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Abstract

With the development of generative models, such as the
diffusion model, and auto-regressive model, AI-generated
content (AIGC) is experiencing an explosive growth. More-
over, existing quality metrics extracted from fixed pre-
trained models struggle to align accurately with human per-
ception. There is an urgent need for an adaptive metric ca-
pable of gauging the multiple critical factors (i.e., technical
quality, aesthetic quality, and video-text alignment) related
to quality within AIGC videos, to provide quality assess-
ment and guide optimization of generative models. In this
work, we propose a holistic metric for AIGC video qual-
ity assessment, termed AIGC-VQA, which contains three
functional branches for the cooperation on technical, aes-
thetic, and video-text alignment aspects in AIGC videos.
Specifically, to efficiently transfer the knowledge of image-
text alignment to the video-text alignment, we introduce the
spatial-temporal adapter to exploit the pre-trained prior
from a large-scale image-text model and achieve the tem-
poral knowledge adaptation. Besides, we propose a divide-
and-conquer training strategy for progressive cooperation
on multiple branches. Due to the holistic perception ability,
our proposed AIGC-VQA obtains state-of-the-art results on
the T2VQA-DB dataset.

1. Introduction

Recent years have witnessed the remarkable advancement
of AI-generated content, with several generative models
[4–6, 39, 40, 49] demonstrating significant potential in as-
sisting human creativity. As the representative AIGC task,
text-to-video models [5, 6, 10, 49] have shown their ability
to produce inventive content based on textual descriptions.
These AI-generated outputs span a wide range of scenarios,

† Corresponding authors.

from simple animations to complex, lifelike scenes [49].
However, as shown in Fig. 2, AIGC often suffer from coun-
terfactual textures or features that do not align with human’s
understanding of the world (i.e., the unnatural wave ripples
and twisted, terrifying faces), leading to quality degrada-
tion distinct from those found in natural content or user-
generated content (UGC).

Figure 1. The difference of UGC video quality assessment metric
and AIGC video quality assessment.

There are some metrics especially designed for text-to-
video generative models, which are based on distribution
distance or extracted features from fixed models. However,
they are not suitable for the complex contents generated by
the rapidly developed and incremental models due to the
lack of flexibility [60] , and have shown a large gap with hu-
man perception. Meanwhile, some benchmarks for AIGC
evaluation [3, 8, 26, 27] have been proposed to compare the
AIGC videos generated from multiple text-to-video models
by assessing various dimensions. For instance,VBench [8]
divide the quality of AIGC videos into many fine-grained
dimensions from a hierarchical perspective through multi-
ple offline tools. However, to build a benchmark for com-
paring existing generated models, large-scale human anno-
tations at a fine-grained level are labor-intensive for exten-
sive subjective evaluation.

As shown in Fig. 1 and Fig. 2, in contrast to user-
generated content (UGC) videos, AI-generated content
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(AIGC) videos present two main challenges. The first chal-
lenge is the inconsistency of generated artifacts in AIGC
videos with authentic or synthetic distortions commonly
found in natural images. The second challenge is to evalu-
ate the alignment between the generated frame and the tex-
tual descriptions provided by the user. To overcome these
challenges, there is a need for a holistic perception metric
specifically designed for assessing the quality of text-guided
generated videos.

Figure 2. The difference of spatial distortion in AIGC videos and
UGC videos.

From existing works [15, 60, 66], we can find that the
key aspects of AIGC video quality assessment usually con-
sist of three parts: technical quality, aesthetic quality, and
video-text alignment score. Typically, technical quality [51]

measures the perception of distortions existing in inter-
frame spatial content and cross-frame temporal consistency.
Aesthetic quality [9, 52, 60] can capture artistic factors per-
ceived by humans from an aesthetic perspective, which is
more biased to the compositional layout, colorfulness, and
non-toxic content. Video-text alignment [13, 38] is im-
portant for the text-to-video generation model, which can
capture the mismatch between video content and textual
prompt.

