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Abstract

This paper reviews the NTIRE 2024 low light image en-
hancement challenge, highlighting the proposed solutions
and results. The aim of this challenge is to discover an
effective network design or solution capable of generating
brighter, clearer, and visually appealing results when deal-
ing with a variety of conditions, including ultra-high resolu-
tion (4K and beyond), non-uniform illumination, backlight-
ing, extreme darkness, and night scenes. A notable total of
428 participants registered for the challenge, with 22 teams
ultimately making valid submissions. This paper meticu-
lously evaluates the state-of-the-art advancements in en-
hancing low-light images, reflecting the significant progress
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Zhu and R. Timofte were the challenge organizers, while the other authors
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and creativity in this field.

1. Introduction
Low light Image enhancement (LLIE), a pivotal yet chal-

lenging task in computer vision, aims to improve visibility

and contrast across a broad spectrum of low-light scenar-

ios, including uneven illumination, extreme darkness, back-

lighting, and night. Additionally, LLIE strives to correct im-

perfections like noise, artifacts, and color distortion. These

challenges, arising in darkness or through illumination en-

hancement, affect both human visual perception and down-

stream tasks like object detection and scene segmentation.

As deep learning technology improves by leaps and

bounds, remarkable advances in LLIE are impressive. How-

ever, current cutting-edge methods [8, 34, 39, 47, 55, 72, 78]

not only struggle to adapt to complex and variable low-light

conditions but also face major challenges when being de-

ployed on consumer-grade devices such as smartphones and

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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cameras. This is primarily constrained by the limitations of

current datasets [7, 71] that suffer from limited scene di-

versity (notably insufficient night scenes), low resolution,

and overly simplistic lighting conditions. Additionally, the

high complexity of models [8, 38, 39, 69, 74] hampers their

ability to handle ultra-high resolution images that are com-

monly captured by smartphones.

To address the aforementioned challenges, we launched

the inaugural Low Light Enhancement Challenge at the

2024 New Trends in Image Restoration and Enhancement

(NTIRE 2024) workshop. The objective of this challenge

is to foster innovative thinking and discover solutions that

significantly improve image quality under various low-light

conditions. To this end, we have built an LLIE dataset

that features a wide range of scenes, encompassing vari-

ous low-light conditions. These images include indoor and

outdoor locations under both daylight and nighttime condi-

tions, with the challenge focusing on enhancing image qual-

ity across these diverse settings.

In conclusion, this challenge aims to set a new bench-

mark for LLIE while highlighting specific challenges and

research questions in this domain. We hope that it will

inspire the research community to explore these press-

ing issues and identify emerging trends. Moreover, this

challenge is one of the NTIRE 2024 Workshop associ-

ated challenges on: dense and non-homogeneous dehaz-

ing [1], night photography rendering [4], blind compressed

image enhancement [73], shadow removal [67], efficient

super resolution [64], image super resolution (×4) [20],

light field image super-resolution [70], stereo image super-

resolution [68], HR depth from images of specular and

transparent surfaces [77], bracketing image restoration and

enhancement [81], portrait quality assessment [17], qual-

ity assessment for AI-generated content [48], restore any

image model (RAIM) in the wild [45], RAW image super-

resolution [24], short-form UGC video quality assess-

ment [44], low light enhancement [49], and RAW burst

alignment and ISP challenge.

2. NTIRE 2024 Low Light Enhancement Chal-
lenge

The objectives of this challenge are threefold: (1) to ad-

vance research in the field of low light enhancement, (2) to

facilitate systematic comparisons among different method-

ologies, and (3) to provide a forum for both academic and

industrial stakeholders to interact, deliberate, and poten-

tially forge partnerships. This section delves into the de-

tailed aspects of the challenge.

2.1. Dataset

Although some low light datasets, such as LOL [71] and

MIT-Adobe FiveK [7], have been widely applied in the

field, they exhibit limitations previously mentioned, includ-

ing limited resolution, monotonous scene content, and uni-

form illumination levels. These factors often restrict the

generalization capabilities of cutting-edge models [8, 39,

47, 55, 72, 78], posing significant challenges in adapting to

diverse low-light conditions, especially when implemented

on consumer-grade devices like smartphones and cameras.

To address these issues, this challenge introduces a rich ar-

ray of contest scenarios, covering a variety of lighting con-

ditions such as dim environments, extreme darkness, non-

uniform illumination, backlighting, and night scenes, appli-

cable to both indoor and outdoor settings during day and

night, with image resolutions up to 4K and beyond. Specif-

ically, the dataset includes 230 training scenes, along with

35 validation and 35 testing scenes. The ground truth (GT)

images for both validation and testing were kept concealed

from the participants throughout the challenge. Further de-

tails about the dataset will be provided in subsequent works.

2.2. Tracks and Competition

Ranking statistic. In this challenge, we primarily use peak

signal-to-noise ratio (PSNR), structural similarity (SSIM),

and Learned Perceptual Image Patch Similarity (LPIPS)

[80] as the criteria for comparing models submitted by par-

ticipants. Given that LPIPS is a learned perceptual evalua-

tion metric and our competition focuses mainly on quantita-

tive assessments, We use LPIPS as a supplementary evalu-

ation tool when the quantitative evaluations of two methods

are indistinguishable. As listed in Tab. 1, “Final Rank” rep-

resents a composite metric, calculated through a weighted

sum of PSNR (60%) and SSIM (40%). This way offers a

comprehensive evaluation of the effectiveness of each solu-

tion in enhancing low-light conditions.

Challenge phases. (1) Development and validation phase:

Participants were granted access to 230 training image pairs

and 35 validation inputs from our constructed dataset. It is

noteworthy that the GT images for the validation set were

hidden from the participants. Participants had the oppor-

tunity to submit their enhanced results to the evaluation

server, which calculated the PSNR and SSIM for the en-

hanced images generated by their models and provided im-

mediate feedback. (2) Testing phase: Participants gained

access to 35 testing low light images from the built dataset,

with the ground-truth images remaining undisclosed. Sub-

missions of their enhanced outputs were made to the Co-

dalab evaluation server, accompanied by an email to the or-

ganizers containing the code and a factsheet. The organizers

subsequently verified and executed the provided code to de-

rive the final results, which were shared with participants

upon the conclusion of the challenge.
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Table 1. Evaluation and Rankings in the NTIRE 2024 Low Light Enhancement Challenge. This table presents a comprehensive compar-

ison of participant solutions across multiple metrics: PSNR, SSIM, and LPIPS. “Rank PSNR” and “Rank SSIM” indicate the respective

standings of participants based on their performance in PSNR and SSIM metrics on the challenge’s test dataset. “Final Rank” represents a

composite metric, derived from a weighted sum of PSNR (60%) and SSIM (40%), which provides an overall assessment of each solution’s

effectiveness in low light enhancement.

Team PSNR SSIM LPIPS Rank PSNR Rank SSIM Final Rank

SYSU-FVL-T2 25.52 0.8637 0.1221 1 1 1

Retinexformer [8] 25.30 0.8525 0.1424 2 4 2

DH-AISP 24.97 0.8528 0.1235 3 3 3

NWPU-DiffLight 24.78 0.8556 0.1673 6 2 4

GiantPandaCV 24.83 0.8474 0.1353 5 7 5

LVGroup HFUT 24.88 0.8395 0.1371 4 10 6

Try1try8 24.49 0.8483 0.1359 8 6 7

Pixel warrior 24.74 0.8416 0.1514 7 9 8

HuiT 24.13 0.8484 0.1436 10 5 9

X-LIME 24.28 0.8446 0.1298 9 8 10

Image Lab 23.63 0.8235 0.1673 11 12 11

dgzzqteam 23.28 0.8385 0.1406 12 11 12

Cidaut AI (InstructIR [23]) 23.07 0.8075 0.1559 13 16 13

OptDev 22.93 0.8097 0.1592 14 15 14

ataza 22.51 0.8161 0.1404 18 13 15

KLETech-CEVI LowlightHypnotise 22.85 0.7828 0.1823 15 18 16

221B 22.04 0.8141 0.1084 19 14 17

KLETech-CEVI Dark Knights 22.76 0.7843 0.1806 17 17 18

BFU-LL 22.78 0.7792 0.1826 16 19 19

SVNIT NTNU 20.32 0.7718 0.3089 20 20 20

yanhailong 20.07 0.6881 0.3133 21 22 21

Mishka 18.19 0.7161 0.2712 22 21 22

3. Challenge Results and Discussion

The results of the low light enhancement challenge are de-

tailed in Tab. 1, which evaluates and ranks the performances

of 22 teams. Notably, one team, AiRiA Vision, voluntar-

ily withdrew from the ranking due to issues related to their

model design. The evaluation leverages two key perfor-

mance metrics: PSNR and SSIM. The metrics are calcu-

lated based on a test set comprising 35 inputs from the built

dataset, thereby ensuring the challenge’s integrity and miti-

gating the risk of overfitting to the validation set.

