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Figure 1. Our results on the NTIRE 2024 Dense and NonHomogeneous Dehazing Challenge, achieving the best performance in terms of
PSNR, SSIM, and MOS. Ultimately, our solution was emerged as the champions of this challenge

Abstract

In recent years, the field of image dehazing has gar-
nered increasing attention. Many deep learning models
have demonstrated exceptional capabilities in removing ho-
mogeneous haze, yet they often perform suboptimally when
faced with the challenge of non-homogeneous dehazing.
One of the primary issues is that these models are trained
under conditions of homogeneous haze, which does not
align with the characteristics of real-world haze scenar-
ios. non-homogeneous haze typically leads to structural
distortion and color shifts in images. Another contribut-
ing factor is the limited scale of datasets available for
non-homogeneous dehazing, which hampers the training
of robust models.To address these challenges, we have de-
signed a Spatially-Adaptive Deformable Convolution Net-
works (SDCNet). The first branch of our model incorpo-

rates a high-level prior model that serves as an encoder for
extracting high-level features from the image. The second
branch is composed of a lightweight network specifically
tailored to extract low-level features from hazy images. Our
model fuses the information from both branches and com-
bines progressive training as well as dynamic data aug-
mentation strategies to obtain visually pleasing dehaze re-
sults. Extensive ablation studies have been conducted, sub-
stantiating the effectiveness and feasibility of our proposed
methodology. Furthermore, in the NTIRE 2024 Dense and
NonHomogeneous Dehazing Challenge, we achieved the
best performance in terms of PSNR, SSIM, and MOS.

1. Introduction
In recent years, deep learning has gained rapid de-

velopment and wide application [36][9][15][31][11][1].
In the current landscape of image dehazing research,
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nonhomogeneous dehazing has emerged as a prominently
investigated subtask. Traditional deep learning models
excel in removing nonhomogeneous haze, yet they often
exhibit suboptimal performance when confronted with
nonhomogeneous dehazing challenges. One of the pri-
mary issues lies in the fact that these models are trained
under conditions of homogeneous haze, which diverges
from real-world haze scenarios. Nonhomogeneous haze
typically induces structural distortion and color shifts in
images, which can degrade image quality and undermine
the judgments of intelligent systems such as tracking [24],
satellite remote sensing [20], and object detection [23].
This underscores the significance of image dehazing as
a crucial low-level visual task, prompting the develop-
ment of numerous approaches to tackle this challenge
[5, 7, 8, 10, 12–14, 22].
Among these methods, some are developed based on the
early proposed atmospheric scattering model (ASM) [18].
This model utilizes Eq.(1) to establish the relationship
between hazy images and their clear counterparts, where
I and J represent the hazy image and its clear coun-
terpart, respectively, and x indicates the pixel position.
A denotes the global atmosphere light, and t(x) is the
transmission map determined by the atmosphere scattering
parameter β and the scene depth d(x) as described in Eq.(2)

I(x) = J(x)t(x) + A(1− t(x)), (1)

t(x) = e−βd(x). (2)

Since the ASM model is based on the assumption of
haze homogenization, it is not intended for nonhomoge-
neous dehazing.Therefore,as regards the latter, mostly mod-
els are used to learn image-to-image mappings directly [1–
3]. However, such methodologies often necessitate exten-
sive data to facilitate CNNs in learning these mappings ef-
fectively. Given the scarcity of data, a vast number of two-
branch architectures have been proposed to introduce a pre-
trained prior [7, 14, 35].

Our model is based on a two-branch architecture, first for
transfer learning branch, we utilized the Flash InternImage
[28]. Upon comparison with notable classification networks
such as Convnext [17], Swin Transformer [16], VMamba
[15], and UniRepLKNet [6], we observed that Flash In-
ternImage, which incorporates Deformable Convolution v4
(DCNv4), demonstrates superior and more rapid long-range
modeling capabilities, along with adaptive spatial aggrega-
tion. This improved speed and efficiency substantially en-
hance the network’s dehazing capabilities.

Considering the high resolution (6000*4000) of the data
for this challenge, for fine-detail extraction branch, we use
a lightweight model, Spatially-Adaptive Feature Modula-
tion(SAFMN) [25]. This decision stemmed from a pro-
found understanding of SAFMN’s superiority in feature fu-

sion. By introducing selective attention mechanisms, dy-
namically fuses features from different levels and enhances
the model’s perception of crucial information.