In this work, to tackle the multiple aspects of quality as-
sessment for AIGC videos, we propose a holistic perception
metric, termed AIGC-VQA, to assess the quality of AIGC
videos. Our proposed AIGC-VQA contains three functional
branches for cooperation in technical, aesthetic, and align-
ment aspects. We employ a pre-trained, disentangled frame-
work, Dover [52], to separately evaluate technical and aes-
thetic quality. This framework feeds the fragment-sampled
input into the technical branch, while the aesthetic branch
is leveraged to capture aesthetic features through resized in-
puts. For video-text alignment, two points should be ful-
filled: the first is utilizing a vision-language model that con-
currently harnesses image-text knowledge with both seman-
tic and quality awareness, enabling efficient adaptation for
downstream tasks. The second is to efficiently adapt the
image-text model for discerning temporal information. For
the first aspect, we introduce the BLIP [17] pretrained after
semantic-aware image-text pretraining and quality-aware
image-text pretraining. For the second aspect, the spatial-
temporal adapter is inserted between the visual encoder and
text encoder in BLIP, transferring the knowledge of image-
text alignment to video-text alignment.

To maximize the effectiveness of each branch, we pro-
pose a divide-and-conquer training strategy for progres-
sively optimizing our proposed AIGC-VQA. Initially, we
optimize features that do not require textual information,
such as technical and aesthetic quality. Subsequently, we
fine-tune partial parameters of the vision-language model
and spatial-temporal adapter for the alignment score. Fi-
nally, the three branches are ensembled and a few parame-
ters are fine-tuned to optimize cooperative learning for mul-
tiple aspects.

Finally, the contributions of this paper are summarized
as follows:
• We propose a holistic perception metric termed AIGC-

VQA to assess the quality of AIGC video through a
more comprehensive perspective, containing technical,
aesthetic, and alignment aspects.

• We aim to progressively optimize our AIGC-VQA
through a divide-and-conquer training strategy, which can
enhance cooperation among multiple aspects for AIGC
video quality assessment.

• Experiment results of our proposed AIGC-VQA achieve
superior performance compared with other methods.
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2. Related Work

2.1. AIGC IQA

AIGC image quality assessment (AIGC IQA) is required to
assess the perceptual quality and text-image alignment [15,
48, 60, 63, 65], which is different from natural IQA [19, 22–
24, 30, 31, 33, 36, 41, 45, 46, 67, 69]. Accordingly, the
mainstream approaches to AIGC-IQA can be categorized
into two types: fixed-model based methods [35, 38, 42] and
fine-tuned-based methods [11, 60].

The first category, fixed-model based methods, consis-
tently employ pre-trained models to assess perceptual qual-
ity or image-text alignment. Perceptual quality is often
evaluated using metrics such as the Fréchet Inception Dis-
tance (FID) [35] and Kernel Inception Distance (KID) [1],
which measure the divergence between the distribution
of AIGC images and that of natural images. For text-
image alignment, pre-trained vision language models like
CLIP [18, 37, 38] are commonly used to compute the co-
sine similarity between text and image features. However,
these metrics frequently fail to align with human percep-
tion or to measure alignment accurately due to their lack of
adaptability.

The second approach, finetuned-based methods, relies
on the construction of a large-scale AIGC quality assess-
ment database. These methods typically finetune widely-
used vision-language models by training on the large-scale
database for optimization. Pic-a-pic [11] designs a qual-
ity metric of CLIP [37] based on a large-scale AIGC IQA
database, selecting preferences from pairs of images. It can
obtain the ranking of all generated images based on a text
prompt. ImageReward [60] constructs a dataset by scoring
multiple images generated from the same text prompt, en-
suring prompt diversity while considering image-text con-
sistency, image fidelity, and image harmlessness. The qual-
ity of images is evaluated by extracting representations
through BLIP [17]. Nevertheless, these methods do not pro-
vide multi-functional capabilities for assessing AIGC qual-
ity across multiple aspects, such as technical quality, aes-
thetic quality, and text-to-image alignment.

2.2. AIGC VQA

Building upon the advances in text-to-image generation,
text-to-video generation has recently seen rapid develop-
ment with the emergence of models such as SORA. Anal-
ogous to AIGC IQA, there are three main streams for AI-
generated content video quality assessment (AIGC VQA):
fixed-model-based methods [42], offline tools-based meth-
ods, and finetuning-based methods.