The top-ranked teams in the challenge boast higher

PSNR and SSIM values, signifying superior performance,

while the lower-ranked teams exhibit lower values, in-

dicative of suboptimal performance. Notably, two teams

achieved a PSNR of over 25 dB, meeting our prior expec-

tations for this metric. For more detailed information on

the low-light enhancement methods employed, please refer

to Sec. 4, which discusses the specific solutions provided by

each team.

Due to the ultra-high resolution (4K and beyond) of

the input images, many teams opted for multi-scale strate-

gies to implement enhancement. While they has indeed

reduced computational consumption to some extent, cur-

rently, almost all models are unable to perform inference

on a plain GPU, e.g. , one with 12G memory. For the

next competition, we will consider including NIQE [59]

along with metrics measuring model efficiency, such as in-

ference time, model parameter count, computational com-

plexity (FLOPs), and memory consumption. This will pro-

mote the application of ultra-high-resolution low light en-

hancement on smartphones.

4. Challenge Methods and Teams
4.1. SYSU-FVL-T2

F Fr Fout F Fr Fout

i-th encoder level

Next level

i-th decoder level

Next level

Low Light Image
Ilow

Encoder Decoder

Skip Connection

Restored Hierarchical Images
 

I1
I2

I3

Zoom in Zoom in

SAM Dilated Residual 
Dense Block

Bilinear-Up 
Layer

Convolutional 
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Pixelshuffle 
Downsample

Pixelshuffle 
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Figure 1. The backbone network employed in our method. (Re-

produced from ESDNet [75])

Description: As shown in Fig. 1, ESDNet-L [75] is em-

ployed as the backbone in our proposed method for low-

light image enhancement. The backbone mainly consists

of an encoder-decoder network in three feature scales with

skip-connections. Different scales of features are gener-

ated by adopting the bilinear interpolation. In each scale,

the Semantic-Aligned Scale-Aware Modules (SAM) are
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stacked to enhance the ability of the model to address scale

variations. SAM incorporates a pyramid context extraction

module and a cross-scale dynamic fusion module to selec-

tively fuse multi-scale features.

Furthermore, for network training, the loss function

Ltotal is set for outputs in three scales Î1, Î2, Î3:

Ltotal =
3∑

i=1

LC

(
Ii, Îi

)
+ λ · LP

(
Ii, Îi

)
, (1)

where λ is set as 0.04, Ii stands for ground truth image,

Îi stands for enhanced image, LC stands for Charbonnier

loss [42], and LP stands for perceptual loss using pretrained

VGG19 model [66].

Implementation: The proposed method is based on Python

3.8 and the experiment is conducted on one NVIDIA RTX

A6000 GPU (49G). Inspired by MIRNet-v2 [79], we adopt

a progressive training strategy. The model is trained for

150000 iterations from scratch and optimized by Adam

[41]. During the training process, at the first stage, the

batch size is set to 8, and we randomly crop square image

patches of size 720 for training. Subsequently, after 46000,

32000, 24000, 18000, and 18000 iterations, the batch size

decreases to 4, 4, 2, 2, and 1, respectively. The lengths of

the square image patches are set to 1024, 1024, 1280, 1280,

and 1600 for the respective stages. The learning rate is set

as 2 × 10−4 initially and is scheduled by cyclic cosine an-

nealing [52]. During the testing phase, the whole low-light

image is fed into the network, and the enhanced image is

obtained directly. The batchsize in testing is set as 1.

4.2. Retinexformer

The proposed code, pre-trained models, results, and train-

ing logs are all publicly available at https://github.
com/caiyuanhao1998/Retinexformer.

Description: The team directly adopt their ICCV 2023

work Retinexformer [8] to participate this challenge. Fig. 2

illustrates the overall architecture of their method. As

shown in Fig. 2 (a), Retinexformer is based on their for-

mulated One-stage Retinex-based Framework (ORF). Their

Retinexformer takes a low-light image I ∈ R
H×W×3

as input and reconstruct its enhanced counterpart Ien ∈
R

H×W×3. The original Retinex model assumes that the

low-light image I is corruption-free and can be decomposed

into a reflectance image R ∈ R
H×W×3 and an illumination

map L ∈ R
H×W as:

I = R� L, (2)

where � denotes the element-wise multiplication. How-

ever, this corruption-free assumption is consistent with the

real under-exposed scenes, where corruptions are inevitably

introduced by the high-ISO and long-exposure imaging set-

tings, as well as the light-up process. To model the corrup-

tions, they introduce perturbation terms for R and L and

reformulate Eq. (2) as:

I = (R+ R̂)� (L+ L̂)

= R� L+R� L̂+ R̂� (L+ L̂).
(3)

R̂ ∈ R
H×W×3 and L̂ ∈ R

H×W are the perturbations. To

light up I, they multiply two sides of Eq. (3) by a light-up

map L̄ such that L̄� L = 1 as:

I� L̄ = R+R� (L̂� L̄) + (R̂� (L+ L̂))� L̄, (4)

They then simplify Eq. (4) as

Ilu = I� L̄ = R+C, (5)

where Ilu ∈ R
H×W×3 denotes the lit-up image and C ∈

R
H×W×3 indicates the overall corruption term. Subse-

quently, they formulate their ORF as:

(Ilu,Flu) = E(I,Lp), Ien = R(Ilu,Flu), (6)

where E denotes the illumination estimator and R repre-

sents the corruption restorer. E takes I and its illumina-

tion prior map Lp ∈ R
H×W as inputs. Lp = meanc(I)

where meanc calculates the average pixel values across

channels. E outputs the lit-up image Ilu and light-up fea-

ture Flu ∈ R
H×W×C . Then Ilu and Flu are fed into R

to restore the corruptions and produce the enhanced image

Ien ∈ R
H×W×3.

Illumination Estimator. The architecture of E is shown

in Fig. 2 (a) (i). E firstly uses a conv1×1 (convolution with

kernel size = 1) to fuse the concatenation of I and Lp. The

well-exposed regions can provide semantic contextual in-

formation for under-exposed regions. Thus, a depth-wise

separable conv9×9 is adopted to model the interactions of

regions with different lighting conditions to generate the

light-up feature Flu. Then E uses a conv1×1 to aggregate

Flu to produce the light-up map L̄ ∈ R
H×W×3, which is

used to light up I in Eq. (4).

Illumination-Guided Transformer. As illustrated in Fig. 2

(a) (ii), IGT adopts a three-scale U-shaped architecture [10,

13–16]. The input of IGT is the lit-up image Ilu. In the

downsampling branch, Ilu undergoes a conv3×3, an IGAB,

a strided conv4×4, two IGABs, and a strided conv4×4 to

generate hierarchical features Fi ∈ R
H

2i
×W

2i
×2iC where i

= 0, 1, 2. Then F2 passes through two IGABs. Sub-

sequently, a symmetrical structure is designed as the up-

sampling branch. Skip connections are used to alleviate

the information loss caused by the downsampling branch.

The upsampling branch outputs a residual image Ire ∈
R

H×W×3. Then the enhanced image Ien is derived by the

sum of Ilu and Ire, i.e., Ien = Ilu + Ire.
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Figure 2. The overview of Retinexformer [8]. (a) Retinexformer adopts the proposed ORF that consists of an illumination estimator (i) and

a corruption restorer (ii) IGT. (b) The basic unit of IGT is IGAB, which is composed of two layer normalization (LN), an IG-MSA and a

feed-forward network (FFN). (c) IG-MSA uses the illumination representations captured by ORF to direct the computation of self-attention.

IG-MSA. As illustrated in Fig. 2 (c), the light-up feature

Flu ∈ R
H×W×C estimated by E is fed into each IG-MSA

of IGT. Firstly, the input feature is reshaped into tokens X ∈
R

HW×C and split into k heads:

X = [X1, X2, · · · , Xk], (7)

where Xi ∈ R
HW×dk , dk = C

k , and i = 1, 2, · · · , k. Then

Xi is linearly projected into query Qi, key Ki, and value
Vi ∈ R

HW×dk as:

Qi = XiW
T
Qi

, Ki = XiW
T
Ki

, Vi = XiW
T
Vi

, (8)

where WQi
, WKi

, and WVi
∈ R

dk×dk are learnable pa-

rameters and T denotes the matrix transpose. Subsequently,

they use the light-up feature Flu encoding illumination in-

formation and interactions of regions with different lighting

conditions to direct the computation of self-attention. They

reshape Flu into Y ∈ R
HW×C and split it into k heads:

Y = [Y1, Y2, · · · , Yk], (9)

where Yi ∈ R
HW×dk , i = 1, 2, · · · , k. Then self-attention

is formulated as:

Attention(Qi,Ki,Vi,Yi) = (Yi �Vi)softmax(
KT

iQi

αi
),

(10)

where αi ∈ R
1 is learnable parameter. Subsequently, k

heads are concatenated to pass through an fc layer and plus

a learnable positional encoding P ∈ R
HW×C to produce

the output tokens Xout ∈ R
HW×C . Finally, they reshape

Xout to derive output feature Fout ∈ R
H×W×C .

