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Abstract

Existing image restoration models have limited perfor-
mance in high-resolution image shadow removal tasks, par-
ticularly in handling complex background information and
unevenly distributed shadows. To address this challenge, we
propose a novel two-stage approach called HirFormer for
high-resolution image shadow removal. The first stage, Dy-
namic High Resolution Transformer, reconstructs the high-
resolution background information and removes a signifi-
cant portion of the shadows based on the Transformer ar-
chitecture. The second stage, Large-scale Image Refine-
ment, incorporates the NAFNet model to further eliminate
residual shadows and address block artifacts introduced by
the first stage. Experimental results on official datasets val-
idate the superiority of our method compared to existing
approaches, and our approach emerged as the winner in
the fidelity track of the NTIRE 2024 Shadow Removal Chal-
lenge during the final testing competition (1st place).

1. Introduction

Shadows are commonly observed in various natural
scenes when a light source is partially or completely ob-
structed by objects. While shadows in images can provide
rich natural information in specific contexts, they inevitably
degrade the perception quality of background information.
However, correspondingly, shadows in images also intro-
duce a series of challenges for subsequent high-level vision
tasks, e.g., object tracking [33] and detection [31], seman-
tic segmentation [53], and face recognition [50]. There-
fore, shadow removal, as one of the fundamental tasks in
computer vision, has been extensively studied. In recent
years, the removal of shadows in high-resolution images
has emerged as a challenging aspect in the field of image
restoration research.
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Figure 1. Visual Results of Shadow removal by the SOTA
ShadowFormer [17] and the proposed methods. When dealing
with complex shadow scenes at high resolution, our method Re-
shaormer can remove more undesired shadows and reconstruct
more pixel information, while also mitigating the disruption to the
original background information.

The current approaches for removing shadows from im-
ages can be broadly categorized into two types: traditional
methods based on physical models and solutions based on
deep learning. Traditional shadow removal methods rely
on prior knowledge of the physical properties of the im-
age, e.g., image gradients [16], illumination [43], and re-
gions [18, 38], etc. However, due to the limitations imposed
by these physical characteristics, traditional methods face
challenges in accurately modeling and extending to com-
plex shadow removal scenarios in the real world [23].

Moreover, the success of deep learning approaches in di-
verse computer vision tasks [6, 11–13, 27, 54, 55] has led
to their gradual dominance. This trend extends to low-level
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visual tasks, e.g., single-image rain removal, image deblur-
ring, and image reflection removal, etc. Le et al. [25, 26]
employed shadow illumination modeling to infer the map-
ping relationship between the shadow image (Is) and the
clean image (Isf ). On the other hand, Hu et al. [19] in-
troduced a direction-aware spatial attention module and a
growing dilated convolution approach to facilitate shadow
removal, effectively utilizing multiple contextual features.
Liu et al. [31] enhanced the training of their network by
utilizing a large dataset of synthetic shadow images, result-
ing in improved shadow removal performance. Addition-
ally, Zhu et al. [54] proposed a novel bidirectional map-
ping network (BMNet) that incorporates auxiliary supervi-
sion considering shadow generation, leading to more effec-
tive restoration of the underlying background content dur-
ing the shadow removal process. While these image restora-
tion methods have achieved good performance in shadow
removal tasks, there are still some challenging cases. For in-
stance, when shadows have non-uniform and concentrated
distributions, the models may not thoroughly restore the im-
age, and they can even disrupt the contour information in
the background region [54]. Moreover, the current meth-
ods have not been sufficiently optimized for high-resolution
large-scale images, thereby constraining the restoration ef-
fectiveness for high-resolution shadow images.