Within the first stream, the Inflated-3D Convnets
(I3D) [2] and Fréchet Video Distance (FVD) [47] are the
prevalent metrics for gauging the perceptual quality of

AIGC video. CLIPsim [37], commonly employed in AIGC-
IQA, assess text-frame alignment within AIGC videos.
Specifically for text-video alignment, ViCLIP [50] extends
CLIP’s capabilities from image to video features. Mean-
while, Chivileva et.al. [3] leverage cycle consistency from
the generative and caption models to evaluate text-video
alignment and ensemble it with multiple naturalness met-
rics. In the second stream, several benchmarks [8, 26,
27] have been established for text-to-video generation.
Vbench [8] utilizes multiple offline tools acting as individ-
ual metrics across multiple fine-grained dimensions. How-
ever, these offline tools merely offer perception metrics at
different semantic levels, which do not afford the neces-
sary precision for assessing the quality of AIGC videos.
As the construction of large-scale video databases [13] pro-
gresses, finetuned-based methods [13] have been proposed
to regress the quality annotations of AIGC videos through
representation learning. Nonetheless, these methods fall
short of providing holistic functionalities needed for the
comprehensive assessment of AIGC video quality, such as
evaluating perceptual distortions across spatial and tempo-
ral dimensions, measuring aesthetic preferences, and ensur-
ing accurate text-video alignment for more precise content
generation.

Nowadays, video quality assessment for natural video
has obtained significant progress due to the development of
deep learning [14, 20, 32, 51, 52, 54, 64] and large multi-
modal model [56–58]. With the help of deep learning, many
metrics for video quality assessment have achieved excep-
tional performance on common UGC databases [7, 32, 62]
through specially designed spatio-temporal networks and
video sampling. With the advent of multimodal mod-
els [17, 21, 37, 61], advancements can be achieved not only
in image and video quality assessment [57] but also in gen-
erating interpretable textual descriptions [56, 58], thus bet-
ter aligning with the human subjective quality reasoning
process.

3. Our Proposed Method

The whole framework of AIGC-VQA is shown in Fig. 4.
To tackle the multiple aspects in the AIGC video quality
assessment: technical quality, aesthetic quality, and video-
text alignment score, we propose a holistic perception met-
ric for AIGC Video Quality Assessment (termed as AIGC-
VQA), fulfilling the versatile capability for the AIGC-VQA
assisted with different functionalities, which is achieved
through the collaboration of multi-dimensional branches.

3.1. Technical Quality

To circumvent distortions caused by resizing that could lead
to erroneous model judgments, the technical quality aims to
measure low-level distortions in localized areas of original
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Figure 3. The overview for our proposed AIGC-VQA, which includes three multi-dimensional branches to achieve the holistic perception
for AIGC video quality assessment. At the top lies the aesthetic branch, the technical branch occupies the middle layer, and at the bottom
is the temporal-adapted alignment branch.

videos, providing the model with texture-related informa-
tion for guidance.

We adopt the powerful 3D-Swin Transformer as our
Technical Branch Ft(·) for quality regression, and its effec-
tiveness has been validated in a series of works [51, 54, 59,
68]. In the context of estimating the technical quality score
for a video X in the shape of T × H × W , we utilize the
fragment-input strategy for extracting low-level local fea-
tures, which is particularly effective in capturing texture-
related distortion at the local level. These local features are
derived from fragments denoted as X̂ ∈ RT,N,h,w, which
are sampled from the original video X . Here, h and w rep-
resent the height and width of the mini-patch within the
fragments, respectively. And the number of mini-patches
in a single frame is given by N = H

h × W
w . Therefore, the

technical score map of the AIGC video can be represented
as:

Qt = Gt(Ft(X̂)) (1)

Where Gt denotes the regression head in Technical Branch,
and the shape of the technical score map Qt is T

2 ×
√
Nh
8 ×

√
Nw
8 . And the final technical score of Technical Branch

is obtained through the average pooling on the score map
along the temporal dimension and spatial dimension:

qt = Avg(Qt) (2)

The Technical Branch allows for an efficient extraction of
low-level local features, capturing the unique local distor-

tions present in AIGC videos. Consequently, it facilitates
the estimation of the technical quality aspect.