Besides Retinexformer [8], the team also adopt their

winning solution MST [11, 12] of NTIRE 2022 Spectral

Recovery Challenge [2] as an auxiliary method for ensem-

ble. The code is released at https://github.com/
caiyuanhao1998/MST and https://github.
com/caiyuanhao1998/MST-plus-plus.

Implementation: Retinexformer is implemented by Py-

Torch. The model is trained with the Adam [41] opti-

mizer (β1 = 0.9 and β2 = 0.999) for 2.5 × 105 itera-

tions. The learning rate is initially set to 2×10−4 and

then steadily decreased to 1×10−6 by the cosine anneal-

ing scheme [52] during the training process. Patches at the

size of 2000×2000 are randomly cropped from the low-

/normal-light image pairs as training samples. The batch

size is 8. The training data is augmented with random rota-

tion and flipping. The training objective is to minimize the

mean absolute error (MAE) between the enhanced image

and ground-truth image. The team use the mixed-precision

training strategy (also the amp in Pytorch).

In the testing phase, images with the size of 2000×3000

are directly fed into the network. Images with the size of

4000×6000 are firstly split into two 4000×3000 images to

undergo the model and then merged to obtain the enhanced

images. Self-ensemble and multi-model ensemble strate-
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gies are used for final testing.

4.3. DH-AISP

Description: DWT-FFC [83] is employed as the backbone

in our proposed method for low-light image enhancement.

Dark light usually results in degraded image quality, low

contrast, color shift, and structural distortion. We have ob-

served that many deep learning-based models show superior

performance in dark light enhancement, but they are gener-

ally not up to the challenge of lower light. There are two

main factors contributing to this. First, due to the uneven

distribution of image brightness, it is very challenging to

recover structure and chromaticity features with highfdelity,

especially in areas of extremely low brightness. Secondly,

the existing small-scale data sets for dark light enhancement

are not sufcient to support reliable learning of feature map-

ping based on convolutional neural network (CNN) models.

To address these two challenges, we employ a novel two-

branch network utilizing two-dimensional discrete Walsh

transform (DWT), fast Fourier Convolution (FFC) residual

blocks, and a pre-trained ConvNeXt model. Specifcally, in

the DWT-FFC frequency branch, our model utilizes DWT

to capture more high-frequency features. In addition, by

utilizing the large receptive feld provided by FFC residu-

als, our model is able to efciently explore global context in-

formation and generate images with better perceptual qual-

ity. In the prior knowledge branch, we use the pre-trained

ImageNet ConvNeXt instead of Res2Net. This allows our

model to learn more complementary information and gain

greater generalization ability. The feasibility and effective-

ness of the proposed method are proved by extensive exper-

iments.

Implementation: The training dataset is based solely on

data provided by the competition organizers. The training

images are generated by random clipping, and the training

GPU is RTX 4080. A training session takes about 48 hours

on a single GPU. The optimizer uses Adam. The initial

learning rate is 0.0001, halved every 500 epochs.Training

in python based on pytorch platform.

4.4. NWPU-DiffLight

Description: As shown in Fig. 3, we proposed a dual-

branch pipeline called DiffLight. Besides, we proposed a

method, Progressive Patch Fusion (PPF) for high-resolution

image restoration. Given a low-light image as input, it will

be fed into the two branches separately. In the DE branch

(Fig. 3 (a) ), the low-quality image is processed sequentially

by DiffIR [5] and LEDNet [65] to get the image enhanced

by DE branch, OutputDE :

OutputDE = LEDNet(DIffBackward(Input)), (11)

where DiffBackward(·) represents the the Backward Pro-

cess of DiffIR (which is for inference). The enhanced im-

age, OutputDE , has fairly low noise, minimal color devia-

tion, as well as highly-increased brightness, but there is an

excessive loss of details.

In the DP branch (Fig. 3 (b)), the newly proposed method

for high-resolution image restoration, PPF, is used. To

better recover the details from high-resolution images, the

image is divided into n small low-quality (LQ) overlap-

ping patches in the Segmentation process, the patch size is

adapted to the input size for training. Each patch is indi-

vidually processed through the Restormer to obtain n high-

quality (HQ) overlapping patches. To get OutputDP , the

image enhanced by DP-branch, PPF is applied on these en-

hanced patches:

OutputDP = PPF(Restormer(Segmentation(Input))).
(12)

The block artifacts produced by the traditional fusion

method is removed by PPF, providing good visual quality

and rich details. Finally, OutputDE and OutputDP are

multiplied by weights w1 and w2 respectively, and summed

to form the final output image after weighted averaging:

Output = w1OutputDE + w2OutputDP . (13)

Progressive Patch Fusion. For high-resolution images,

we utilize the Progressive Patch Fusion (PPF) method dur-

ing testing. This approach incorporates progressive weight

management at the to effectively mitigate edge and substan-

tially improve visual fidelity. PPF is performed by these

steps as follows:

1. Image Segmentation: The input image I is segmented

into patches of size p. These patches slide across the im-

age with a stride (s) of stride to determine their locations.

2. Model Inference: The model is used to sequentially infer

each patch, resulting in inferred patches.

3. Weight Calculation: Four weight tensors, weight1,2,3,4
are computed for blending overlapping regions. The

weights for overlapping regions linearly range from 1

to 0. weight1,2 are used for blending overlaps between

patches, while weight3,4 are used for merging overlaps

between rows.

4. Image Reconstruction: Initialize an empty restore image

and patchrow row image, which will be used to store

the reconstructed image and the current row being pro-

cessed.

5. Fusion Process:

• For each hi (row index) and wi (column index), extract

the corresponding patch from the patches tensor. If it

is the first patch of the row (wi equals 0), add it directly

to the patchrow.

• For subsequent patches, use weight1,2 to blend the

overlapping regions between the two patches.

• Add the processed patchrow to the restored image I ′.
• If it is not the first row (hi �= 0), blending between

rows using weight3,4 is required.

6576



DiffIR Backward Process LEDNet

…

Overlapping LLQ
Patches ൈ n

…

Overlapping HHQ
Patches ൈ n

Restormer PPF



Input

ሺaሻ Denoising Enhancement ሺDEሻ branch

ሺbሻ Detail Preservation ሺDPሻ branch

Outputୈ

Outputୈ

Output

*

*
𝑤ଵ

Trained Module * Scalar Multiplication Element-wise Addition

𝑤ଶ
Segmentation

Figure 3. DiffLight pipeline. DiffLight is composed of two branches: (a) Denoising Enhancement (DE) branch and (b) Detail Preservation

(DP) branch.

6. Output: the aforementioned steps, restore tensor con-

tains the the restored image I ′.

Implementation: For the Denoising Enhancement (DE)

branch, we train DiffIR [5] and LEDNet [65] separately. In

training the diffusion model, total timesteps T are set to 4,

and βt linearly increase from β1 = 0.9 to βT = 0.99 . We

train the two stage of DiffIR [5] only using L1 loss. We

train DiffIRS1 for 300K iterations with the initial learning

rate 2 × 10−4 gradually reduced with the cosine anneal-

ing. And For DiffIRS2, we train 300K iterations with initial

learning rate 2×10−4 and gamma 0.5 with the MultiStepLR

scheduler. For both training stage, we progressively in-

crease patch size and decrease batch size. Specifically, dur-

ing iterative training, the patch size and batch size pair are

set to respectively train for (92K), (80K), (38K), (90K)
iterations under the configurations of (192, 8), (256, 4),
(320, 2), (400, 1).

LEDNet [65] model is trained on the inference results on

Train set produced by DiffIR, and the Ground Truth remains

unchanged. We train LEDNet using Adam [41] optimizer

with β1 = 0.9, β2 = 0.99 for a total of 300k iterations.

The initial learning rate is set to 1× 10−4 and updated with

cosine annealing strategy [52]. Similar to DiffIR, we still

adopt a progressive training approach, the patch size and

batch size pair are set to train for (90K), (70K), (70K),
(70K) iterations respectively under the configurations of

(256, 8), (512, 4), (1024, 1), (1320, 1).