Another challenge of this task is the scarcity of data sam-
ples, which often leads the model to encounter overfitting
issues, although the problem is somewhat mitigated by the
introduction of the two-branch architecture, it still restricts
the model performance from further improvement.We use
the method in [27] to introduce synthetic haze data , and
propose a dynamic data enhancement strategy to control the
ratio of synthetic data to real data. The above strategy ef-
fectively alleviates the dilemma of few training samples.

Compared to the traditional VGG perceptual loss, we in-
troduce EfficientVit-SAM [33] as a feature extractor to con-
struct a novel enhanced perceptual loss. This loss reduces
the output haze residue to a greater extent.

In summary, our contributions are outlined as follows:
1. We introduced Flash InternImage [28] and SAFMN

[25] into the two-branch architecture, achieving a favorable
balance between performance and efficiency.

2. We proposed a dynamic data augmentation strategy
to enhance model generalization and an enhanced percep-
tual loss to improve the visual quality of the output.

3. We presented extensive experimental results and
comprehensive ablation analyses to illustrate the superiority
of the dual-branch framework in addressing the challenges
posed by nonhomogeneous dehazing.

2. Related Works

2.1. Single Image Dehazing.

In the study of single-image dehazing, some classical
methods are primarily based on physical models of images
and statistical techniques. These methods typically model
the imaging process and features of hazy images, attempt-
ing to estimate the degree of haze and global illumination
conditions within the image. Subsequently, they perform
dehazing processing based on the estimated results. How-
ever, these methods often require significant prior knowl-
edge and handcrafted features, and they make strict assump-
tions about the input images, making them difficult to adapt
to different scenes and complex situations[1].

In the early stages of deep learning-based methods, ASM
was commonly employed. For instance, DehazeNet [5]was
devised, which employed a CNN model to estimate the
medium transmission map and then utilized it through ASM
to obtain the dehazed image. Subsequently, AOD-Net [10]
was introduced, which concurrently estimated atmospheric
light and transmission maps to generate the restored im-
age. These methods typically necessitated substantial prior
knowledge and manually designed features, and they im-
posed stringent assumptions on the input images, making
it challenging to adapt to various scenes and complex sce-
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Figure 2. An overview of our network. The model consists of two branches. The transfer learning branch is composed by Swin Transformer
based model. The data fitting branch consists of residual channel attention groups.

narios. Early networks often employed CNNs to estimate
parameters in the degradation model. Later on, in order
to minimize errors more effectively, researchers proposed
some end-to-end networks to directly map hazy images to
clean images [7, 35]. Many of the aforementioned meth-
ods performed quite well on synthesized ideal data, but ex-
hibited poor performance when confronted with real-world
non-homogeneous haze.

2.2. Transfer Learning.

Transfer learning aims to enhance the capabilities of a tar-
get model on a specific task by leveraging knowledge from
related but different tasks, thus reducing the reliance on
large volumes of data in the target domain [21, 38]. Some
existing methods utilize extensive prior knowledge acquired
through pre-trained models such as ImageNet, which is
employed to aid image restoration tasks. For instance, in
the latest two relevant competitions in NTIRE2023 [3], the
champions and runners-up respectively utilized the Swin
Transformer [14] and ConvNeXt [35] models as founda-
tional blocks for knowledge transfer, effectively mitigat-
ing overfitting issues. In contrast, the Flash-InternImage
[28] model we utilize is based on deformable convolu-
tions (DCNv4), enabling the model to possess the required
large receptive field while also allowing for adaptive spa-
tial aggregation based on input and task information. By
reducing the inductive bias of traditional CNNs, DCNv4
can learn more powerful and robust patterns from exten-
sive data.Meanwhile, to the best of our knowledge, there
remains considerable unexplored territory for DCNv4 in the
field of image reconstruction.

3. Proposed Method

In this section, we begin by outlining the architecture
of our proposed network, depicted in Fig. 2, which inte-
grates Fine-detail Extraction Branch, and Transfer Learning
branch.

3.1. Network Framework

Numerous techniques featuring dual branches have
demonstrated significant achievements in the NTIRE
2020,2021 and 2023 NonHomogeneous dehazing challenge
[1–3]. Inspired by these observations, we devised a neural
network with two branches, as illustrated in Fig. 2. We ob-
tain outputs at the original resolution separately from two
branches, and then feed them into a fusion module with a
simple design. This module consists solely of an 11×11
convolutional layer followed by a tanh activation function.
Transfer Learning branch. The purpose of this branch
is to leverage the pretrained network to provide more prior
information for the few-sample data. Firstly, we intro-
duce a transfer learning branch based on the Flash intern-
image base [28] backbone and utilize its pretrained weights
on ImageNet. This backbone integrates the Deformable
Convolution v4 (DCNv4) operator, resulting in significant
improvements in both speed and accuracy.

