × V . Similarly, F2 is
fed into the following layers for channel splits and epipolar-
plane disentanglement. For the split epipolar-plane feature,
Fh-epi ∈ RUH×C1×V×W and Fv-epi ∈ RVW×C1×U×H (af-
ter reshaping), the disentanglement includes an aggregation
on V and U dimension, respectively, and a corresponding
up-sampling operation, as shown on the right side of Fig-
ure 3. Recently, one more 2D representation of LF has
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been investigated [9, 14], namely virtual-slit image repre-
sentation [14], which also reflects the sub-pixel correlations.
Therefore, we also perform disentanglement in virtual-slit
image representation. Similar to epipolar-plane disentan-
glement, for virtual-slit feature, Fh-vir ∈ RV H×C1×U×W

and Fv-vir ∈ RUW×C1×V×H (after reshaping), the aggre-
gation is performed on U and V dimension, respectively.
We set the channel numbers of disentangled feature C1 to
16 and preserved feature C2 to 48.

After the progressive feature splits and disentanglement,
the disentangled outputs and the preserved split feature are
concatenated and fused via a point-wise (1×1) and a depth-
wise (on the spatial domain) convolution. We also deploy
residual learning in PDistgB.

3.2.3 Reconstruction

To reconstruct the high-resolution LF image, we utilize a
1×1 convolution to expand the channel dimension and then
adopt the PixelShuffle layer to rearrange the pixels from
channel dimension to spatial dimension. Finally, a 3 × 3
spatial-wise convolution is applied to reduce the channel
numbers and generate the final output. To train our net-
work, we use the ℓ1 loss function to constrain the network
output to be similar to ground truth.

4. Experiments

4.1. Implementation Details

To be consistent with previous studies, we use five public
LF datasets, including three real-world datasets (EPFL [29],
STFgantry [30], and INRIA [17]) and two synthetic datasets
(HCInew [8] and HCIold [45]) in the experiments. Follow-
ing BasicLFSR [41], a total number of 144 LF images from
the five datasets are used for training and 23 LF images for
testing. For experiments, we extract the central 5× 5 views
of each scene and cropped them into patches with a spatial
resolution 128 × 128. Then we apply 4× bicubic down-
sampling to generate the LR inputs.

In our PDistgNet, the number of cascaded blocks, i.e., N
is set to four. We also provide a large version of our method,
PDistgNet-L, by deploying 12 cascaded blocks. The head
number M in AngTB is set to eight. For training, the learn-
ing rate is initially set to 2e− 4 and weighted decayed by a
factor of 0.5 for every 15 epochs. The total training epoch is
set to 80. To evaluate the quantitative performance of each
scene, we calculate the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) metrics on each view and
then average the scores of all views. The final score on each
test set is by averaging the scores of all the scenes in this
test set.

Table 1. PSNR results by deploying different subspace disentan-
gling in PDistgB. Note that, the number of parameters (#Prm.) of
different variants are adjusted.

Spa Ang Epi Vir #Prm. EPFL HCInew HCIold INRIA

✓ ✓ 0.86M 29.24 31.30 37.53 31.18
✓ ✓ ✓ 0.84M 29.21 31.33 37.50 31.13
✓ ✓ ✓ ✓ 0.83M 31.32 31.33 37.55 31.24

Table 2. The number of parameters (#Prm.) and FLOPs (computed
with input size of 5×5×32×32) comparison between our PDistgB
and previous disentangling strategies.

PDistgB DistgB [40] C2
4FE [14]

#Prm. (M) 0.06 0.21 0.27
FLOPs (G) 1.06 3.68 4.36

4.2. Ablation Investigation

Progressive Disentangling Block. In our method, the
PDistgB is designed with a small number of parameters but
is effective for high performance. To verify this, we conduct
several experiments. Firstly, we study the influence of dif-
ferent numbers of subspace disentangling. Specifically, we
sequentially integrate angular, epipolar-plane, and virtual-
slit disentangling on a baseline with spatial disentangling.
As listed in Table 1, the performance achieved by integrat-
ing all subspace disentangling is consistently better on dif-
ferent datasets. Secondly, we compare our PDistgB with
disentangling block (DistgB) [40] and C2