We implement our the Detail-Preservation (DP) branch

by PyTorch. The model is trained with the Adam [41] op-

timizer (β1 = 0.9 and β2 = 0.999) for at least 300 epochs

by using a single NIVIDA 3090 GPU. The learning rate

is initially set to 1 × 10−4 and then steadily decreased to

1 × 10−7 by the cosine annealing scheme [52] during the

training process. We randomly crop the image to 256 × 256

for patch size and set batch size to 8. When testing, we use

our proposed Progressive Patch Fusion (PPF) method that

addresses edge artifacts and yields favorable visual percep-

tual results with high resolution images.

4.5. GiantPandaCV

Description: Existing restoration backbones are usually

limited due to the inherent local reductive bias or quadratic

computational complexity in Ultra-High-Defnition (UHD)

image restoration tasks. Recently, Selective Structured

State Space Model, e.g. , Mamba [50], has shown great

potential for long-range dependencies modeling with linear

complexity. Therefore, we introduce the Selective Struc-

tured State Space Model [33] into the low light image en-

hancement task and propose an efficient model for UHD im-

ages, named UHDMamba. Specifically, our UHDMamba

uses the Residual State Space Block as the core component,

which employs convolution and channel attention to en-

hance the capabilities of the vanilla Mamba. To efficiently

infer UHD images, we used PixelUnshuffle to downsample

the UHD images and then input them into the network for

enhancement. Finally, we used PixelShuffle upsampling to

reconstruct the final image.

The main architecture of the UHDMamba is shown

in Fig. 4, which consists of three components: Shallow

feature extraction, Deep feature enhancement, and Upsam-

pling reconstruction. Given a low-quality (LQ) input im-

age ILQ ∈ RH×W×3, we first employ a 3 × 3 convolu-

tion layer from the shallow feature extraction to generate

the shallow feature Fs ∈ RH×W×C
S , where H and W rep-

resent the height and width of the input image, C is the

number of channels, and S is the downsample scale factor.

Subsequently, the shallow feature Fs undergoes downsam-

ple operation and the deep feature enhancement stage to ac-

quire the deep feature F l
d ∈ RH

S ×W
S ×SC at the l−th layer,

l ∈ 1, 2, ..., L. This stage is stacked by multiple Residual

State-Space Blocks (RSSBs). Finally, we use the element-

wise sum to obtain the input of the high-quality reconstruc-

tion stage FR = FL + Fs, which is used to Upsample re-

construct the high-quality (HQ) output image IHQ.
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Figure 4. An overview of our UHDMamba for UHD Low Light Enhancement.

Implementation: The proposed method conducts exper-

iments in PyTorch on two NVIDIA GeForce RTX 3090

GPUs. To optimize the network, the model employs the

Adam [41] optimizer with a learning rate 2 × 10−4. We

randomly crop the full-resolution image to a resolution of

512× 512 as the input and perform 200k iterations of train-

ing with a batch size of 4. To augment the training data,

random horizontal and vertical flips are applied to the input

images. The number of RSSB and feature channels is set to

8 and 48, respectively. DownSampler and UpSampler are

both composed of a sub-pixel convolutional layer.

In order to maximize the potential performance of our

model, the method adopts the Test Time Augmentation

strategy (TTA). During the test time, it used 90◦, 180◦, 270◦

rotation, horizontal flip, and vertical flip to generate six aug-

mented inputs {Iinputn,i = Ti(I
input
n )} from input left and

right images Iinputn . With those augmented input images

and the original input image, we generate corresponding

clear images {Ioutputn,1 , · · · , Ioutputn,6 } using the networks.

We then apply an inverse transform to those output im-

ages to get the original geometry Ĩoutputn,i = T−1
i (Ioutputn,i ).

Finally, we average the transformed outputs altogether to

make the TTA result as follows. Ioutputn = 1
6

∑6
i=1 Ĩ

output
n,i .

4.6. LVGroup HFUT

Description: Low light enhancement refers to a process or

set of techniques in computer vision aimed at improving

the visual quality of images by adjusting their lighting con-

ditions. This process can involve increasing the brightness

and contrast, correcting underexposed or overexposed ar-

eas, and enhancing details in shadows and highlights. The

goal is to produce images that more accurately reflect the

scene as perceived by the human eye, even under less-than-

ideal lighting conditions. However, complex models are

Figure 5. The network architecture of team LVGroup HFUT.

difficult to reason about on the GPU, limited by the larger

image resolution. Therefore, NAFNet [18] is chosed as

baseline and further lighten NAFNet based on it to get a

brand new structure. Specifically, the number of channels

is kept constant at the early stage of the encoding phase and

at the end of the decoding phase, while the up- and down-

sampling operations are performed, as shown in Fig. 5.

More specifically, the input image is initially subjected to

pixel alignment and convolution operations, during which

the number of channels is expanded from 3 to 8. Subse-

quently, the image passes through an encoder and a down-
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sampling module, resulting in an increase in channel count

to 288, while its dimensionality is reduced to one-thirty-

second of its original size. Following this, a decoder accom-

panied by an upsampling module is applied, which adjusts

the channel count to 18 and restores the dimensions to their

original size. The final output is then obtained through a

convolutional layer. During the training process, the model

is constrained using a combination of lpips loss, fft loss, and

L1 loss to optimize performance and ensure fidelity to the

input image.

Implementation: The proposed architecture is based on

PyTorch 2.2.1 and an NVIDIA 4090 with 24G memory.

2000 epochs are set for training with batch size 2, using

AdamW with β1 = 0.9 and β2 = 0.999 for optimization.

The initial learning rate was set to 0.001, and cosine anneal-

ing was used for learning rate adjustment. The randomly

crop the image to 768×768 is first performed and then hor-

izontal flip with probability 0.5 is performed for data aug-

ment. The input image is fed into the network, and it is con-

strained using three loss functions: lpips loss with weight

0.5, fft loss with weight 0.1, and L1 loss with weight 1.

The testing process begins by combining a total of

10 equally-spaced checkpoints obtained in training phase.

Specifically, the input image with original resolution se-

quentially passes through these 10 checkpoints, resulting in

10 outputs. Finally, the model ensemble strategy is applied

to process these 10 outputs, yielding the ultimate output.

Besides, since the test set contains images with too large

resolution (4000 × 6000), A100 (40G memory) is used for

inference to avoid the ‘cuda out of memory’ error.

4.7. Try1try8

Figure 6. The network architecture of team Try1try8.

Description: Due to the large resolution of the in-

ference images, the authors added a downsampling op-

eration to the RetinexFormer, renaming it to Retinex-

FormerD. The authors employed a RetinexFormerD model

architecture with varying training patch sizes, and cas-

caded it with a denoising model (HatD) and a fine-tuning

model(RetinexFormerDseg). Finally, the authors performed

a model ensemble of all the model results. The model is

shown in Fig. 6.

Implementation: path1: Initially, the authors applied

downsampling to the RetinexFormer to create Retinex-

FormerD (due to the large size of the inference images), fol-

lowed by the use of the HATD model (which incorporates

the HAT model with downsampling) to denoise the infer-

ence results of RetinexFormerD. Ultimately, RetinexForm-

erSeg (which integrates image segmentation results into the

model) was utilized to fine-tune the final results. path2: The

authors trained RetinexFormerD with various patch sizes

and stages, resulting in three Retinex-FormerD models:

RetinexFormerD ds2s1 with a patch size of 1024, Retinex-

FormerD ds2s2 with a patch size of 768, and Retinex-

FormerD ds2s4 with a patch size of 512. Finally, the au-

thors averaged the results obtained from path1 and path2.

The model is trained with Adam optimizer, 2e-4 as learning

rate, and on V100

4.8. Pixel warrior
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Figure 7. The network architecture of team Pixel warrior.

Description: The team proposes an efficient vision MLP-

based architecture for low-light enhancement (see Fig. 7).

Our MLP block contains dimension transformation opera-

tions (see Fig. 8). Specifically, we first normalize the input

features, and then perform multi-stage dimension transfor-

mations to rotate the spatial perspective of tensors across 3

dimensions of H , W and C. Here, the 3D feature map un-

dergoes recursive encoding from (C,H,W ) to (H,W,C)
and then to (W,C,H), enabling the capture of global spa-

tial information through multi-view dimensions. Finally,

we adjust the feature map to the original resolution, and

interact with the input features to activate useful features.

Implementation: We conduct network training on four

NVIDIA Tesla V100 GPUs with 32GB memory. In total,

we perform 500 epochs of training. During the training, we

adopt the Adam optimizer with a learning rate of 2× 10−4.