Drawing inspiration from the dual-branch design used
in previous dehazing competitions, we employ the Flash
intern-image to extract features from input images. Specifi-
cally, we utilize the outputs from its first four stages to form
a multi-scale encoder [7, 14].

In the decoder, we adopt the same design as [14]. Mul-
tiple upsampling layers are utilized, with each containing
a pixel-shuffle block and an attention module. The pixel-
shuffle blocks are introduced to reduce the computational
load and gradually restore the size of the feature maps to
the original resolution. Meanwhile, attention blocks enable
our model to discern dynamic hazy patterns.
Fine-detail Extraction Branch. For the low-level branch,
we aim to learn more bottom-level features of the image
through this branch. The structure of this branch is primar-
ily modified from [25], as illustrated in Fig. 3.

Compared to self-attention mechanisms or large-kernel
convolutions, SAFM serves as a lightweight alternative to
learn long-range dependencies from multi-scale feature rep-
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Figure 3. Network architecture of the SAFM module.

resentations, thereby better exploring more useful features
for HR image reconstruction.

SAFM applies a feature pyramid to generate spatially-
adaptive feature modulation attention maps. To reduce
model complexity and obtain a pyramid-style feature repre-
sentation, the normalized input features undergo a channel-
wise splitting operation, resulting in four components. A
3×3 depthwise convolution processes the first component,
while the remaining parts are fed into a multi-scale fea-
ture generation unit. Since SAFM aims to select discrim-
inative features when learning non-local interactions, adap-
tive Maxpooling is applied to the input features to gener-
ate multi-scale features. This procedure can be formulated
given the input feature X as:

[X0, X1, X2, X3] = Split(X),

X̂0 = DW−Conv3×3 (X0) ,

X̂i =↑p
(
DW−Conv3×3

(
↓ p

2i
(Xi)

))
, 1 ≤ i ≤ 3,

(3)
where,Split(·) denotes the channel split operation,
DW-Conv3×3(·) represents a 3 × 3 depth-wise convolution,
↑p (·) signifies upsampling features to the original resolu-
tion p via nearest interpolation for efficient implementation,
and ↓p/2i indicates pooling the input features to the size of
p/2i.

Subsequently, the short- or long-range features are com-
bined by concatenating them along the channel dimension
and being subjected to a 1 × 1 convolution. Following this,
normalization is applied using a GELU non-linearity to esti-
mate the attention map, which is utilized to adaptively mod-
ulate the input X through element-wise product.This proce-
dure can be formulated as:

X̂ = Conv1×1

(
Concat

([
X̂0, X̂1, X̂2, X̂3

]))
,

X̄ = ϕ(X̂)⊙X,
(4)

where Concat(·) represents the concatenation operation, and
Conv1×1(·) signifies the 1 × 1 convolution. ϕ() denotes the
GELU function, and ⊙ denotes the element-wise product.

To also incorporate local contextual information and
enable channel mixing, a compact convolutional channel
mixer (CCM) based on FMBConv [26] is introduced. The
CCM comprises a 3 × 3 convolution to encode local con-
texts and double the channels for mixing, followed by a 1

× 1 convolution to reduce channels back to the original di-
mension. A GELU function is applied for non-linear map-
ping.The SAFM and CCM can be formulated as:

Y = SAFM(LN(X)) +X,
Z = CCM(LN(Y )) + Y,

(5)

where LN(·) represents the LayerNorm layer, with X , Y ,
and Z denoting the intermediate features. The incorporation
of additional residual learning aims to stabilize the training
process and learn high-frequency details, thereby facilitat-
ing high-quality image reconstruction.More details can be
found in [25].

3.2. Dynamic Data Augmentation

Given the limited dataset in this challenge, ensuring that
the model learns robust generalization from few data sam-
ples is a worthwhile consideration. To address the data-
hungry issue, we follow the approach proposed in [27] and
implement a dynamic data augmentation strategy. The spe-
cific process of the haze synthesis model proposed in [27]
is as follows:

I(x) = JPEG
(
P
(
J(x)γ +N , eβd̂(x), A+∆A

))
.

(6)
• For simulating poor light conditions commonly found in

hazy weather, we adjusted the brightness adjustment fac-
tor γ to range from 1.3 to 1.7, and introduced Gaussian
noise distribution N .