4 feature extrac-
tor (C2

4FE) [14]. A computational cost comparison is listed
in Table 2. We then design two variants by separately re-
placing the PDistgBs in our PDistgNet with DistgBs and
C2

4FEs, termed as w DistgB and w C2
4FE, respectively. For

a fair comparison, we reduce the number of parameters in
these two variants. As listed in Table 3, the performance
of w DistgB suffers from a degradation of 0.19 dB on IN-
RIA [17]. The w C2

4FE is also inferior to our method by
0.15 dB on EPFL [29]. Thirdly, we directly remove the
PDistgBs in our method, termed as w/o PDistgB. From Ta-
ble 3, the performance of w/o PDistgB is degraded by 0.17
dB on HCIold [45].

In summary, these experimental results demonstrate the
high effectiveness of our proposed PDistgB.
Angular Transformer Block. In our method, we deploy
Transformer on the angular domain and introduce AngTB to
effectively leverage the angular correlations from all views.
To prove its effectiveness, we remove the AngTBs in PDist-
gNet, termed as w/o AngTB. As listed in Table 3, this vari-
ant also suffers from a drop of 0.42 dB on HCIold [45].

4.3. Comparisons with State-of-the-art Methods

We compare our method (two versions) with state-of-the-
art approaches, including four single image SR meth-
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Table 3. Ablation study results for PDistgB and AngTB. For PSNR/SSIM, larger is better. The FLOPs are computed with input size of
5× 5× 32× 32. Note that, the number of parameters (#Prm.) of different variants are adjusted.

Variant
#Prm. FLOPs Datasets
(M) (G) EPFL HCInew HCIold INRIA STFgantry

w DistgB 0.85 18.37 29.15/0.9189 31.29/0.9199 37.58/0.9731 31.05/0.9513 31.40/0.9512
w C2

4FE 0.93 18.48 29.17/0.9191 31.30/0.9200 37.56/0.9730 31.18/0.9517 31.42/0.9513
w/o AngTB 0.88 16.39 28.87/0.9145 31.04/0.9166 37.13/0.9708 30.99/0.9495 30.76/0.9452

w/o PDistgB 0.83 21.87 29.14/0.9178 31.21/0.9185 37.38/0.9723 31.22/0.9508 31.34/0.9501
PDistgNet (Ours) 0.83 19.47 29.32/0.9195 31.33/0.9205 37.55/0.9730 31.24/0.9517 31.43/0.9514

Table 4. Comparison of PSNR/SSIM with different methods. The FLOPs are computed with input size of 5× 5× 32× 32. The inference
time is measured by super-resolving a 5× 5× 192× 192 LR input. The best results are highlighted in red and the second results in blue.

Method
#Prm. FLOPs Time Datasets
(M) (G) (s) EPFL HCInew HCIold INRIA STFgantry

Bicubic - - - 25.14/0.8311 27.61/0.8507 32.42/0.9335 26.82/0.8860 25.93/0.8431
VDSR [16] 0.66 272.26 3.98 27.25/0.8777 29.31/0.8823 34.81/0.9515 29.19/0.9204 28.51/0.9009
EDSR [20] 38.89 1016 11.44 27.84/0.8858 29.60/0.8874 35.18/0.9538 29.66/0.9259 28.70/0.9075
RCAN [52] 15.36 390.12 7.52 27.88/0.8863 29.63/0.8886 35.20/0.9548 29.76/0.9276 28.90/0.9131