The patch size is set to be 2000× 2000 pixels and the batch

size is set to be 4. To augment the training data, we apply

random horizontal and vertical flips.

4.9. HuiT

Description: The team introduced LLformer [69] to ad-

dress this issue. As shown in Fig. 9, given a low-light

image, LLformer first extracts shallow features f0, which

are then fed into three sequential Transformer blocks to ex-

tract deep features. Specifically, the intermediate features
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Figure 8. The network architecture of the MLP block.

Figure 9. Illustration of the propsed LLformer.(Re-produced from

LLformer [69])

output from the Transformer blocks are denoted as f1, f2,

f3. These features are aggregated and transformed into en-

hanced image features f4 using the proposed cross-layer

attention fusion block. Subsequently, deep feature extrac-

tion is performed on f4 using four stages in the encoder.

Specifically, each stage includes Patch Merging and Axis-

Transformer blocks. Then, the low-resolution latent fea-

tures are gradually restored to a high-resolution representa-

tion using the decoder, which consists of three stages and

takes x3 as input. Each stage consists of Patch Expand-

ing and Axis-Transformer blocks. To reduce information

loss at the encoding end and achieve better feature restora-

tion at the decoding end, weighted skip connections with

1 × 1 convolutions are used for feature fusion in both the

encoding and decoding ends. Thirdly, after decoding, the

deep features f are sequentially processed through three

Axis-Transformer blocks and a cross-layer attention fusion

block to generate enhanced features for image reconstruc-

tion. Finally, the enhanced image is produced. The Axis-

Transformer block, as shown in Fig. 10, performs self-

attention mechanism along the height and width axes of the

features in the cross-channel dimension to capture non-local

self-similarity and long-range correlations with lower com-

putational complexity. The Cross-Attention Fusion block,

as shown in Fig. 11, learns attention weights between dif-

ferent layer features and adaptively fuses features with the

learned weights to improve feature representation.

Implementation: The code is implemented based on the

Pytorch framework, We trained the model in 300 epochs on

two NVIDIA 4090 GPU with batchsize of 24. The model

are optimized by the Adam with β1 = 0.9 and β2 = 0.999
with weight decay 1e-8 by default. The initial learning rate

was set to 2e-4, and true cosine annealing was chosen as the

learning scheme. The loss function is defined as:

£total = £pix + λ£ssim, (14)

where £pix represents the L1 Loss, and £ssim signifies the

Figure 10. Illustration of the proposed Axis-Transformer Block.

Figure 11. Illustration of the proposed Cross-Attention Fusion

Block.

SSIM Loss. The parameter λ denotes the loss weight used

to balance the influence between the two terms. In our ex-

periments λ is set to 1.0.

To save computational resources, high-definition images

need to be chunked, however, the size of the patches has a

great impact on the results. Experiments have shown that

the best results will be achieved by segmenting the origi-

nal image of size 2000× 2996 into multiple patches of size

500 × 748, and by segmenting the original image of size

4000 × 6000 into patches of size 800 × 1200. We ran-

domly cropped 128 × 128 smaller patches from the pro-

cessed images during the network training process. Follow-

ing the data augmentation techniques outlined in the LL-

Former [69] methodology, we applied random horizontal

and vertical flips to these patches.

4.10. X-LIME

Description: Our method consists of two modules, which

are the curve estimation network for lightness adaption

and the denoising network for denoising. Specifically, we

adopt Zero-DCE [34] as a lightness adaption network and
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NAFNet [19] as a denoising network. For better light-

ness adaption performance, we adjust the relevant loss func-

tion. Specifically, we add MSELoss to the original Zero-

DCE [35] loss and train for 10 epochs on the provided

dataset. In the training phase, we use Zero-DCE pre-trained

weights provided in the official Github repository and fine-

tune the provided dataset for the first stage. For the sec-

ond stage, we used NAFNet [19] pre-trained on the SIDD

dataset and fine-tuned the output of the lightness module. In

the testing phase, we first use the lightness adaption module

to adapt the lightness, thus increasing the contrast in the im-

age. Then we feed the output of the lightness module into

the denoising module to further mitigate the noise.

Implementation: Our proposed method is implemented in

Python with the help of the PyTorch framework. The mod-

els used in the two stages are optimized with Adam. In the

first stage, the learning rate is set to 1e-4 and in the sec-

ond stage, the learning rate is set to 5e-5, respectively. In

the first stage, we adapt the RTX4090 GPU while the A100

80G is used in the second stage. The convergence speed

of the first stage is rather fast, so we only train 10 epochs

on the training set with the full image as input, resulting

in a 30-minute training. For the second stage, we train the

NAFNet [19] with a progressively enlarged patch strategy.

The first 30000 iterations are trained with 512×512 patches,

then we enlarge the training patch to 1024×1024 for 25000

iterations. Finally, we use 1920 × 1920 patches for 10000

iterations. During testing, we use TLC [21] to further boost

the performance of our patch-based method. The base size

of TLC is set to (1920, 2980).

4.11. Image Lab

Figure 12. Architecture Diagram of ImageLab Team’s Demosaic-

ing Model

Description: We propose a novel image denoising and en-

hancement architecture, leveraging the power of Coordinate

Convolution (CoordConv) [46] layers and Self-Calibrated

Convolution with pixel attention (SCPA) blocks [61, 85], as

shown in Fig. 12. The architecture is designed to suppress

noise while effectively preserving important image details.

The input image is first passed through a CoordConv

layer to add channels containing hard-coded coordinates,

enriching the representation with spatial information. This

augmented representation is then downsampled and fed into

five consecutive SCPA layers with a Pixel Attention Block.

SCPA layers enhance the model’s capture of intricate spa-

tial patterns and features. The output from the SCPA lay-

ers is upsampled and added back to the input image. This

combined representation is passed through a Modified U-

Net architecture with Residual Dense Channel Attention

(RDCA) blocks [60]. The U-Net consists of three encoder

blocks and two decoder blocks. Each encoder block con-

tains two RDCA blocks followed by downsampling, while

each decoder block contains two RDCA blocks followed by

upsampling. This design facilitates the extraction and re-

finement of features at multiple scales. Simultaneously, the

input image is fed into a sophisticated denoising block [22]

to produce a three-channel denoised image. The denois-

ing block comprises four inverse convolutional layers fol-

lowed by an attention mechanism. This mechanism effec-

tively suppresses noise while preserving important image

details, enhancing the overall quality of the denoised image.

The outputs of the RDCA-UNet and the denoising block are

added to the input image, resulting in a final enhanced im-

age combining the denoising block’s denoised features with

the refined features from the RDCA-UNet.

Implementation: The proposed network was trained using

the NVIDIA Tesla P100 with 16GB RAM and the Tensor-

Flow Keras platform. 400x400x3 patches were randomly

extracted from the images. The training dataset consisted

of 4281 patches, and 755 patches were used for valida-

tion. Augmentation techniques were applied during train-

ing. The model was optimized using the Adam optimizer

with a learning rate schedule that decreased from 0.001 to

0.00001 over 250 epochs. The model comprises 0.437556

million parameters. The training objective included a com-

bination of L1, LSSIM , and LGrad loss, i.e. ,

L = 0.1 ∗ LSSIM + L1 + LGrad. (15)

4.12. dgzzqteam

Description: The author claimed that the solution is based

on the published OGF, while not providing the specific cita-

tion. The authors changed the loss function and fine-tuned

the model so that it could perform better in the competition.

Implementation: The authors implement the OGF by Py-

Torch. The model is trained with the Adam optimizers (β1

= 0.9 and β2 = 0.999) for 2.5 × 105 iterations. The learn-

ing rate is initially set to 2e-4 and then steadily decreased
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Figure 13. InstructIR [23] takes as input an image and a human-written instruction for how to improve that image. The multi-task model

performs text-guided low-light image enhancement.

to 1e-6 by the cosine annealing scheme during the training

process. Patches at the size of 128 × 128 are randomly

cropped from the low-/normallight image pairs as training

samples. The batch size is 8. The training objective is to

minimize the mean absolute error (MAE) between the lit-up

image and the enhanced image. The training and validation

sets are split in proportion to 209:21.

4.13. Cidaut AI

Description: We use InstructIR [23] for real-world low-

light enhancement. InstructIR [23] takes as input an image

and a human-written instruction for how to improve that im-

age. The neural model performs all-in-one image restora-

tion. InstructIR [23] achieves state-of-the-art results on sev-

eral restoration tasks including image denoising, deraining,

deblurring, dehazing, and (low-light) image enhancement.

The approach is illustrated in Fig. 13.

The model achieves 23.07 dB, 0.8075 SSIM and 0.156
LPIPS in the NTIRE 2024 Low-light Enhancement Chal-

lenge, representing a baseline solution for multi-task
restoration using text-guidance.