Therefore, in this paper, we introduce a novel two-
stage approach called HirFormer (Dynamic High Resolu-
tion Transformer for Large-Scale Image Shadow Removal)
to overcome this limitation and enhance the restoration
quality specifically for high-resolution shadow images. In
the first stage, we employ vision transformer [7] blocks to
construct a U-shaped encoder-decoder framework. The in-
put high-resolution image is divided into 16 smaller blocks,
arranged in a 4 × 4 grid. Patch embeddings are applied to
each patch, which are subsequently processed by the net-
work for restoration. The restored patches are then sequen-
tially stitched together to reconstruct the high-resolution
image. This initial stage effectively removes a substantial
portion of the shadows. In the second stage, we utilize mul-
tiple NAFNet blocks [3] without global residual connec-
tions, to refine the high-resolution image. The primary goal
of this stage is to eliminate the remaining shadows while
minimizing boundary artifacts that may arise due to the
block effect of the Transformer. By adopting this approach,
we achieve dynamic high-resolution shadow removal. As
shown in Figure 1, our method exhibits superior robust-
ness in handling high-resolution shadow removal tasks. Ex-
tensive experiments further validate that HirFormer outper-
forms the state-of-the-art single-image shadow removal ap-
proaches in terms of fidelity metrics for the final restoration
results. In summary, our contributions are as follows:

• We introduce a novel approach for dynamic high-
resolution image processing, enabling vision transformer

to effectively restore large-scale images by fully harness-
ing the benefits of global self-attention in the context of
image shadow removal tasks.

• We adopt a two-stage shadow removal strategy to inte-
grate the advantages of vision transformer and NAFNet
in low-level visual tasks. This fusion approach enhances
the robustness of high-resolution image shadow removal,
while effectively mitigating boundary artifacts resulting
from the block effect of the Transformer.

• Our method is confirmed to be effective through experi-
ments on both validation and testing data sets provided in
the NTIRE 2024 Shadow Removal Challenge and our ap-
proach emerged as the winner in the fidelity track dur-
ing the final testing competition.

2. Related work
2.1. Image Shadow Removal

Existing methods for shadow removal in images can
be broadly categorized into two types, traditional physics-
based techniques and deep learning-based approaches:

Traditional techniques. Early shadow removal meth-
ods [8, 9, 14, 18, 48] mostly relied on prior knowledge of
the physical characteristics of images, e.g., lighting con-
ditions, gradients, regions, and user interactions. Guo et
al. [18] restored shadow-free images by establishing illumi-
nation conditions between individual regions. Finlayson et
al. [8, 9] utilized the characteristic of gradient consistency
to remove shadows. Gong et al. [14] improved the robust-
ness of shadow removal algorithms by incorporating two
user interaction inputs.

Deep learning-based approaches. In recent years, an
escalating number of researchers have employed large-
scale datasets to train deep neural networks [6, 19, 26, 29,
30, 32, 40] for the purpose of shadow removal. These
approaches usually leverage supervised and unsupervised
training strategies.

In supervised methods, Chen et al. [4] proposed a
context-aware network that integrates information from
both shadow and shadow-free regions in the feature space.
Le et al. [26] employed an illumination model and image
decomposition techniques to accomplish the task of shadow
removal. Fu et al. [10] addressed shadow removal by ma-
nipulating the weight map during image exposure fusion,
utilizing exposure fusion techniques. Wan et al. [39] tack-
led the challenge of inconsistent static styles between the
shadow and shadow-free regions before and after restora-
tion by introducing a style-guided shadow removal network,
which aligns the restored shadow regions with the back-
ground style. Zhu et al. [54] introduced the concept of mu-
tual assistance between the shadow generation and shadow
removal processes and designed a parameter-unified net-
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Figure 2. Architecture of HirFormer for high-resolution image shadow removal. The shadow images undergo the initial restoration process
using the Dynamic High Resolution Vision Transformer, yielding preliminary restoration results. Subsequently, the Initial Restored Image
is further refined for large-scale images by passing it through a compact NAFNet network, ultimately producing the final clean image.

work for synchronous training. In the latest state-of-the-art
(SOTA) approach [17], transformer [7, 34] are employed as
fundamental modules for the encoder and decoder, enhanc-
ing the ability to capture contextual information.

In unsupervised methods, several notable works [20, 21,
30, 31] primarily utilize generative models, e.g., GAN or
Diffusion, training the models using unpaired shadow im-
ages. Jin et al. [21] introduced a method that incorpo-
rates shadow-free chromaticity as a constraint to guide the
network, leveraging an unsupervised domain classifier for
shadow removal.