resLF [50] 6.79 39.70 2.32 27.46/0.8899 29.92/0.9011 36.12/0.9651 29.64/0.9339 28.99/0.9214
LFSSR [47] 1.61 128.24 5.11 28.27/0.9080 30.72/0.9124 36.70/0.9690 30.31/0.9446 30.15/0.9385
LF-ATO [12] 1.36 1898 16.84 28.64/0.9130 30.97/0.9150 37.06/0.9703 30.79/0.9490 30.79/0.9448
LF-InterNet [37] 5.23 50.10 2.11 28.67/0.9143 30.98/0.9165 37.11/ 0.9715 30.64/0.9486 30.53/0.9426
LF-DFnet [38] 3.99 57.31 2.54 28.77/0.9165 31.23/0.9196 37.32/0.9718 30.83/0.9503 31.15/0.9494
MEG-Net [51] 1.77 102.18 2.49 28.74/0.9160 31.10/0.9177 37.28/0.9716 30.66/0.9490 30.77/0.9453
LF-IINet [22] 4.88 57.42 1.55 29.11/0.9194 31.36/0.9211 37.62/0.9737 31.08/0.9516 31.21/0.9494
DPT [35] 3.78 66.55 11.96 28.93/0.9170 31.19/0.9188 37.39/0.9721 30.96/0.9503 31.14/0.9488
LF-DGNet [21] 4.70 50.20 1.16 29.06/0.9191 31.39/0.9215 37.48/0.9728 31.13/0.9521 31.35/0.9516
DistgSSR [40] 3.58 65.41 2.52 28.99/0.9195 31.38/0.9217 37.56/0.9732 30.99/0.9519 31.65/0.9535
PDistgNet (Ours) 0.83 19.47 2.31 29.32/0.9195 31.33/0.9205 37.55/0.9730 31.24/0.9516 31.43/0.9514

LFT [18] 1.16 57.60 11.73 29.25/0.9210 31.46/0.9218 37.63/0.9735 31.20/0.9524 31.86/0.9548
LF-SAV [3] 1.54 115.80 6.96 29.37/0.9223 31.45/0.9217 37.50/0.9721 31.27/0.9531 31.36/0.9505
HLFSR [31] 13.87 182.52 11.81 29.20/0.9222 31.57/0.9238 37.78/0.9742 31.24/0.9534 31.64/0.9537
EPIT [19] 1.47 81.35 4.98 29.34/0.9197 31.51/0.9231 37.68/0.9737 31.37/0.9526 32.18/0.9571
LF-DET [4] 1.69 51.20 7.82 29.47/0.9230 31.55/0.9235 37.84/0.9744 31.39/0.9534 32.14/0.9573
PDistgNet-L (Ours) 2.19 50.57 7.34 29.70/0.9245 31.61/0.9241 37.82/0.9744 31.54/0.9542 32.19/0.9578

ods (i.e., bicubic interpolation, VDSR [16], EDSR [20],
and RCAN [52]) and 15 LF image SR methods (i.e.,
resLF [50], LFSSR [47], LF-ATO [12], LF-InterNet [37],
LF-DFnet [38], MEG-Net [51], LF-IINet [22], DPT [35],
LF-DGNet [21], DistgSSR [40], LFT [18], LF-SAV [3],
HLFSR [31], EPIT [19], and LF-DET [4]). These learning-
based methods are trained using the same datasets as ours.
We conduct the comparison on 4× LF image SR.

Quantitative Results. To be consistent with the Basi-
cLFSR [41], we report the results of all methods (including

ours) by cropping input LR LF images into patches with
zero padding for testing. The results are listed in Table 4,
from which we can observe that:

• Recent state-of-the-art methods, such as LF-SAV,
HLFSR, and EPIT achieve much higher performance than
early resLF and LF-InterNet but require much higher
computational costs, e.g., FLOPs.

• Our PDistgNet achieves higher PSNR scores than Dist-
gSSR on EPFL [29] and INRIA [17] with 76% parame-
ters (#Prm.) and 70% FLOPs reduction, which demon-
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LF-DFnet DistgSSRLF-IINet EPIT LF-DET

LF-InterNetGT EDSR LFSSR LF-ATO MEG-Net

LF-DFnet DistgSSR PDistgNet-LLF-IINet EPIT LF-DET

ISO Chart / EPFL

Tarot Cards / STFgantry

Herbs / HCInew

PDistgNet-L

PDistgNet-L

Figure 4. Visual Comparison on different methods for 4× LF image SR. The enlarged patches cut from the green box of central view and
epipolar-plane image cut along the blue line are presented for comparison.

strates the high efficiency of our PDistgNet.
• The larger version of our method, PDistgNet-L, achieves

the highest PSNR scores on EPFL [29], HCInew [8], IN-
RIA [17], and STFgantry [30] with an acceptable com-
putational cost. Specifically, PDistgNet-L outperforms
EPIT and LD-DET by 0.17 dB and 0.15 dB on IN-
RIA [17], respectively.