Implementation: The model can process full-resolution

images in a regular GPU without tiling strategies. We

fine-tune the model using the challenge dataset besides

LOL [71]. We use the instructions “correct the low illu-
mination in this image” for all the test images.

Efficient Baseline Methods: The team also studies efficient

methods that can process full-resolution images in real-

time at several FPS: RetinexNet [71], SCI [55] and Zero-

DCE [34]. All these methods can process 4000 × 6000 di-

rectly on regular GPUs such as Nvidia 3090Ti. However,

these methods did not improve over InstructIR [23].

Datasets: To enhance our results and generalize better, we

included other training datasets: LOL-v2 (real and syn-

thetic) and the MIT5K dataset. We also apply random crop,

flip and rotation augmentations.

Figure 14. Overall framework the Team OptDev’s DFormer

4.14. OptDev

Description: The authors developed a novel transformer-

based deep network DoubleFormer (DFormer) to learn low-

light to highlight mapping, as shown in Fig. 14. The ar-

chitecture comprises two separate encoder-decoder blocks

(EDB) and a multi-head correlation block (MHCB) to pro-

duce plausible images. The authors leverage illumination

mapping from the well-known Retinex theory to accelerate

our reconstruction performance. Also, the authors incor-

porated the state-of-the-art low-light enhancement method,

Retinexformer in the overall architecture’s first half. Re-

grettably, Retinexformer failed to generate plausible im-

ages in many tricky scenes while illustrating visible noise

and color desaturation in complex regions. To address this

limitation, the authors proposed to utilize an MHCB, fol-

lowed by another EDB in our architecture. We leverage the

correlated features with intermediate output in the second

EDB to perceive better denoising results. In addition to that,

the authors utilized a perceptual loss, including luminance-

chrominance guidance, to address the color inconsistency.

Implementation: The proposed solution is implemented

with the PyTorch framework. The networks were optimized

with a Adam optimizer, where the hyperparameters were

tuned as β1 = 0.9, β2 = 0.99, and learning rate = 5e-4. We

trained our model with non-overlapping image patches with

a constant batch size of 12, which takes around 36 hours to

complete. We conducted our experiments on an NVIDIA
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A6000 graphical processing unit (GPU) machine.

4.15. ataza

Description: Team ataza proposes a low parameter effi-

cient network, as shown in Fig. 15. Based on the ob-

servation that error in low light images mainly exist in

the low-frequency region they decompose the image into

high-frequency and low-frequency subbands using Discrete

Wavelet Transform (DWT) whose utility for image process-

ing has been well established [62]. Specifically, they choose

HAAR wavelet [56] due to it’s computational efficiency and

excellent ability to detect edges [58]. The model consists of

two branches one for high-frequency and the other for low-

frequency features. This approach allows the model to focus

on recovering low-frequency information while preserving

high-frequency information that otherwise would have been

lost in the deeper layers.

In the low-frequency branch, three Low-Frequency

Blocks (LF Blocks) handle and extract low-frequency fea-

tures. Subsequently, after each LF Block, a DWT block

re-divides the output, channeling the high-frequency fea-

tures to the high-frequency branch. Within the high-

frequency branch, the existing high-frequency features are

fused with those received via the DWT block from the

low-frequency branch, before undergoing processing by the

High-Frequency Block (HF Block). A total of four HF

Blocks are employed in this process. This approach enables

the model to preserve high-frequency features while con-

centrating on the recovery of low-frequency information.

Given that the low-frequency subbands of the image have

more errors, our approach involves making the LF Block

deeper and more complex compared to the HF Block.

The outputs of the three LF Blocks are concatenated,

while the outputs of the last three HF Blocks are also con-

catenated. Both sets of features are then fused and the

final image generated. The model is trained using two

loss functions: the L1 loss and a frequency-domain-based

loss LossFFT derived from Fast Fourier Transform (FFT).

LossFFT is defined by Eq. (16), and the overall loss is de-

termined by Eq. (17). Incorporating a frequency-based loss

enhances model stability since the network is extracting fea-

tures in the frequency domain, i.e. ,

LossFFT =
1

n

n∑
i=1

||FFT (Ig)| − |FFT (It)||, (16)

Loss = LossFFT + 20 ∗ LossL1
. (17)

This approach enables the solution to possess only

387,414 parameters while still achieving competitive per-

formance. It can process a 1024x1024 image in just 0.14s

and a 512x512 image in 0.04s. The rapid speed, coupled

with low complexity, renders it suitable for various real-

world applications where a balance of performance and

speed is crucial.

Implementation: The solution, developed in Python with

the PyTorch framework, was trained on an Intel i7-8700

CPU @ 3.20GHz, 16GB RAM, and NVIDIA GeForce RTX

3070 graphics card. Data provided by the competition was

exclusively used for training the model. The training dataset

comprised 230 pairs of images, each sized 2992x2000 pix-

els. Out of these, 220 images were allocated for training,

with the remaining 10 reserved for validation. To augment

the dataset, non-overlapping patches of size 256x256 pix-

els were extracted from each image and used to train the

model. Training lasted 70 epochs, employing the Cosine

Annealing strategy with a cycle length of 10 epochs and an

initial learning rate set at 0.0005. To train the model Adam

optimizer, in conjunction with PyTorch’s mixed precision

feature was used and batch size was set to 8.

4.16. KLETech-CEVI LowlightHypnotise

Description: The proposed MFNN framework includes

three main modules: the hierarchical spatio-contextual

(HSC) feature encoder, Global-Local Spatio-Contextual

(GLSC) block, and hierarchical spatio-contextual (HSC)

decoder, as shown in Fig. 16. Typically, low-light image en-

hancement networks employ feature scaling for varying the

sizes of the receptive fields. The varying receptive fields fa-

cilitate learning of local-to-global variances in the features.

With this motivation, we learn contextual information from

multi-scale features while preserving high resolution spatial

details. We achieve this via a hierarchical style encoder-

decoder network with residual blocks as the backbone for

learning. Given a input image x, the proposed multi-scale

hierarchical encoder extracts shallow features in three dis-

tinct scales and is given as:

Fsi = MEs(x), (18)

where Fsi are the shallow features extracted at the ith

scale from the sampled space of input image x and, MEs

represents the hierarchical encoder at scale s. To learn

the global-to-local representations from these shallow-level

features, we propose a Global-Local Spatio-Contextual

(GLSC) block, with residual blocks as the backbone. The

learnt deep features are represented as:

Dsi = GLSCsi(Fsi), (19)

where Dsi is the deep feature at the ith scale, Fsi are the

shallow features extracted at the ith scale and, GLSCsi rep-

resents residual blocks at respective scales. We decode the

deep features obtained at various scales, with the proposed

hierarchical decoder and is given by:

dsi = Mdsi(Dsi), (20)
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Figure 15. Overall framework our Team ataza’s Frequency Guided Network

Figure 16. Overview of the proposed Multi-scale Feature Fu-

sionNet (MFNN). The encoder extracts features in three distinct

scales, with information passed across hierarchies (green dashed

box). Fine-grained global-local spatial and contextual informa-

tion is learnt through the GLSC Block (orange dashed box). At

decoder, information exchange occurs in reverse hierarchies (blue

dashed box).

where dsi is the decoded feature at the ith scale, and Mdsi

represents the hierarchical decoder. The decoded features

and upscaled features at each scale are passed to the recon-

struction layers Mr to obtain the enhanced image ŷ. The up-

scaled features from each scale are stacked and represented

as:

P = ds1 + ds2 + ds3, (21)

where ds1, ds2, and ds3 are decoded features at three dis-

tinct scales, P represents the final set of features passed to

reconstruction layers to obtain the enhanced image ŷ:

ŷ = Mr(P ), (22)

where ŷ is the enhanced image obtained from reconstruction

layers Mr. We optimize the learning of MFNN with the

proposed LMFNN and is given as:

LMFNN = α ∗ L1 + β ∗ LV GG + γ ∗ LMSSSIM , (23)

where α, β, and γ are the weights. We experimentally set

the weights to α = 0.5, β = 0.7, and γ = 0.5. LMFNN is a

weighted combination of three distinct losses inspired from

[25–27, 36]. L1 loss to minimize error at pixel level, per-

ceptual loss [43] to efficiently restore contextual informa-

tion between the ground-truth image and the output image,

multiscale structural dissimilarity loss to restore structural

details. The aim here is to minimize the weighted combina-

tional loss LMFNN given as:

L(θ) =
1

N

N∑
i=1

‖ MFNN(xi − yi) ‖LMFNN
, (24)

where θ denotes the learnable parameters of the proposed

framework, N is the total number of training pairs, x and y
are the input and output image respectively, and MFNN(·)
is proposed framework for low-light image enhancement.