Although the aforementioned methods have demon-
strated promising results in their specific domains for
shadow removal, they often face challenges in achiev-
ing high performance in complex real-world environments.
This is primarily attributed to the substantial variations in

shadow distribution and the complexity of non-shadow re-
gions in the background. Consequently, there is a pressing
need to develop shadow removal models that can effectively
address complex scenes and high-resolution images.

2.2. Image Restoration Using Transformer

The Transformer model [37], which utilizes self-
attention mechanisms, was initially applied in the field of
natural language processing (NLP) and demonstrated re-
markable performance in modeling long sequences. Fur-
thermore, various attention modules have found extensive
applications in computer vision tasks [44–46, 56, 57]. The
emergence of Vision Transformer (VIT) [7] has made it pos-
sible to establish a unified framework bridging NLP and
computer vision. Subsequently, the Transformer model has
gradually been adopted in various visual tasks, including
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image recognition [7, 34], object detection [1], and segmen-
tation [41, 52]. In low-level visual tasks, the Transformer
model has also achieved state-of-the-art performance in im-
age restoration domains, e.g., image deblurring [3, 45, 46],
deraining [44, 57], dehazing [22], desnowing [57], and
super-resolution [28, 47].

In this paper, we designed a Dynamic High Resolution
Algorithm 1 to fully leverage the contextual understanding
capabilities of Transformer, achieving high-performance
restoration of complex high-resolution shadow images.

3. Method

The input for the high-resolution image shadow removal
task is a shadow image Is. The optimization objective is
to obtain a shadow-free image Isf through model process-
ing, minimizing the discrepancy with the ground truth im-
age Igt, while ensuring both effective shadow removal and
accurate background reconstruction.

3.1. Two-stage Image Restoration Pipeline

Due to the high resolution of shadow images, uneven
shadow distribution, and complex background information,
existing shadow removal networks struggle to effectively
reconstruct pixel information. Therefore, we propose a
novel two-stage shadow removal pipeline called HirFormer,
which consists of two components: the Dynamic High Res-
olution Transformer and the Large-scale Image Refinement
Network. The overall framework of HirFormer is illustrated
in Figure 2.

• The Dynamic High Resolution Transformer utilizes the
processing capabilities of a transformer model to effec-
tively handle long sequences and reconstruct pixel-level
details. As a result, it produces the preliminary restora-
tion result Iv , which represents a clean image after the
initial removal of shadows.

• The Large-scale Image Refinement Network utilizes the
excellent restoration capabilities of NAFNet to further re-
move shadows, while also helping to eliminate artifacts
caused by the block effect of VIT, resulting in the final
refined image Isf .

3.2. Dynamic High Resolution Transformer

During this stage, we employ vision transformer blocks
to construct a U-shaped encoder-decoder framework. The
input Is

(
∈ RN×C×H×W

)
is divided into 16 smaller

blocks, arranged in a 4 × 4 grid. Patch embeddings
are applied to each patch Ii

(
∈ R16N×C×H

4 ×W
4

)
, which

are subsequently processed in parallel by the network for
restoration. The restored patches are then sequentially
stitched together to reconstruct the high-resolution image Iv(
∈ RN×C×H×W

)
, they will then be sent to the Large-scale

Algorithm 1 Dynamic High Resolution During Training
Input: the shadow images Is : tensor(N,C,H,W )
Output: the clean images Isf : tensor(N,C,H,W )

1: o,N,C,H,W = 4, Is.shape
2: for image in Is (N) do
3: I (i) : tensor

(
o2, C, H

o ,
W
o

)
← split (Is (i))

4: if (h,w)%
(
H
4 ,

W
4

)
== 0 then

5: Position (a,b)← (h,w)

6: /* Store the segmented image along the channel */

7: Il : tensor
(
o2 ·N,C, H

o ,
W
o

)
← reshape

(
N∑
i=1

I (i)

)
8: /* Model1 is the Vision Transformer in stage 1 */
9: Ii : tensor

(
o2 ·N,C, H

o ,
W
o

)
←Model1 (Il)

10: Iv : tensor(N,C,H,W )← merge (Ii,Position)
11: Loss (Iv, Igt) .backward()
12: /* Model2 is the Compact NAFNet in stage 2 */
13: Isf : tensor(N,C,H,W )←Model2 (Iv)
14: Loss (Isf , Igt) .backward()
15: return Isf

image Refinement Network for further refinement. The de-
tailed steps of this algorithm during the training and testing
processes are illustrated in Algorithm 1 and Algorithm 2.