3.2. Aesthetic Quality

Aesthetic quality is a sophisticated task as its subjective vi-
sual appeal and artistic factors [52]. Aesthetic appeal sig-
nificantly influences overall quality perception, which con-
tains higher-level semantic attributes compared to technical
quality, such as content, composition, lighting, color, and
camera trajectory as noted by [53, 55]. And AI-generated
content is highly related to aesthetic evaluation, which is
consistently integrated into the generation process [16] and
serves as a pivotal aspect in benchmarks [43, 60, 66] for
text-to-image or text-to-video generation.

To distinguish it from the functionality of technical qual-
ity, we follow the setup of Dover [52] for the Aesthetic
Branch by utilizing resized videos X̃ as input. The re-
size approach for AIGC videos, by altering distortions
without changing semantics, allows for the acquisition of
distortion-invariant representations, thus better serving the
capture of aesthetic quality representation. And following
works [52, 68], The 3D ConvNext [28] model can be intro-
duced as Aesthetic Branch Fa(·) due to its appealing per-
formance and efficiency for representation.

With the same strategy as the Technical Branch, we can
obtain the aesthetic score map:

Qa = Ga(Fa(X̃)) (3)
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Figure 4. The overview for our training strategy for AIGC-VQA, which includes three steps to progressively adapt the pretrained model to
perceive the multiple ascpects of AIGC video quality assessment.

Where Ga denotes the regression head in the Aesthetic
Branch. And the final aesthetic score can be represented
as qa = Avg(Qa).

3.3. Alignment Score

Video-text alignment score which measures the similarity
between provided prompt and generated content is the crit-
ical part of quality assessment for AIGC video. The mis-
match extent of the generated visual and provided prompt
can illustrate the multimodal understanding ability of gen-
eration model [12]. Video-text alignment encompasses nu-
merous sub-dimensional factors [60], including attributes,
color, objects, background, and motion actions. This ne-
cessitates a model capable of comprehending the semantic
information in text prompts and capturing the correspond-
ing semantic visual and temporal features in AIGC videos.

Consequently, Alignment Branch must exhibit excep-
tional multimodal understanding capabilities, aligning fea-
tures in both the textual space and visual space while also be
capable of extracting text-guided visual features. Further-
more, it should perceive temporal characteristics to address
the temporal alignment issues.

Based on the first two requirements, we utilize
BLIP [17], a powerful vision-language model that has un-
dergone two-stage pre-training, as our foundational frame-
work of Alignment Branch. The initial stage involves pre-
training on a web-scale corpus of image-text pairs, focusing
on image-text alignment, matching, and image-anchored
text captioning to bolster vision-language understanding
and generation capacities. The second stage is fine-tuning
the part of parameters of BLIP on the ImageReward [60]
dataset, which contains 137k pairs of expert comparisons
for AIGC image quality assessment. By loading the weights
from this two-stages pre-training, Alignment Branch can
obtain both knowledge of semantic-aware image-text align-
ment and quality-ware image-text alignment.

As for the temporal characteristics, we aim to effi-
ciently adapt large pre-trained image-text model for video-
text tasks due to the less abundant data for AIGC video

quality assessment. To facilitate the knowledge trans-
fer from image-text tasks to video-text tasks, we intro-
duce the spatial-temporal Adapter (ST-Adapter) [34], an
efficient and effective mechanism designed to harness the
pre-trained knowledge from a large-scale image-text model
(i.e., BLIP), thereby enabling enhanced video-text under-
standing with minimal parameter overhead. Also, the
Alignment Branch should capture the semantic-related fea-
ture, which is invariant to distortion. Therefore, the resized
video X̃ will be fed into Alignment Branch Ha(·). And the
modeling of video-text alignment can be denoted as:

sa = Ga(Htex
a (Tex, fst(Hvis

a (X̃)))[0, ...]) (4)

In which, Tex is referred to the provided text prompt, and
Htex

a (·) and Hvis
a (·)) can be denoted as visual-guided text

encoder and vision encoder, separately. And we apply the
eos token from the output of Htex

a (·) to be fed into regres-
sion head Ga for video-text alignment. fst represents the
ST-Adapter, the equation of ST-Adapter is as follows:

fst(r) = r + f(DW3D(rWdown))Wup, (5)

Where DW3D denotes the depth-wise 3D convolution for
spatial-temporal representation capture. And Wdown and
Wup are weight of downscaling and upscaling. r is the rep-
resentation after visual encoder. f(·) is the activation func-
tion.