• The transmission map, a crucial parameter in our degra-
dation model, is controlled by beta ∈ [0.8, 1.7]. Further-
more, to utilize more accurate depth estimation, we re-
placed the previous RA-depth method [19] with the lat-
est Depth Anything [30] method for depth estimation.
The results indicate that Depth Anything [30] exhibits
stronger generalization performance and zero-shot capa-
bility, thereby providing more accurate depth estimation
results for subsequent haze synthesis tasks.

• To introduce diversity in hazy images, we considered the
color bias of atmospheric light, represented by a three-
channel vector ∆A ∈ [−0.025, 0.025], with A ranging
from 0.8 to 1.0.

• Since the hazy images in the training dataset do not ex-
hibit prominent JPEG artifacts, we opt not to use JPEG
noise augmentation as proposed in [27].
We use clean samples from the training dataset as back-

grounds for generating synthetic data. A comparison of
the synthetic data example with the real data is shown in
the Fig. 4, it can be seen that although we have tried to
mimic the style of real hazy conditions as much as possi-
ble in the synthesized results, there is still a significant gap.
The fundamental reason is that the haze synthesis model
can only generate homogeneous haze, whereas the haze in
this challenge is non-homogeneous. Therefore, to mitigate
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Figure 4. The comparison figure between synthetic hazy data (left
part) and real hazy data(right part).

the data-hungry issue using synthesized data while prevent-
ing further interference with the model’s understanding of
non-homogeneous haze, we propose a dynamic data aug-
mentation strategy.

In addition, for training our model, we employ the pro-
gressive training setting from Restormer [31], which is an
efficient training method that gradually increases patch size
and decreases batch size during the training process. There-
fore, considering this training approach, we propose to in-
crease the amount of synthesized data in the early stages of
network training and gradually decrease it as the training
progresses. Moreover, since the patch size is smaller at the
beginning of training, the gap between synthesized and real
data is relatively small, which can better address the issue of
network overfitting. Thus, we utilize this dynamic data aug-
mentation strategy to control the proportion of synthesized
data added, gradually reducing it to zero as the progressive
training strategy proceeds.

3.3. Loss Functions

We designate the ground truth image as Igt, and refer to
the hazy image and the dehazed image as Ihazy and Ires, re-
spectively. To represent our proposed method and the dis-
criminator, we use G and D respectively.Regarding the de-
sign of the loss function, we mainly refer to [14].
Smooth L1 Loss. The smooth L1 Loss is computed using
Eq. (7) and Eq. (8), where N denotes the total number of
pixels, I(i)gt (x) and I

(i)
res(x) represent the intensity of pixel

x in the i-th channel of the ground truth image and the de-
hazed image, respectively.

Lsmooth-L1 =
1

N

N∑
x=1

3∑
i=1

f
(
I
(i)
gt (x)− I(i)res(x)

)
, (7)

where

f(γ) =

{
0.5γ2 if |γ| < 1
|γ| − 0.5 otherwise .

(8)

Enhanced Perceptual Loss. In previous image restoration
tasks, pretrained VGG-16 on ImageNet is commonly used
as a feature extractor to compute perceptual loss. However,
in this challenge, most images exhibit heavy haze distri-
bution, resulting in residual haze remaining in the recon-
structed images. The feature extraction capability of VGG-
16 is insufficient to fully capture these perceptual differ-
ences. Therefore, we attempt to replace the backbone of the
perceptual loss with a backbone possessing stronger feature
extraction capabilities and a larger-scale visual pretraining.
We believe that such a model could better guide dehazing
models to enhance their perceptual capabilities, represent-
ing an indirect form of ”knowledge distillation”. Moreover,
it would only be used during the training phase, thus not
impacting the model’s inference efficiency.

This brings us to SAM [9], a visual large model trained
on a massive dataset for segmentation tasks, endowed with
powerful feature extraction capabilities and generalization.
It could be a suitable candidate as a backbone for computing
perceptual loss. Although SAM is designed for segmenta-
tion tasks, we can still extract its intermediate feature maps
to compute perceptual loss between clean and hazy images.