Implementation: We train the proposed MFNN using

Python (v3.8) coupled with PyTorch framework and con-

duct experiments on 2x NVIDIA RTX 3090 GPUs with

AMD Ryzen ThreadRipper 3960X CPU. We use 16 resid-

ual blocks split into three layers of the hierarchy, and gener-

ate 256 feature maps for each scale. We train the proposed

MFNN on dataset provided in the challenge along with LoL

Dataset [71] with patches of size 600*400. During train-

ing, we use Adam optimizer with β1 = 0.9, β2 = 0.999,

ε = 10e−8, and set the learning rate lr = 0.0002. We

train the proposed MFNN for 1000 epochs. We optimize

the learning with proposed LMFNN . During testing, we

use full resolution images (2992 × 2000), on single RTX

3090 GPU. Average testing time for single image on full

resolution is 0.53s on RTX 3090 GPU.

4.17. 221B

Figure 17. Overview of diffusion model training process with the

differentiable spatial entropy loss proposed by the team 221B.

The organizer wants to highlight that this method has ob-

tained the first place on the LPIPS ranking, with a score of

0.1084, outperforming the overall best-ranked work with a

score of 0.1221.

Description: Most existing diffusion-based works [37]

simply employ �1/�2 loss to train the noise prediction net-
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work in a deterministic way, which always produces smooth

intermediate noises (or states) in the reverse process. Al-

though the perceptual quality can be improved with longer

diffusion steps, it is reasonable to explore a perceptual-

based loss function facilitate the training process. In this

work, they propose to learn the network from a pure statis-

tic perspective, that is, directly learning distributions rather
than pixel-by-pixel distances. The core idea is the differ-

entiable spatial entropy that drived from the kernel density

estimation (KDE) and measures the spatial information of

an image. Formally, following [3, 63], the two-dimensional

KDE is defined as the probability of a specific intensity

value i and its neighborhood j as:

f̂h(i, j) =
2

Nh

∑
x∈X

1

2
I

{ |x− i|
h

< 1

}
· 1
2
I

{ |x̃− j|
h

< 1

}

=
2

Nh

∑
x∈X

K1(
x− i

h
) · K2(

x̃− j

h
),

(25)

where K1 and K2 are arbitrary kernel functions (they can

also be the same). To make use of the differentiable spa-

tial KDE in image generation, this work considers to in-

troduce the relative entropy (also called KL-divergence) to

measure the distribution distance between the predicted im-

age and ground truth. Let P and Q represent the ground

truth’s and prediction’s probability distributions computed

from Eq. (25), the spatial relative entropy is defined to be

Hs(P,Q) = DKL(P ||Q) = −
L∑

i=0

∑
j∈Ω

pi,j log
qi,j
pi,j

. (26)

Their diffusion model is built on the mean-reverting

SDE [53, 54]. By optimizing the entropy-based distribu-

tion distance between predictions and ground truth states,

their results have better visual qualities than that only using

�1/�2 loss. Fig. 17 illustrates the overview of the proposed

diffusion training process.

Implementation: This team use the provided low-light

dataset but further split 10 image pairs for validation. The

Refusion framework is used as the baseline and the team di-

rectly changed its loss funcion to the proposed differentiable

spatial entropy. In training, all images are cropped with

patch size 128 × 128, and the total training iteration is set

to 500,000 with a batch 16. Following Refusion [54], this

work use the AdamW [51] optimizer and the ‘CosineDe-

cay’ scheduler with an initial learning rate 0.0001. And the

diffusion steps are fixed to 100 in both training and testing.

4.18. KLETech-CEVI Dark Knights

Description: In accordance with the Retinex theory, there

exists a relationship between the observed low-light image,

denoted as y, and the desired clear image z, expressed as

Figure 18. Framework of Self-Calibrated Illumination Module

(Reproduced from [55]). We employ variant of this method for

enhancement of low-light images with custom loss function.

y = z ⊗ x, where x signifies the illumination component.

Typically, optimization efforts in low-light image enhance-

ment primarily focus on refining the illumination compo-

nent. To achieve enhanced output, one common approach

involves removing the estimated illumination in accordance

with the Retinex theory. Drawing inspiration from prior

works on illumination optimization, particularly those em-

ploying a stage-wise approach, we propose a progressive

perspective for modeling this task. Here, we introduce a

mapping Hθ parameterized by θ to learn the illumination

component, where each stage t (with t = 0, ..., T − 1) con-

sists of a basic unit represented as ut = Hθ(xt) and xt+1 =
xt + ut, with x0 = y. It’s worth noting that we adopt a

weight sharing mechanism across stages, utilizing the same

architecture H and weights θ for each stage. Specifically,

the parameterized operator Hθ effectively learns a simple

residual representation ut between the illumination and the

observed low-light image. This process is motivated by the

consensus that illumination and low-light observations ex-

hibit similarities or linear connections in most areas.

We establish a module to ensure the convergence of re-

sults from each stage to a consistent state. Given that the

input of each stage originates from the previous stage, and

the initial input of the first stage is predetermined as the

low-light observation, we propose to indirectly explore con-

vergence behavior by bridging the input of each stage (ex-

cluding the first) with the low-light observation. To achieve

this, we employ a self-calibrated module [55] denoted as

s, which is added to the low-light observation to represent

the disparity between the input of each stage and the initial

stage. Specifically, the self-calibrated module, represented

as s = Kθ(z), utilizes the parameterized operator Kθ with

learnable parameters θ to generate v = y + s, where vt
denotes the converted input for each stage (t ≥ 1). Con-

sequently, the conversion for the basic unit in the tth stage

(t ≥ 1) can be expressed as F (xt) → F (G(xt)). This

self-calibrated module effectively corrects the input of each

stage by integrating physical principles, thereby indirectly

influencing the output of each stage. In addition to this, we

employ NIQE (Natural Image Quality Evaluator) [59] as a

loss function. NIQE offers a valuable approach for improv-
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ing perceptual quality. By utilizing NIQE as a metric to

quantify the naturalness and perceptual fidelity of enhanced

images, the training process aims to minimize the NIQE

scores of the generated images. This strategy encourages

the model to produce output images that closely resemble

natural, high-quality images, enhancing their visual appeal

and usability. By optimizing for lower NIQE scores, the

model learns to prioritize perceptually pleasing enhance-

ments, ultimately leading to outputs that are not only vi-

sually appealing but also retain important natural character-

istics. Integrating NIQE as a loss function thus contributes

to the development of low-light image enhancement tech-

niques that align closely with human perception and prefer-

ences. NIQE as a loss function is given as:

LNIQE =
1

N

N∑
i=1

NIQE(F (G(xt,i))), (27)

where N is the number of samples, xt,i represents the input

to the t-th stage for the i-th sample, F (G(xt,i)) denotes the

output of the t-th stage for the i-th sample after applying

the self-calibrated module, and NIQE is the function that

calculates the NIQE score for an image. Minimizing this

loss function during training would encourage the model to

produce output images with lower NIQE scores, indicating

higher perceptual quality and naturalness. This would result

in output images that are closer in quality to natural, high-

quality images.

Implementation: We train the proposed method using

Python (v3.8) coupled with PyTorch framework and con-

duct experiments on 2x NVIDIA RTX 3090 GPUs with

AMD Ryzen ThreadRipper 3960X CPU. We use 16 resid-

ual blocks split into three layers of the hierarchy, and gener-

ate 256 feature maps for each scale. We train the proposed

method on dataset provided in the challenge along with LoL

Dataset [71] with images of size 2992*2000. During train-

ing, we use Adam optimizer with β1 = 0.9, β2 = 0.999,

ε = 10e−8, and set the learning rate lr = 0.0002. We train

the proposed method for 1000 epochs. During testing, we

use full resolution images (2992 * 2000), on single RTX

3090 GPU. Average testing time for single image on full

resolution is 0.53s on RTX 3090 GPU.

4.19. BFU-LL

Description: Diverging from the use of more complex,

Transformer-based models for image restoration [30, 32],

this team focuses on addressing low-light issues through the

application of diffusion methods. They introduce a novel

approach for enhancing low-light images proposed by [40],

as illustrated in Fig. 19. The method first converting these

images into the wavelet domain via 2D discrete wavelet

transformation (DWT), iterated multiple times. This pro-

cess yields an average coefficient and sets of high-frequency

Figure 19. The network architecture of team BFU-LL.

coefficients. By employing Haar wavelets [29], the method

divides the input into four sub-bands, effectively capturing

global information and sparse local details. This signifi-

cantly reduces spatial dimensions while preserving essen-

tial image information. The team’s wavelet-based diffusion

model utilizes a forward diffusion process during the train-

ing phase and a denoising process across both training and

inference phases. Moreover, they have developed a High-

Frequency Restoration Module (HFRM) for the reconstruc-

tion of high-frequency details. Utilizing the U-Net archi-

tecture as the noise estimator network and implementing a

fixed variance schedule, their method methodically trans-

forms the input into corrupted noise data, subsequently em-

ploying Gaussian denoising transitions to achieve a clear

and enhanced output.