3.3. Large-scale Image Refinement Network

During the refinement stage of shadow removal, the
model requires fine-tuning on high-resolution images to ef-
fectively eliminate residual shadows and address artifacts
caused by the block effect of VIT. As illustrated in Fig-
ure 2, we adopted a reduced-scale variant of the NAFNet
network, composed of 24 NAFNet modules. Notably, due
to the absence of shadow residual learning in the refinement
process, the global residual connections were omitted to en-
sure a lightweight network design.

3.4. Loss Functions

The training process of HirFormer is divided into three
steps, as illustrated in Figure 2. Each step utilizes a different
loss function to optimize the restoration performance, with
a particular focus on preserving image fidelity. To this end,
we employ the Charbonnier loss [2], which is mathemati-
cally defined as follows:

Lcontent =
1

n

n∑
n=1

√
∥Igt − Ic∥2 + ϵ2, (1)

where Igt and Ic represent the ground truth and shadow-free
images generated from different networks, respectively. In
addition, ϵ is seen as a tiny constant (e.g., 10−5 ) for stable
and robust convergence, and n represents the total number
of input images in a single iteration.
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In addition to the pixel-level content loss, we employ
auxiliary losses based on frequency domain information to
complement our network. To enhance the restoration of fre-
quency domain information, we further utilize the FFT loss,
which is mathematically defined as follows:

Lfrequency =
1

n

n∑
n=1

∥F (Igt)−F (Ic)∥1. (2)

The structural similarity index (SSIM) is a metric that
quantifies the similarity between two images by considering
a combination of luminance, contrast, and structural simi-
larities. In order to improve the fidelity of the restored im-
ages, we additionally utilize the SSIM loss:

Lssim =

(
2µIgt

µIc
+ c1

) (
2σIgtIc + c2

)(
µ2
Igt

+ µ2
Ic
+ c1

)(
σ2
Igt

+ σ2
Ic
+ c2

) , (3)

where µ and σ denote the mean and standard deviation of
image intensities, respectively. The term σIgtIc represents
the covariance between the two images. Furthermore, the
constants c1 and c2 are included to prevent division by zero.

During the initial training step, we exclusively focus on
training the encoder-decoder architecture of VIT. This step
aims to primarily eliminate shadows from the image and re-
construct background pixels. The total loss utilized during
this stage is defined as:

Lstep1 = Lcontent + λLfrequency, (4)

where λ denotes the balanced weight and we empirically set
λ to 0.1 as default.

During the second training step, we keep the parameters
of VIT frozen and focus solely on training the Refine Large-
scale Image network (i.e., compact NAFNet). The total loss
utilized during this stage remains consistent with the first
stage:

Lstep2 = Lstep1 = Lcontent + ζLfrequency, (5)

where ζ is assigned a constant value of 0.02.
During the last training step, we perform simultaneous

fine-tuning of both stages of the model (e.g., VIT and com-
pact NAFNet) to achieve the ultimate refinement effect. The
total loss function utilized at this stage is defined as:

Lstep3 = Lcontent + τLssim, (6)

where τ represents a weight coefficient, which is set to 0.05.