In Figure 1, we visualize the trade-off between FLOPs and
PSNR scores on EPFL [29]. It can be observed that our
PDistgNet and PDistgNet-L achieve higher efficiency com-
pared with state-of-the-art methods.

Inference Time Evaluation. We also report the inference
time of different methods to further demonstrate the effi-
ciency. The results are listed in Table 4. The inferences of
different methods are conducted on the same desktop with
an NVIDIA RTX 3090 GPU and Xeon Platinum 8369B
CPU @2.90 GHz. We report the average time over five
runs. It can be observed that our PDistgNet is faster than
DistgSSR, MEG-Net, and LF-DFnet. Our PDistgNet-L is
also faster than LF-DET, and LFT.

Visual Results. The visual comparison results are pre-
sented in Figure 4. We provide the results for 4× LF im-
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EPIT LF-DET PDistgNet-L (Ours) HR

1.151.301.28

1.301.361.54

Buddha / HCIold

1.25

Figure 5. Depth prediction results using SPO [49]. The MSE
(marked in yellow on each depth map) between the predicted depth
map and ground truth is utilized for objective comparison.

EPIT LF-DET
Ave=38.48, Std=0.0503Ave=38.31, Std=0.0596

Ave=38.26, Std=0.0389
DistgSSRLF-ATO MEG-Net

Ave=37.85, Std=0.0970Ave=37.67, Std=0.0675

PDistgNet-L (Ours)
Ave=38.62, Std=0.0406

Figure 6. PSNR distribution among different SAIs achieved by
different methods on scene MonasRoom from HCIold [45]. The
Ave denotes the average PSNR over 25 views and Std is the stan-
dard deviation to show the uniformity.

age SR on Lytro-captured scene from EPFL [29], moving-
gantry captured scene from STFgantry [30], and synthetic
scene from HCInew [8]. It can be observed that our
PDistgNet-L reconstructs more visually pleasing results
with fine-granular details and clear edges.
Angular Consistency Evaluation. To evaluate the angular
consistency of our super-resolved results, we provide the
epipolar-plane image (EPI), as shown under each enlarged
patch in Figure 4. We can observe that EPIs generated by
our method show more linear structures and fewer artifacts.
Furthermore, we perform depth map prediction using the re-
constructed HR LF images by different methods. Following
previous methods [19, 38, 40], we adopt the SPO [49] for
depth estimation and mean-square error (MSE) for quantita-
tive comparison. As reported in Figure 5, the MSE achieved
by our results is lower than that of other methods, which

suggests the high angular consistency of our results.
Perspective Evaluation. To further investigate the recon-
struction quality with respect to different perspectives, we
follow previous methods [22, 37, 38] to report the PSNR
distribution of the reconstructed 5× 5 views. As visualized
in Figure 6, our method can achieve a relatively balanced
distribution and high reconstruction quality compared with
state-of-the-art methods.

4.4. NTIRE 2024 LF Image SR Challenge

We participated in the NTIRE 2024 LF image SR chal-
lenge [42] with the proposed approach. This challenge
adopts the developed validation and test sets from [41] and
has two tracks. For Track 2 (Fidelity & Efficiency), we
submitted the results achieved by our PDistgNet and we
conducted full-resolution testing to avoid the zero-padding
in overlapped patch-based testing [13]. For Track 1 (Fi-
delity only), we increased the number of cascaded blocks
in our framework to 16, termed as PDistgNet-L⋆, and fur-
ther adopted the ensemble strategy [20] for higher perfor-
mance. The results achieved by our methods and three base-
line methods are listed in Table 5. Our PDistgNet-L⋆ and
PDistgNet ranked 4th and 3rd place in Track 1 (Fidelity
only) and Track 2 (Fidelity & Efficiency), respectively.

Table 5. PSNR and SSIM scores on validation and test sets of
NTIRE 2024 LF image SR Challenge.