Building on the methodologies described in previous

studies [28, 76], this team design and adopt a hybrid loss

function as follows:

Ltotal = Lsmooth + αLMS-SSIM + βLper, (28)

where α = 0.01, β = 0.01, and γ = 0.005 are the hyperpa-

rameters weighting each loss component.

Implementation: The implementation by this team is con-

ducted using PyTorch. The proposed network effectively

converges after undergoing training for 1×104 iterations on

a system equipped with four NVIDIA RTX 1080Ti GPUs.

For optimization, the Adam optimizer is employed. Consid-

ering the impact of the learning rate on experimental results

[31], the initial learning rate is set to 1× 10−4. This learn-

ing rate decays by a factor of 0.8 after every 5 × 103 itera-

tions. The team utilizes a batch size of 12 and a patch size

of 256 × 256. The scale K for the wavelet transformation

is set to 2.

4.20. SVNIT NTNU

Description: In order to design low light image enhance-

ment,we use multiple Retinex blocks and multiple chan-

nel attention in the proposed solution. The Fig. 20(a) de-
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(a) The block schematic of the proposed architecture for Low Light En-

hancement.

(b) The design of the ARblock used in the proposed model.

Figure 20. The architecture of the proposed model for Low Light

Enhancement.

picts the proposed architecture for Low Light enhancement.

The initial step involves feeding the low-light image into

a denoiser module tailored to address the noise typical of

low-exposure conditions. Subsequently, a shallow feature

extraction process, achieved through a single convolutional

operation, projects the denoised image into a feature space.

Following this, the image undergoes enhancement

through multi-branch Adaptive Retinex (AR) Blocks oper-

ating at various scales. These blocks simultaneously en-

hance both broad and fine details within the image.

The shallow features and the enhanced results are then

merged within a multiple channel attention module, which

effectively extracts global and local features and combines

them using a sigmoid function.

Lastly, the fused features are refined through another

convolutional layer, culminating in the production of a

clearer, brighter rendition of the original low-light im-

age. Despite the addition of the channel attention mod-

ule, which marginally increases parameter count, the over-

all network remains lightweight, owing to the efficiency

achieved through the AR Blocks and denoiser modules.

The network incorporates multiple Adaptive Retinex

Blocks (ARBlocks), which represent a novel extension of

the Single Scale Retinex method in feature space [9]. At

the core of each ARBlock lies an efficient illumination esti-

mation function known as the Adaptive Surround Function

(ASF) [82]. This function, akin to a general form of sur-

round functions, is implemented using convolutional lay-

ers. The ARBlock serves a dual purpose, facilitating both il-

lumination adjustment and reflectance enhancement within

the image. Fig. 20 illustrates the architecture of the AR-

Block, demonstrating its capability to enhance both low-

frequency and high-frequency components of the image, re-

Figure 21. General method flow chart.

spectively.

Implementation: The code is implemented using Pytorch

library. The proposed network is trained using weighted

combination of l1, SSIM loss, and charbornnier loss with

a learning rate of 1 × 10−4 which is decayed by 1 × 104

iterations and the same is optimized using Adam optimizer.

The model is trained up to 1 × 105 iterations with a batch

size of 4.

4.21. yanhailong

Description: We propose ZSRADNet: Zero-Shot Retinex

Joint Adaptive-Illumination and Denoising for Underex-

posed Image Enhancement, which mainly considers un-

derexposed images often suffer severe quality degradation.

Many scenes exhibit issues related to occlusion and shad-

ows, resulting in non-uniform illumination in the images.

Most methods for restoring underexposed images rely on

global enhancement, which can lead to excessive enhance-

ment in areas that were originally well-lit. Both supervised

and unsupervised learning approaches have limitations: ei-

ther poor generalization or susceptibility to unstable train-

ing. To address these challenges, the proposed a Zero-Shot

method that learns enhancement solely from test images. It

consists of two main components: The Decomposition Net-

work and The Denoising Network.

As shown in Fig. 21, inspired by [84], the Decomposi-

tion network employs a dual-branch structure to break down

the input image into three components: Illumination, Re-

flection, and Noise. Initially, the input image passes through

a simple four-layer CNN (Convolutional Neural Network)

combined with ReLU (Rectified Linear Unit) activation and

a Sigmoid function to obtain the illumination. Next, a de-

signed DenseBlock layer, combined with ReLU and Con-

volution, generates the reflection (using Sigmoid activa-

tion) and the noise (using Tanh activation). DenseBlock can

make better use of the feature information of the previous

layer and help to improve feature reusability.

To achieve Zero-Shot enhancement, the proposed com-

bines loss functions of Retinex reconstruction, Reflectance

6587



smoothness, and Illumination-guided noise estimation. By

iteratively minimizing this combined loss function, the pro-

posed effectively estimates the noise and restores the illu-

mination. Additionally, the proposed introduces an adaptive

gamma correction method that uses illumination as a mea-

sure of non-uniformly lit regions in the image. It bright-

ens underexposed areas while leaving well-lit regions un-

touched. Our loss function consists of three parts:

L = Lrecon + λref · Lref + λnoise · Lnoise, (29)

where Lrecon, Lref and Lnoise represent reconstruction

loss, reflectance smoothness loss, and Illumination-guided

noise loss respectively, and λref , λnoise represents corre-

sponding weight factors.

The Denoising network generates a pair of noise maps

[57] from a single noise image and utilizes these maps to

train a simple three-layer network (CNN combined with

SMU activation [6]). Specifically, the proposed begins by

applying a down-sampling operator to decompose the out-

put from the Decomposition network into a pair of down-

sampled images. One of these observations serves as the

input value, while the other acts as the target. The proposed

then employs regularization techniques during training to

achieve effective denoising.

As a method specific to a single input image, it does not

require any prior image samples or prior training models.

The final enhanced results have advantages in the brightness

and naturalness of non-uniform illumination images.

Implementation: The team uses Pytorch and the test device

is the A6000 GPU. The illumination branch of the Decom-

position network comprises a four-layer structure consisting

of 3 × 3 Convolution followed by ReLU activation func-

tions. On the other hand, the reflection and noise branches

utilize a four-layer architecture of 3 × 3 Convolution with

Denseblock, followed by ReLU activation functions, cul-

minating in an additional layer of 3 × 3 Convolution. The

network undergoes a total of 1000 iterations during training.

In the Denoising network, two layers of 3 × 3 Convolution

are employed, each followed by SMU activation, and ulti-

mately connected to a final layer of 3× 3 Convolution. The

training process utilizes Mean Squared Error (MSE) loss is

used for 2000 iterations. All the learning rates were 0.01;

the optimizer uses Adam; without training, the input of a

single image directly outputs the enhanced result.

4.22. Mishka

Description: As shown in Fig. 22, we employed the

Retinexformer [8] model, a one-stage Retinex-based trans-

former, specifically designed for low-light image enhance-

ment tasks. Our approach is distinguished by training the

Retinexformer model directly on the dataset provided by the

competition, demonstrating its adaptability and generaliza-

tion capability across different datasets. This direct training

Figure 22. Illustrative diagram showing the application of Retinex-

former for low-light enhancement.

method underscores the model’s effectiveness and flexibil-

ity for specific low-light conditions. Our method maintains

a moderate level of complexity throughout all stages, ensur-

ing efficiency and effectiveness from data preprocessing to

model training and final evaluation.

Implementation: Our training configuration details various

aspects of the model training process. We conducted a total

of 300,000 iterations without a warm-up phase, and gradi-

ent clipping was employed to prevent gradient explosion.

During training, we divided the 300,000 iterations into two

cycles:

• The first cycle involved a fixed learning rate of 3e-4 for

the initial 92,000 iterations.

• The second cycle applied a cosine annealing strategy, de-

creasing the learning rate from 3e-4 to 1e-6 over the sub-

sequent 208,000 iterations.

We also utilized mixed data augmentation techniques ,

and for the optimizer configuration, we chose the Adam op-

timizer with an initial learning rate of 2e-4 and betas set to

[0.9, 0.999]. Regarding the loss function, we employed the

L1 Loss, with a loss weight of 1 and reduction method set

to mean.
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