4. Experiments
4.1. Dataset

The NTIRE image shadow removal dataset provided
by the organizing committee for the year 2024 is parti-
tioned into three sections: the training set (ntire24-train),

Algorithm 2 Dynamic High Resolution During Testing
Input: the shadow images Is : tensor(N,C,H,W )
Output: the clean images Isf : tensor(N,C,H,W )

1: N,C,H,W = Is.shape
2: /* PS and OS are the size of patch and overlap */
3: PS,OS = Crop Patch Size,Overlap Size
4: m = (H// (PS −OS) + 1)
5: n = (W// (PS −OS) + 1)
6: /* M is the number of cropped images after overlap. */
7: M = (H// (PS −OS) + 1) (W// (PS −OS) + 1)
8: for image in Is (N) do
9: if (h,w)% (PS −OS,PS −OS) == 0 then

10: I (i) : tensor(M,C,PS, PS)← split (Is (i))
11: Position (a,b)← (h,w)

12: Il : tensor
(
M ·N,C, H

m , W
n

)
← reshape

(
N∑
i=1

I (i)

)
13: Ii : tensor

(
M ·N,C, H

m , W
n

)
←Model1 (Il)

14: Iv : tensor(N,C,H,W )← merge (Ii,Position)
15: Isf : tensor(N,C,H,W )←Model2 (Iv)
16: return Isf

the validation set (ntire24-valid), and the test set (ntire24-
test). This dataset comprises paired images, consisting of
shadowed images and their corresponding ground truth im-
ages without shadows. All images have dimensions of
3 × 1440 × 1920. The training set consists of 1000 pairs
of input and ground truth images, while the validation set
comprises 100 pairs of input and ground truth images. The
test set includes only 75 input images, and the final evalua-
tion will be based on the scores obtained from submissions
to the competition server. Therefore, in this study, we will
utilize the training set for training and validation purposes,
while the validation set will be used to assess the model’s
performance. Furthermore, the organizing committee has
also released the NTIRE image shadow removal dataset for
the year 2023 [35], which has a similar composition. We
will incorporate this dataset for training concurrently.

In addition to the official datasets mentioned above, we
incorporated synthetic shadow datasets to improve the gen-
eralization performance of the shadow removal model. To
accomplish this, we utilized the ntire24-train and ntire23-
train datasets to train a shadow generator using a GAN
network [15]. Subsequently, we generated 1000 paired
synthetic shadow datasets on ntire24-train-GT and ntire23-
train-GT, respectively. These synthetic shadow datasets
were randomly mixed with the officially released shadow
datasets for training, thereby diversifying the training data.

4.2. Implementation Details

We implement our proposed HirFormer image restora-
tion network via the PyTorch 1.8 platform. Adam [24]
optimizer with parameters β1 = 0.9 and β2 = 0.99 is
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Table 1. Officially quantitative evaluations for the submissions corresponding to the Track 1 (fidelity) of the NTIRE 2024 Image Shadow
Removal Challenge on the ntire24-test dataset [36]. Our method achieved outstanding performance, winning the competition(1st place).

Rank Team PSNR↑ SSIM↑ LPIPS↓ Params (M) Runtime Device
1/18 LUMOS(ours) 24.78(2) 0.832(2) 0.110(4) 23 6.00 s RTX3060
2/18 Shadow R 24.58(3) 0.832(1) 0.098(2) 376 2.55 s RTX2080Ti
3/18 ShadowTech Innovators 24.81(1) 0.832(3) 0.111(5) 26 3.15 s A40
4/18 LVGroup HFUT 24.35(4) 0.823(6) 0.082(1) 17 3.46 s RTX4090
5/18 USTC ShadowTitan 24.04(5) 0.827(4) 0.104(3) 83 6.00 hours A40
6/18 GGBond 23.87(6) 0.824(5) 0.127(6) 8.895 4.50 s A6000

adopted to optimize HirFormer. Additionally, we introduce
the progressive training strategy [58] and the specific train-
ing phase of HirFormer could be divided into three steps:

Step 1: Dynamic High Resolution Transformer. We use
progressive training strategy at first. We start training with
patch size 256×256 and batch size 24 for 40K iterations.
The patch size and batch size pairs are updated to [(512,
12),(1024 , 5),(1408, 3)] at iterations [36K, 24K, 24K]. The
initial learning rate is 4 × 10−4 and remains unchanged
when patch size is 1408. Later the learning rate changes
with Cosine Annealing scheme to 8 × 10−5. Due to the
high computational complexity of vision transformers, it is
generally challenging to use large patch sizes. Therefore,
to enhance the model’s performance on large-scale images,
we employed a dynamic high-resolution approach. This
approach involves dividing the input image into smaller
patches at a certain ratio. Among the three options of 2× 2,
4 × 4, and 8 × 8 divisions, we selected the 4 × 4 divi-
sion scheme that exhibited better performance during the
validation phase. After processing all the smaller patches,
a merging method is applied to gradually reconstruct the
high-resolution image, thus enabling error backpropagation
for training the restoration model. The first step performs
on the NVIDIA 4090 device. We obtain the best model at
this step as the initialization of the second step.

Step 2: Large-scale Image Refinement Network. Due to
the presence of residual shadows in the overall image af-
ter restoration using the vision transformer, along with the
edge artifacts caused by the block effect, the visual percep-
tion is significantly affected. To address this, we introduced
a scaled-down version of the NAFNet network for refine-
ment, added after the restoration network. This two-stage
model, called HirFormer, was formed. In the second train-
ing step, the parameters of the vision transformer blocks
were no longer updated, focusing solely on training the
added NAFNet network for further refinement. We start
training with patch size 1408 and batch size 1. The initial
learning rate is 8× 10−5 and changes with Cosine Anneal-
ing scheme to 1 × 10−7, including 40K iterations in total.
Exponential Moving Average (EMA) is applied for the dy-
namic adjustment of model parameters. The second step
performs on the NVIDIA 4090 device.

Step 3: Fine-tuning HirFormer. In order to further im-
prove the ultimate performance of the entire model, we per-
formed synchronous fine-tuning on both stages of the net-
work. This enabled us to optimize the parameters of the
entire model concurrently. We start training with patch size
1408 and batch size 1. The initial learning rate is 5× 10−5

and changes with Cosine Annealing scheme to 4 × 10−8,
including 40K iterations in total. The last step performs on
the NVIDIA A40 device.

The training strategy for the three steps is also illustrated
in Figure 2. In the testing phase, we adopt the model af-
ter fine-tuning to achieve the best performance. 12G GPU
memory is enough to infer our model, and we use one
NVIDIA 3060 GPU with 12G memory for testing.

4.3. Comparations

Based on prior method [58], we employ three reference-
based metrics to verify the effectiveness of our method:
Peak Signal-to-Noise Ratio (PSNR), the structural similar-
ity (SSIM) [42], and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [49]. For the PSNR and SSIM metrics,
higher is better. For the LPIPS metric, lower means better.

Results of Challenge. Table 1 presents a comparative anal-
ysis of our proposed method with the top six competing
teams in the fidelity track of the NTIRE 2024 image shadow
removal challenge. The metrics PSNR, SSIM, and LPIPS
represent the average values computed on the entire ntire24-
test dataset after the final testing submission. It can be
observed from Table 1 that our method exhibits outstand-
ing performance across all metrics among the participating
teams, securing the top position overall in the track. Addi-
tionally, our model boasts a small parameter size of 23M.

Comparison with Previous SOTA Methods To compare
the performance of our proposed HirFormer with sev-
eral state-of-the-art image restoration methods that have
demonstrated superior performance, we selected three mod-
els published in different journals: ShadowFormer [17],
SwinIR [28], and ShuffleFormer [46]. In order to ensure
fair evaluation, we used the same training data and method-
ology, and assessed their performance on the same test
set (ntire24-valid). Their visual results are shown in Fig-
ure 3, while the metrics are presented in Table 2. It proves
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(b) (c) Ours GT(a)Input

SwinIR ShuffleFormer Reshaformer GTShadowFormerInput

Figure 3. Visual comparison results of shadow removal on the ntire24-valid dataset. (a) to (c) are the estimated results from previous SOTA
methods: ShadowFormer [17], SwinIR [28] and ShuffleFormer [46], respectively.