Method #Prm. FLOPs Validation Test
LF-InterNet [37] 5.23 50.10 31.33/0.9381 29.45/0.9198
DistgSSR [40] 3.58 65.41 31.75/0.9424 29.64/0.9244
EPIT [19] 1.47 81.35 32.04/0.9447 29.87/0.9259
PDistgNet 0.83 19.47 31.72/0.9411 29.96/0.9238
PDistgNet-L⋆ 2.87 66.13 32.25/0.9462 30.44/0.9288

5. Conclusion and Future Work

In this paper, we address the problem of efficient LF image
SR. Specifically, we proposed a progressive disentangling
block, in which the LF feature is sequentially channel-wise
split and selectively domain-specific disentangling, to lever-
age the structure prior. We also applied Transformer on the
angular domain to incorporate the angular correlations from
all views. Extensive experimental results demonstrated
that our method achieves state-of-the-art performance and
high efficiency. The EPIs and predicted depth map fur-
ther demonstrate the high angular consistency of our recon-
structed results.

In future work, we plan to explore the sparsity [34] in
the angular domain during angular correlations modeling
for efficient inference.

6284



References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading
residual network. In ECCV, pages 252–268, 2018. 2

[2] Tom E Bishop and Paolo Favaro. The light field camera:
Extended depth of field, aliasing, and superresolution. IEEE
transactions on pattern analysis and machine intelligence,
34(5):972–986, 2011. 1

[3] Zhen Cheng, Yutong Liu, and Zhiwei Xiong. Spatial-
angular versatile convolution for light field reconstruction.
IEEE Transactions on Computational Imaging, 8:1131–
1144, 2022. 6

[4] Ruixuan Cong, Hao Sheng, Da Yang, Zhenglong Cui, and
Rongshan Chen. Exploiting spatial and angular correlations
with deep efficient transformers for light field image super-
resolution. IEEE Transactions on Multimedia, 2023. 1, 2,
6

[5] Reuben A Farrugia, Christian Galea, and Christine Guille-
mot. Super resolution of light field images using linear sub-
space projection of patch-volumes. IEEE Journal of Selected
Topics in Signal Processing, 11(7):1058–1071, 2017. 1

[6] Juliet Fiss, Brian Curless, and Richard Szeliski. Refocus-
ing plenoptic images using depth-adaptive splatting. In
IEEE international conference on computational photogra-
phy (ICCP), pages 1–9. IEEE, 2014. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 2

[8] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and
Bastian Goldluecke. A dataset and evaluation methodology
for depth estimation on 4d light fields. In ACCV, pages 19–
34. Springer, 2016. 5, 7, 8

[9] Zexi Hu, Xiaoming Chen, Henry Wing Fung Yeung,
Yuk Ying Chung, and Zhibo Chen. Texture-enhanced
light field super-resolution with spatio-angular decomposi-
tion kernels. IEEE Transactions on Instrumentation and
Measurement, 71:1–16, 2022. 5

[10] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In CVPR, pages 723–731, 2018. 2

[11] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In ACM international conference on
multimedia, pages 2024–2032, 2019. 2

[12] Jing Jin, Junhui Hou, Jie Chen, and Sam Kwong. Light
field spatial super-resolution via deep combinatorial geom-
etry embedding and structural consistency regularization. In
CVPR, pages 2260–2269, 2020. 1, 2, 6

[13] Kai Jin, Angulia Yang, Zeqiang Wei, Sha Guo, Mingzhi Gao,
and Xiuzhuang Zhou. Distgepit: Enhanced disparity learn-
ing for light field image super-resolution. In CVPRW, pages
1373–1383, 2023. 1, 8

[14] Manchang Jin, Gaosheng Liu, Kunshu Hu, Xin Luo, Kun
Li, and Jingyu Yang. Physics-informed ensemble represen-
tation for light-field image super-resolution. arXiv preprint
arXiv:2305.20006, 2023. 4, 5

[15] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-
mamoorthi. Learning-based view synthesis for light field
cameras. ACM Transactions on Graphics (TOG), 35(6):1–
10, 2016. 1

[16] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In CVPR, pages 1646–1654, 2016. 6

[17] Mikael Le Pendu, Xiaoran Jiang, and Christine Guillemot.
Light field inpainting propagation via low rank matrix com-
pletion. IEEE Transactions on Image Processing, 27(4):
1981–1993, 2018. 5, 6, 7

[18] Zhengyu Liang, Yingqian Wang, Longguang Wang, Jungang
Yang, and Shilin Zhou. Light field image super-resolution
with transformers. IEEE Signal Processing Letters, 29:563–
567, 2022. 1, 3, 6