However, directly using SAM would encounter a series
of training efficiency issues due to its slow inference speed,
greatly slowing down the training time of dehazing models.
To address these issues, there are currently a series of works
focused on accelerating SAM [33, 34]. For EfficientViT-
SAM [33], the method leverages EfficientViT to accelerate
SAM. Specifically, EfficientViT-SAM retains the prompt
encoder and mask decoder architecture of SAM while re-
placing the image encoder with EfficientViT, thereby strik-
ing a balance between speed and performance. Therefore,
we adopt EfficientViT-SAM as the feature extractor for
computing perceptual loss. The calculation of perceptual
loss is as follows:

LEPL =
6∑

j=1

1

CjHjWj

∥∥ϕj (I
res
i )− ϕj

(
Igti

)∥∥2
2
, (9)

where φj denotes the activation of the j-th stage includ-
ing the final fused output in the Efficient-VIT, and Cj , Wj ,
and Hj represent the channel, width, and height of the cor-
responding feature map. Subsequent ablation experiments
can demonstrate its impact on both objective metrics and
subjective perception.
MS-SSIM Loss. We incorporate the Multi-scale Structural
Similarity (MSSSIM) [7] into our loss function. Initially,
we compute the SSIM for pixel i using Eq. (10):

SSIM(i) =
2µDµC + T1

µ2
D + µ2

C + T1
· 2σDC + T2

σ2
D + σ2

C + T2

= l(i) · s(i),
(10)

In the given context, T1 and T2 represent two small con-
stants, while D and C denote two fixed-size windows cen-
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tered at the current pixel in the reconstructed image and
the clear image, respectively. Following the application of
Gaussian filters, we can compute the means µD, µC , stan-
dard deviations σD, σC , and covariance σDC . The Multi-
Scale Structural Similarity (MS-SSIM) loss is defined in
Eq. (11), where S represents the total number of scales, and
α and β are default parameters.

LMS−SSIM = 1−
S∏

s=1

(
lα(i) · cβs

s (i)
)
. (11)

Adversarial Loss. To address the limitations of pixel-wise
loss functions in offering adequate supervision, particularly
when training on a small dataset, we incorporate the adver-
sarial loss [37]:

Ladv =
N∑

n=1

− logD (Iref ) , (12)

where Iref denotes the dehazed image. D() represents the
discriminator.
Focal-frequency-loss. We use focal frequency loss to re-
duce the gap between ground truth and dehazed images.
This loss allows the model to adaptively focus on difficult-
to-synthesize frequency components by reducing the weight
of easily synthesizable components. This objective function
serves as a complement to existing spatial loss and provides
significant resistance to loss of important frequency infor-
mation due to inherent biases of neural networks.The cal-
culation of FFL loss is as follows:

F (u, v) =
∑M−1

x=0

∑N−1
y=0 f(x, y) · e−i2π(ux

M + vy
N ),

w(u, v) = |Fr(u, v)− Ff (u, v)|α ,

FFL = 1
MN

∑M−1
u=0

∑N−1
v=0 w(u, v) |Fr(u, v)− Ff (u, v)| ,

(13)
where F (u, v) represents the discrete 2D Fourier Trans-
form, w(u, v) is the weight for the spatial frequency at
(u, v), and α is the scaling factor for flexibility. In our ex-
periments, we set α to 1.
Total Loss. The total loss used for supervising the training
of our proposed method is formulated as Eq. (14):

Ltotal = Lsmooth-L1+λ1LMS-SSIM+λ2LEPL+λ3Ladv+λ4LFFL,
(14)

where λ1 = 0.2, λ2 = 0.01, λ3 = 0.002 , λ4 = 0.0005 and
λ5 = 0.001 are hyperparameters for each loss function.

4. Experiments
In this section, we initially present the dataset utilized

in our study. Subsequently, we delineate the experimen-
tal settings and evaluation metrics employed, as well as the
experiments and ablation studies conducted. We will then

compare our approach both qualitatively and quantitatively
with state-of-the-art models. Finally, we showcase the re-
sults of our experiments in the NTIRE 2024 Dense and
Non-Homogeneous Dehazing Challenge.

4.1. Datasets

The NH-HAZE24 dataset[4], continuing the legacy of its
predecessors, includes 50 image pairs similar to the NH-
HAZE 23 dataset [3], where 40 images are used as training
set, 5 as validation set and 5 as test set. Each image boasts
a high resolution of 4000 × 6000 pixels. We also utilized
the train data from NTIRE 2020 [1], 2021 [2], 2023 [3] as
an additional dataset for augmentation.