3.4. Training Strategy

To maximize the effectiveness of each branch, we propose
a divide-and-conquer training strategy. Initially, we focus
on enhancing features unrelated to text, such as technical
and aesthetic qualities. This stage involves no textual in-
put, refining the purely visual dimensions. Subsequently,
we fine-tune the partial parameters of BLIP and ST adapter
for video-text alignment. Finally, we synergize the three
branches, conducting fine-tuning on a limited set of pa-
rameters to foster cooperative learning on the multiple as-
pects (i.e., technical quality, aesthetic quality, and video-
text alignment score).
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In particular, we train the Technical Branch and Aes-
thetic Branch with loading the pre-trained weight from
LSVQ [52, 62]. Then the Alignment Branch is trained
with 70% unfixed parameters, loading the pretrained weight
from ImageReward. Note that these datasets are not in-
volved in training with the AIGC video quality assessment
dataset. Finally, we finetuned the Technical Branch, Aes-
thetic Branch, and Alignment Branch with 30% unfixed
parameters for late fusion. After obtaining the final score
of AIGC videos by aggregating technical quality, aesthetic
quality and video-text alignment score: s = qt + qa + sa.
For each branch within our architecture, we apply a dual-
loss optimization strategy [14], incorporating both Pearson
linear correlation coefficient (PLCC) and ranking loss.

Lplcc =

(
1− 1

∑m
i=1(si−s̄)(yi−ȳ)√∑m

i=1(si−s̄)2
√∑m

i=1(yi−ȳ)2

)
2

(6)

Lrank =
1

m2

m∑
i=1

m∑
j=1

(
max (0, |yi − yj | (7)

−e(yi, yj) · (si − sj))

)
where y and ȳ represent the quality annotations and the

mean value of quality annotations. s and s̄ represent the
quality predictions and the mean value of quality predic-
tions. This optimization approach refines each branch by
aligning each branch’s outputs with human perceptual judg-
ments and ensuring that the rank order of the outputs ad-
heres to the expected ordinal characteristics.

4. Experiment

4.1. AIGC-VQA Databases

T2VQA-DB: The dataset T2VQA-DB [13] encompasses
10,000 videos and 1000 prompts, of which these gener-
ated videos come from 10 text-to-video models. All these
videos have the shape of 512 × 512 and 4 fps. And all
the text prompts can be divided into 6 categories: nature,
human, artificial, animal, object and abstract. The Mean
Opinion Score (MOS) of T2VQA-DB ranges from 0 to 100.
T2VQA-DB is a relatively large dataset for AIGC video
quality assessment compared to works [3, 8, 26, 27]. We di-
vided the data excluding the test part into the random train-
ing set and the validation set, and ensured that the category
proportions of the generative models in the two sets were
consistent. The split strategy was randomly conducted 10
times division, and we finally announced the average result
of 10 times.

4.2. Implementation Details

For the technical branch, the input fragments are of size
32×244×244 with a 1-frame interval, consisting of (7×7)
fragments, each of size 32. For the aesthetic branch and
alignment branch, The original video is resized into the spa-
tial dimension of 224× 224. For all the branches, the num-
ber of temporal frames is 16. We adopt two common-used
criteria for performance evaluation: Pearson linear corre-
lation coefficient (PLCC) and Spearman rank order corre-
lation coefficient (SROCC). A higher value means a better
correlation with human annotations. All experiments are
implemented on four 32G V100 GPUs. In the training pro-
cess, we utilize AdamW optimizer [29] with a learning rate
of 3 × e−5 and a weight decay of 0.05 for optimization.
And batchsize set as 8. Each stage contains 50 epoches for
training.

4.3. Experiment Results

To verify the effectiveness of our proposed AIGC-
VQA, We select five fixed-model based methods (CLIP-
sim [38], BLIP [17], ImageReward [60], ViCLIP [50],
UMTScore [27], four UGC model based methods (Sim-
pleVQA [44], BVQA [14], FastVQA [51], Dover [52],
and KSVQE [32]), and one finetuned-model based method
(T2VQA [13]).