[19] Zhengyu Liang, Yingqian Wang, Longguang Wang, Jun-
gang Yang, Shilin Zhou, and Yulan Guo. Learning non-
local spatial-angular correlation for light field image super-
resolution. In ICCV, pages 12376–12386, 2023. 1, 2, 6, 8

[20] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In CVPRW, pages 136–144, 2017. 6,
8

[21] Gaosheng Liu, Huanjing Yue, Kun Li, and Jingyu Yang.
Disparity-guided light field image super-resolution via fea-
ture modulation and recalibration. IEEE Transactions on
Broadcasting, 69(3):740–752, 2023. 2, 6

[22] Gaosheng Liu, Huanjing Yue, Jiamin Wu, and Jingyu Yang.
Intra-inter view interaction network for light field image
super-resolution. IEEE Transactions on Multimedia, 25:
256–266, 2023. 2, 6, 8

[23] Gaosheng Liu, Huanjing Yue, Jiamin Wu, and Jingyu
Yang. Efficient light field angular super-resolution with sub-
aperture feature learning and macro-pixel upsampling. IEEE
Transactions on Multimedia, 25:6588–6600, 2023. 1

[24] Gaosheng Liu, Huanjing Yue, Kun Li, and Jingyu Yang.
Adaptive pixel aggregation for joint spatial and angular
super-resolution of light field images. Information Fusion,
104:102183, 2024. 1

[25] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
ECCVW, pages 41–55. Springer, 2020. 2

[26] Zhi Lu, Yu Liu, Manchang Jin, Xin Luo, Huanjing Yue,
Zian Wang, Siqing Zuo, Yunmin Zeng, Jiaqi Fan, Yanwei
Pang, et al. Virtual-scanning light-field microscopy for ro-
bust snapshot high-resolution volumetric imaging. Nature
Methods, 20(5):735–746, 2023. 1

[27] Kaushik Mitra and Ashok Veeraraghavan. Light field de-
noising, light field superresolution and stereo camera based
refocussing using a gmm light field patch prior. In IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 22–28. IEEE, 2012. 1

[28] Yu Mo, Yingqian Wang, Chao Xiao, Jungang Yang, and Wei
An. Dense dual-attention network for light field image super-
resolution. IEEE Transactions on Circuits and Systems for
Video Technology, 32(7):4431–4443, 2021. 2

6285



[29] Martin Rerabek and Touradj Ebrahimi. New light field image
dataset. In International Conference on Quality of Multime-
dia Experience (QoMEX), 2016. 1, 5, 6, 7, 8

[30] Vaibhav Vaish and Andrew Adams. The (new) stanford light
field archive. Computer Graphics Laboratory, Stanford Uni-
versity, 6(7), 2008. 5, 7, 8

[31] Vinh Van Duong, Thuc Nguyen Huu, Jonghoon Yim, and
Byeungwoo Jeon. Light field image super-resolution net-
work via joint spatial-angular and epipolar information.
IEEE Transactions on Computational Imaging, 9:350–366,
2023. 1, 6

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 4

[33] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi
Ying, Zaiping Lin, Wei An, and Yulan Guo. Exploring
sparsity in image super-resolution for efficient inference. In
CVPR, pages 4917–4926, 2021. 2

[34] Longguang Wang, Yulan Guo, Xiaoyu Dong, Yingqian
Wang, Xinyi Ying, Zaiping Lin, and Wei An. Exploring
fine-grained sparsity in convolutional neural networks for ef-
ficient inference. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4474–4493, 2022. 2, 8

[35] Shunzhou Wang, Tianfei Zhou, Yao Lu, and Huijun Di.
Detail-preserving transformer for light field image super-
resolution. In AAAI, pages 2522–2530, 2022. 2, 6

[36] Yunlong Wang, Fei Liu, Kunbo Zhang, Guangqi Hou,
Zhenan Sun, and Tieniu Tan. Lfnet: A novel bidirectional
recurrent convolutional neural network for light-field image
super-resolution. IEEE Transactions on Image Processing,
27(9):4274–4286, 2018. 2