4.2. Implementation Details

We implement our proposed network via the PyTorch 1.8
platform. Adam optimizer with parameters β1 = 0.9 and
β2= 0.99 is adopted to optimize our network.Additionally,
motivated by [31], we introduce the progressive training
strategy. The training phase of our network could be di-
vided into two stages:
Initial Training Stage. We use progressive training strat-
egy at first. We start training with patch size 128×128 and
batch size 10 for 4000 epoch. The patch size and batch size
pairs are updated to [(1922, 8),(2562, 6),(3202, 6),(3842,
4)] at epoch [4000,7000,9500,10500]. The initial learn-
ing rate is 1.2e-4,we employed a cosine annealing learning
rate decay strategy, gradually reducing the learning rate to
2.5e-6. For data augmentation, we use our data augmen-
tation mentioned above. The initial ratio of synthetic data
is set to 0.5, and it has been updated to [0.4,0.2,0.1,0] at
[4000,7000,95000,10500] respectively. The first stage per-
forms on the NVIDIA 4090 device. We obtain the best
model at this stage as the initialization of the second stage.
Finetune Training Stage. We start training with patch size
512×512 and batch size 2. The initial learning rate is 1e-
5 and changes with Cosine Annealing scheme to 1e-7, in-
cluding 800 epoch in total. We use the entire real data with-
out any data augmentation technologies. Exponential Mov-
ing Average (EMA) is applied for the dynamic adjustment
of model parameters. The second stage performs on the
NVIDIA 4090 device.

4.3. Ablation Study

We conducted numerous ablation experiments to validate
the effectiveness of our proposed approach, with perfor-
mance metrics evaluated based on PSNR and SSIM on the
NTIRE 2024 validation set.
The effectiveness of the dual-branch approach. First, we
conducted comparative experiments to validate the effec-
tiveness of the dual-branch approach. The results are shown
in Tab. 1. Firstly, we compared the performance of the indi-
vidual low-level branches. Both results were unsatisfactory,
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Figure 5. The comparison figure between the use of EPL loss(left
part)and PL loss(right part).

but SAFMN [25]exhibited some advantages over RCAN
[32]. Next, we compared the performance of the individ-
ual high-level branches. It can be observed that the per-
formance of the high-level branch is improved compared to
the low-level branch. We attribute this improvement to the
pretrained weights, which help alleviate overfitting to some
extent in the case of few samples. Meanwhile, we observe
a further performance improvement of Flash InternImage
[28] compared to InternImage [29]. Finally, when we com-
bined both branches (Flash InternImage + SAFMN), we ob-
served a significant improvement in performance. This fur-
ther validates the effectiveness of the dual-branch approach
in the context of few samples.

Table 1. The effectiveness of the dual-branch approach

Methods PSNR SSIM
Single RCAN branch 16.23 0.571

Single SAFMN branch 17.63 0.602
Single InternImage branch 19.36 0.642

Single Flash InternImage branch 20.45 0.674
Ours 23.28 0.719

The effectiveness of the loss terms. As the effective-
ness of Lsmooth-L1, Ladv and LMS-SSIM loss functions in non-
homogeneous dehazing has been extensively validated in
numerous works and reports, we refer to these loss func-
tions as base-loss. Due to space constraints, our ablation
experiments primarily focus on investigating the effects of
LPL, LEPL, and LFFL loss functions. Here, LPL represents
the perceptual loss using VGG-16.

As shown in Tab. 2, LFFLcan significantly improve objec-
tive metrics by supervising the frequency consistency be-
tween outputs and ground truth, effectively complementing
spatial information. Also perceived loss LPL as well as LEPL
can lead to performance gains. Looking at the objective

metrics it seems that LEPL only gives a marginal gain com-
pared to LPL, but higher objective metrics do not always
represent cleaner haze removal. As illustrated in Fig. 5,
upon comparison, we observe that after incorporating LEPL,
we achieve significantly cleaner dehazing results, substan-
tially reducing the residue left in the dehazed images. How-
ever, if both perceptual losses are used at the same time, the
performance will be relatively degraded, so we use LEPL as
the perceptual loss.

Table 2. The effectiveness of the loss terms

base-loss LFFL LPL LEPL PSNR SSIM
1 ✓ 22.52 0.691
2 ✓ ✓ 23.08 0.714
3 ✓ ✓ ✓ 23.24 0.716
4 (Ours) ✓ ✓ ✓ 23.28 0.719
5 ✓ ✓ ✓ ✓ 23.19 0.715

The effectiveness of the training strategy. We perform ab-
lation experiments on the two training strategies employed,
progressive training and dynamic data augmentation strat-
egy. The results are shown in Tab. 3, with progressive train-
ing compared to fixed patch training , the performance goes
up and the training is more efficient.