We can see that fixed-model based methods fail to han-
dle the T2VQA-DB dataset since they have less flexibility
for quality assessment on complex AIGC video. And UGC
model based methods still face performance limitations on
AIGC video quality assessment, due to the lack of measure-
ment on video-text alignment. Specifically, our proposed
AIGC demonstrates superior performance on T2VQA-DB
datasets. Our AIGC-VQA outperforms the second-best
method T2VQA with performance gain of 0.0276 and
0.0466 on SROCC and PLCC. It can illustrate that our pro-
posed AIGC-VQA can fulfill the holistic perception abil-
ity on multiple key factors for AIGC video quality assess-
ment (i.e., technical quality, aesthetic quality, and video-text
alignment).

4.4. The Results in NTRIE2024 AIGC VQA track

The results of NTRIE2024 AIGC VQA track [25] in the
testing phase is shown in Table 3. Our proposed AIGC-
VQA based on enhancing the holistic perception ability of
quality metric for AIGC videos, has achieved the optimal
results. It illustrates that our proposed AIGC-VQA achieves
the good evaluation ability on AIGC videos.

4.5. Ablation Study

To analyze the effects of the main components in our pro-
posed AIGC-VQA. In this section, we conduct multiple ab-
lation studies to study the effect of the technical branch, aes-
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Table 1. Performance of existing SOTA methods and the proposed AIGC-VQA on T2VQA-DB dataset. The best and second-best results
are bolded and underlined.

Type Models SROCC ↑ PLCC ↑ KRCC ↑ RMSE ↓
fixed CLIPSim [38] 0.1047 0.1277 0.0702 21.683

BLIP [17] 0.1659 0.1860 0.1112 18.373
ImageReward [60] 0.1875 0.2121 0.1266 18.243

ViCLIP [50] 0.1162 0.1449 0.0781 21.655
UMTScore [27] 0.0676 0.0721 0.0453 22.559

UGC SimpleVQA [44] 0.6275 0.6338 0.4466 11.163
BVQA [14] 0.7390 0.7486 0.5487 15.645

FAST-VQA [51] 0.7173 0.7295 0.5303 10.595
DOVER [52] 0.7609 0.7693 0.5704 9.8072
KSVQE [32] 0.7709 0.7842 0.5936 11.053

finetuned T2VQA [13] 0.7965 0.8066 0.6058 9.0221
Ours AIGC-VQA 0.8241 0.8352 0.6474 9.6617

Table 2. Ablation study on the usage of technical branch, aesthetic branch and alignment branch in AIGC-VQA.

Technical Branch Aesthetic Branch Alignment Btanch SRCC PLCC Main Score
" " " 0.8241 0.8352 0.8296
" % % 0.7465 0.7614 0.7539
% " % 0.7322 0.7488 0.7400
% % " 0.8096 0.8203 0.814
" " % 0.7623 0.7733 0.7678
" % " 0.8166 0.8298 0.8231

Table 3. Our proposed AIGC-VQA achieved the optimal perfor-
mance in NTRIE2024 AIGC VQA track [25], according to the
main score.

Team Name Main Score Ranking
ours(IMCL-DAMO) 0.8385 1

Kwai-kaa 0.824 2
SQL 0.8232 3

musicbeer 0.8231 4
finnbingo 0.8211 5

PromptSync 0.8178 6
QA-FTE 0.8128 7

MediaSecurity SYSU&Alibaba 0.8124 8
IPPL-VQA 0.8003 9

IVP-Lab 0.7944 10
Oblivion 0.7869 11

CUC-IMC 0.7802 12
UBC DSL Team 0.7531 13

thetic branch, and alignment branch on T2VQA-DB dataset
in Table. 2. Also, we take a deep step into the different fixed
parameter ratios on the alignment branch in Table 4, and the
effect of ST-Adapter for image-to-video transfer in Table 5.
For the training strategy, we analyze the effect of different
stages on Table 6.

Table 4. Ablation study on the unfixed ratio for optimizing align-
ment branch in Stage 2.

Ratio SRCC PLCC Main Score
80% 0.8010 0.8200 0.8105
70% 0.8096 0.8203 0.8140
60% 0.8091 0.8232 0.8161
50% 0.8078 0.8212 0.8145
40% 0.8086 0.8223 0.8154

Table 5. Ablation study on the ST-adapter for alignment branch.
The term ”N/A” denotes the absence of image-to-video transfer
application.