[37] Yingqian Wang, Longguang Wang, Jungang Yang, Wei An,
Jingyi Yu, and Yulan Guo. Spatial-angular interaction for
light field image super-resolution. In ECCV, pages 290–308,
2020. 2, 6, 8

[38] Yingqian Wang, Jungang Yang, Longguang Wang, Xinyi
Ying, Tianhao Wu, Wei An, and Yulan Guo. Light field im-
age super-resolution using deformable convolution. IEEE
Transactions on Image Processing, 30:1057–1071, 2020. 2,
6, 8

[39] Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang
Yang, Wei An, and Yulan Guo. Occlusion-aware cost con-
structor for light field depth estimation. In CVPR, pages
19809–19818, 2022. 1

[40] Yingqian Wang, Longguang Wang, Gaochang Wu, Jungang
Yang, Wei An, Jingyi Yu, and Yulan Guo. Disentangling
light fields for super-resolution and disparity estimation.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 45(1):425–443, 2022. 1, 2, 4, 5, 6, 8

[41] Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang
Yang, Radu Timofte, et al. NTIRE 2023 challenge on light
field image super-resolution: Dataset, methods and results.
In CVPRW, 2023. 1, 5, 6, 8

[42] Yingqian Wang, Zhengyu Liang, Qianyu Chen, Longguang
Wang, Jungang Yang, Radu Timofte, Yulan Guo, et al.
NTIRE 2024 challenge on light field image super-resolution:
Methods and results. In CVPRW, 2024. 8

[43] Yingqian Wang, Zhengyu Liang, Longguang Wang, Jungang
Yang, Wei An, and Yulan Guo. Real-world light field image
super-resolution via degradation modulation. IEEE Transac-
tions on Neural Networks and Learning Systems, 2024. 2,
4

[44] Sven Wanner and Bastian Goldluecke. Variational light field
analysis for disparity estimation and super-resolution. IEEE
transactions on pattern analysis and machine intelligence,
36(3):606–619, 2013. 1

[45] Sven Wanner, Stephan Meister, and Bastian Goldluecke.
Datasets and benchmarks for densely sampled 4d light fields.
In VMV, pages 225–226, 2013. 5, 8

[46] Zeyu Xiao, Ruisheng Gao, Yutong Liu, Yueyi Zhang,
and Zhiwei Xiong. Toward real-world light field super-
resolution. In CVPRW, pages 3407–3417, 2023. 2

[47] Henry Wing Fung Yeung, Junhui Hou, Xiaoming Chen, Jie
Chen, Zhibo Chen, and Yuk Ying Chung. Light field spatial
super-resolution using deep efficient spatial-angular separa-
ble convolution. IEEE Transactions on Image Processing,
28(5):2319–2330, 2018. 1, 2, 6

[48] Youngjin Yoon, Hae-Gon Jeon, Donggeun Yoo, Joon-Young
Lee, and In So Kweon. Learning a deep convolutional
network for light-field image super-resolution. In ICCVW,
pages 24–32, 2015. 2

[49] Shuo Zhang, Hao Sheng, Chao Li, Jun Zhang, and Zhang
Xiong. Robust depth estimation for light field via spinning
parallelogram operator. Computer Vision and Image Under-
standing, 145:148–159, 2016. 8

[50] Shuo Zhang, Youfang Lin, and Hao Sheng. Residual net-
works for light field image super-resolution. In CVPR, pages
11046–11055, 2019. 1, 2, 6

[51] Shuo Zhang, Song Chang, and Youfang Lin. End-to-end
light field spatial super-resolution network using multiple
epipolar geometry. IEEE Transactions on Image Processing,
30:5956–5968, 2021. 2, 6

[52] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In ECCV, pages 286–
301, 2018. 6

[53] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
CVPR, pages 9308–9316, 2019. 2

6286


	. Introduction
	. Related Works
	. Efficient Image SR
	. LF Image SR

	. Method
	. Preliminary
	. Network Architecture
	Initial Feature Extraction
	Spatial-Angular Correlation Learning
	Reconstruction


	. Experiments
	. Implementation Details
	. Ablation Investigation
	. Comparisons with State-of-the-art Methods
	. NTIRE 2024 LF Image SR Challenge

	. Conclusion and Future Work