Meanwhile, regarding data augmentation, for fixed data
augmentation, we fix the synthetic data ratio at 0.3, while
the dynamic data augmentation synthetic data ratio gradu-
ally decreases from 0.5 to 0 with the training epoch.From
the results, it can be seen that fixed data augmentation can
only bring a marginal improvement, while dynamic data
augmentation can bring a large performance gain. There-
fore, we combine the two training strategies to obtain fur-
ther improved results.

Table 3. The effectiveness of the training strategy

Methods PSNR SSIM
Fixed patch training (baseline) 22.73 0.682

Progressive training 22.91 0.690
Fixed data augmentation 22.76 0.681

Dynamic data augmentation 23.12 0.708
Ours 23.28 0.719

4.4. Comparisons with State-of-art Models

We consider two SOTA models, DWT-FFC [35], and
ITB-Dehaze [14], which have the best composite score and
the best objective metric for NITRE 2023 [3], respectively.
We trained our method as well as the SOTA method follow-
ing exactly the same training setup and compared them on
the NITRE 2024 test set. Objective metrics are shown in
Tab. 4, we’ve gotten a significant boost in objective metrics.
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Figure 6. Comparisons with State-of-art Model on NTIRE 2024 test set

Meanwhile, the visual comparison is shown in Fig. 6, where
our method similarly achieves the best in terms of percep-
tual quality, with our results having the least amount of haze
residuals as well as boundary artifacts.

Table 4. Comparisons with State-of-art Model on NTIRE 2024
test set

Methods PSNR SSIM

ITB-Dehaze [14] 22.23 0.721
DWT-FFC [35] 22.08 0.718

Ours 22.94 0.729

4.5. NTIRE 2024 Dense and Non-Homogeneous De-
hazing Challenge

Our method won the NTIRE 2024 [4] championship,
and we simultaneously achieved the best in three metrics:
PSNR(22.94), SSIM(0.729), and MOS(6.315). Our test re-
sults are shown in Fig. 1, yielding visually pleasing results.

5. Conclusion
In this paper, we propose a novel dual-branch network

approach to address the issue of non-homogeneous fog re-
moval. Our method leverages a lightweight model to learn
the mapping between hazy and clean images, while intro-
ducing a prior knowledge branch to complementarily ad-
dress overfitting on small-scale datasets, thereby enhancing
the model’s generalization capability. A dynamic data aug-
mentation strategy is also proposed to further address data
scarcity as well as an enhanced perceptual loss to improve
the visual quality of the output. Extensive empirical evalu-
ations demonstrate the impressive performance of our pro-
posed model in real-world scenarios. The model surpasses
state-of-the-art techniques, exhibiting outstanding fidelity
and perceptual quality.

6689



References
[1] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru

Vasluianu, Radu Timofte, Jing Liu, Wu, et al. Ntire 2020
challenge on nonhomogeneous dehazing. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2029–2044, 2020. 1, 2, 3, 6

[2] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, Minghan Fu, Liu, et al. Ntire
2021 nonhomogeneous dehazing challenge report. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 627–646, 2021. 6

[3] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, Han Zhou, Wei Dong, Yangyi Liu,
Jun Chen, Yangyi Liu, Huan Liu, Li, et al. Ntire 2023 hr non-
homogeneous dehazing challenge report. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1808–1825, 2023. 2, 3, 6, 7

[4] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, Han Zhou, Wei Dong, Yangyi Liu,
Jun Chen, Yangyi Liu, Huan Liu, Li, et al. Ntire 2024
dense and nonhomogeneous dehazing challenge report. In
2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2024. 6, 8

[5] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and
Dacheng Tao. Dehazenet: An end-to-end system for single
image haze removal. IEEE Transactions on Image Process-
ing, 25(11):5187–5198, 2016. 2

[6] Xiaohan Ding, Yiyuan Zhang, Yixiao Ge, Sijie Zhao, Lin
Song, Xiangyu Yue, and Ying Shan. Unireplknet: A univer-
sal perception large-kernel convnet for audio, video, point
cloud, time-series and image recognition, 2024. 2

[7] Minghan Fu, Huan Liu, Yankun Yu, Jun Chen, and Keyan
Wang. Dw-gan: A discrete wavelet transform gan for non-
homogeneous dehazing. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 203–212, 2021. 2, 3, 5

[8] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze
removal using dark channel prior. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(12):2341–2353,
2010. 2

[9] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything. arXiv:2304.02643, 2023.
1, 5

[10] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and
Dan Feng. Aod-net: All-in-one dehazing network. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 4770–4778, 2017. 2

[11] Dong Li, Jiaying Zhu, Menglu Wang, Jiawei Liu, Xueyang
Fu, and Zheng-Jun Zha. Edge-aware regional message pass-
ing controller for image forgery localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8222–8232, 2023. 1

[12] Huan Liu, Zijun Wu, Liangyan Li, Sadaf Salehkalaibar,
Jun Chen, and Keyan Wang. Towards multi-domain single
image dehazing via test-time training. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5831–5840, 2022. 2

[13] Jing Liu, Haiyan Wu, Yuan Xie, Yanyun Qu, and Lizhuang
Ma. Trident dehazing network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2020.