Adapter SRCC PLCC Main Score
N/A 0.7910 0.8089 0.7999

ST-Adapter 0.8096 0.8203 0.8140

The effectiveness of Technical Branch. The technical
quality aims to measure low-level distortions in localized
areas, providing the model with texture-related information
for guidance. As depicted in Table 2, we can see that the
ensemble for the technical branch and aesthetic branch can
boost the performance of the aesthetic branch. The former
(the 5th row) can exceed the latter (the 3th row) with a per-
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Table 6. Ablation study on the training strategies for optimizing
AIGC-VQA.

Stage 1 Stage 2 Stage 3 SRCC PLCC Main Score
" % % 0.7623 0.7733 0.7678
% " % 0.8096 0.8203 0.8140
" " % 0.8102 0.8244 0.8173
" " " 0.8241 0.8352 0.8296

formance gain of 0.0301 and 0.0245 on SROCC and PLCC.
It illustrates that the technical branch has a superior effect
on AIGC-VQA.

The effectiveness of Aesthetic Branch. Aesthetic ap-
peal significantly influences overall quality perception, es-
pecially for AIGC quality assessment [60]. From the results
of Table 2, through the comparison between the 2th row
(technical branch) and the 5th row (ensemble of technical
branch and aesthetic branch), we can see that introducing of
aesthetic branch can bring the performance gain of 0.0153
and 0.0119 on SROCC and PLCC. It demonstrates the ne-
cessity of aesthetic ability for AIGC VQA metric.

The effectiveness of Alignment Branch. By comparing
the 4th row (Technical Branch) and the 6th row (the en-
semble of Technical Branch and Alignment Branch), we
can observe that Alignment Branch can boost the perfor-
mance of Technical Branch according to the performance
gain of 0.0701/0.0684 on SROCC and PLCC. The effect of
the Alignment Branch is larger than the Technical Branch
and Aesthetic Branch, which illustrates that the video-text
alignment is crucial for the text-to-video generative model.

The effectiveness of fixed parameter ratio of alignment
branch. Also, we analyze the effect of the fixed param-
eter ratio of the Alignment Branch on AIGC video quality
assessment. From the Table. 4, we can observe that the ratio
has no significant difference in performance on our Align-
ment Branch, which shows the robustness of the Alignment
Branch during optimization.

The effectiveness of ST-Adapter of alignment branch.
For efficient image-video transfer, we delete the ST-Adapter
in the Alignment Branch to illustrate the effectiveness of
temporal information extraction for video-text alignment.
From the Table. 5, we can see that ST-Adapter can out-
perform the original BLIP through the performance gain of
0.0186 and 0.0114 on SROCC and PLCC.

The effectiveness of training strategy To analyze the ef-
fectiveness of our proposed progressive training strategy
for optimizing AIGC-VQA, we conduct ablation studies

for different stages in Table. 6. In the first phase, leverag-
ing the decoupled pre-training approach of Dover [52], we
initialize the Technical and Aesthetic Branches with pre-
trained weights dedicated to regressing technical and aes-
thetic quality, respectively. This stage does not require as-
sistance from provided text prompts. In the second phase,
we adapt from ImageReward [60]’s pretrained weights to
transition from image-text alignment to video-text align-
ment. In the third phase, we engage in joint training of the
Technical Branch, Aesthetic Branch, and Alignment Branch
to facilitate cooperation across multiple aspects. From the
results of Table. 6, we can summarize two conclusions.
Firstly, each stage is essential and contributes to incremen-
tal performance improvements. Secondly, joint training in
the third stage outperforms the direct ensemble of the re-
sults from the first two stages, indicating that joint training
effectively fosters collaboration.

5. Conclusion
In this work, we address the multiple factors affecting sub-
jective quality in AIGC videos and propose a holistic per-
ception metric for video quality assessment. It contains
multi-dimensional branches tailored for technical quality,
aesthetic quality and video-text alignment. Also, we pro-
pose a divide-and-conquer training strategy for progressive
optimization. And the results show the effectiveness of our
proposed AIGC-VQA.
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