[14] Yangyi Liu, Huan Liu, Liangyan Li, Zijun Wu, and Jun
Chen. A data-centric solution to nonhomogeneous dehaz-
ing via vision transformer. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1406–1415, 2023. 2, 3, 5, 7, 8

[15] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi
Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. Vmamba:
Visual state space model, 2024. 1, 2

[16] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10012–10022, 2021. 2

[17] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11976–
11986, 2022. 2

[18] W. E. K. Middleton. Vision Through the Atmosphere. Uni-
versity of Toronto Press, 1952. 2

[19] He Mu, Hui Le, Bian Yikai, Ren Jian, Xie Jin, and Yang
Jian. Ra-depth: Resolution adaptive self-supervised monoc-
ular depth estimation. In ECCV, 2022. 4

[20] Weiping Ni, Xinbo Gao, and Ying Wang. Single satellite
image dehazing via linear intensity transformation and local
property analysis. Neurocomputing, 175:25–39, 2016. 2

[21] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing, 22(10):1345–1359, 2010. 3

[22] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun
Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion network
for single image dehazing. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3253–3261, 2018. 2

[23] Vishwanath A. Sindagi, Pranav Oza, Ravi Yasarla, and
Vishal M. Patel. Prior-based domain adaptive object detec-
tion for hazy and rainy conditions. In European Conference
on Computer Vision, pages 763–780, 2020. 2

[24] Dilbag Singh and Vijay Kumar. A comprehensive review of
computational dehazing techniques. Archives of Computa-
tional Methods in Engineering, 26(5):1395–1413, 2019. SN
- 1886-1784. 2

[25] Long Sun, Jiangxin Dong, Jinhui Tang, and Jinshan Pan.
Spatially-adaptive feature modulation for efficient image
super-resolution. In 2023 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 13144–13153, 2023.
2, 3, 4, 7

[26] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller mod-
els and faster training. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pages 10096–
10106. PMLR, 2021. 4

6690



[27] Rui-Qi Wu, Zheng-Peng Duan, Chun-Le Guo, Zhi Chai, and
Chongyi Li. Ridcp: Revitalizing real image dehazing via
high-quality codebook priors. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 22282–22291, 2023. 2, 4

[28] Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou
Zhu, Jiapeng Luo, Wenhai Wang, Tong Lu, Hongsheng Li,
Yu Qiao, Lewei Lu, Jie Zhou, and Jifeng Dai. Efficient de-
formable convnets: Rethinking dynamic and sparse operator
for vision applications, 2024. 2, 3, 7

[29] Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou
Zhu, Jiapeng Luo, Wenhai Wang, Tong Lu, Hongsheng Li,
Yu Qiao, Lewei Lu, Jie Zhou, and Jifeng Dai. Efficient de-
formable convnets: Rethinking dynamic and sparse operator
for vision applications. arXiv preprint arXiv:2401.06197,
2024. 7

[30] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth anything: Unleashing
the power of large-scale unlabeled data. In CVPR, 2024. 4

[31] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming–Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5718–5729,
2022. 1, 5, 6

[32] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In ECCV, 2018. 7

[33] Zhuoyang Zhang, Han Cai, and Song Han. Efficientvit-sam:
Accelerated segment anything model without performance
loss. arXiv preprint arXiv:2402.05008, 2024. 2, 5

[34] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu,
Min Li, Ming Tang, and Jinqiao Wang. Fast segment any-
thing, 2023. 5

[35] Han Zhou, Wei Dong, Yangyi Liu, and Jun Chen. Breaking
through the haze: An advanced non-homogeneous dehaz-
ing method based on fast fourier convolution and convnext.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages
1895–1904, 2023. 2, 3, 7, 8

[36] Jiaying Zhu, Dong Li, Xueyang Fu, Gang Yang, Jie Huang,
Aiping Liu, and Zheng-Jun Zha. Learning discriminative
noise guidance for image forgery detection and localization.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 7739–7747, 2024. 1

[37] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2242–2251,
2017. 6

[38] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2021. 3

6691