14.38 dB
Shadow Image

PSNR
Reference

PSNR
DHAN

PSNR
DSC

PSNR
ST-CGAN

PSNR
DCshadownet

PSNR
SPAformer

PSNR
shadowformer

PSNR
HirFormer(Ours)

16.84 dB
Shadow Image

PSNR
Reference

28.61 dB
(c)

16.84 dB
Input

27.32 dB
(a)

27.44 dB
(b)

29.11 dB
(d)

30.47 dB
(e)

30.76 dB
HirFormer(Ours)

Figure 4. Visual comparison results on ISTD [40] dataset. (a) to (e) are the results from previous SOTA methods: DSC [19], SpA-
Former [51], DHAN [5], DC-ShadowNet [21] and ShadowFormer [17], respectively. We did not train on ISTD [40] dataset, but only
generalized validation, demonstrating that our method has excellent generalization ability on low resolution shadow datasets.
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OursGTInput

w./o Stage 2 8×8 grid in Stage 1 2×2 grid in Stage 1

Figure 5. Visual results of ablation study for different settings in
Stage 1 and Stage 2.

that HirFormer outperforms existing methods in terms of
objective metrics and achieves superior shadow removal
results, exhibiting a closer approximation to the ground
truth in the restoration of complex background informa-
tion. In addition, Figure 4 illustrates that the untrained
HirFormer can still easily generalize to the low-resolution
dataset ISTD [40], surpassing the performance of the previ-
ous SOTA methods.

4.4. Ablation Study

Analysis of the effects of Refine Large-scale Image(Stage
2). Our proposed method is a two-stage model, with Stage
2 serving for further refinement of the images. We exper-
imentally examined the impact of Stage 2 on the overall
performance of the model. As observed in Table 3, remov-
ing Stage 2 significantly reduces the PSNR and RMSE met-
rics. Additionally, in Figure 5, the visual results demon-
strate an increased presence of residual artifacts and block
effects when Stage 2 is excluded.

Table 2. Quantitative evaluation of HirFormer in comparison to
existing methods on the ntire24-valid dataset.

Method PSNR↑ SSIM↑
ShadowFormer [17] 22.907 0.819

SwinIR [28] 23.257 0.814
ShuffleFormer [46] 24.724 0.821

Ours 26.319 0.845

Table 3. Ablation for different settings in Stage 1 and Stage 2.

Models PSNR↑ SSIM↑
HirFormer & w./o Stage 2 23.024 0.807

HirFormer & 2× 2 grid in Stage 1 24.691 0.832
HirFormer & 8× 8 grid in Stage 2 25.337 0.811

HirFormer 26.319 0.845

OursGTInput

Figure 6. Visual results of HirFormer limitations.

Analysis of the effects of grid splitting type used in Dy-
namic High Resolution Algorithm 1(Stage 1). The exper-
iments validated the impact of different grid splitting types
in the Dynamic High Resolution Algorithm 1 on the perfor-
mance of HirFormer. As shown in Table 3, using both 2×2
and 8×8 grid splitting methods resulted in a decrease in ob-
jective metrics. Furthermore, Figure 5 indicates that chang-
ing the grid splitting type exacerbates the residual shadows.

4.5. Limitation

Our proposed HirFormer effectively removes shadows
from high-resolution images and reconstructs pixel details.
However, it still has its limitations. As shown in Figure 6,
in two complex scenes, although our approach successfully
removes a significant portion of the shadows in the images,
it also introduces color darkening and slight distortion in
the background information. This may be attributed to the
model leveraging shadow diffusion in the background when
dealing with images where there is minor color difference
between the shadows and the background.

5. Conclusion
In this paper, we propose HirFormer, a novel approach

for efficient shadow removal in high-resolution images.
HirFormer consists of two stages: Dynamic High Resolu-
tion Transformer and Large-scale Image Refinement. The
first stage is based on the VIT model to reconstruct fine
pixel details and remove a substantial portion of shadows.
The second stage incorporates the NAFNet model to fur-
ther eliminate residual shadows and address block arti-
facts introduced by the first stage. Experimental analy-
sis demonstrates the strong competitiveness of HirFormer
in shadow removal and high-resolution background recon-
struction. It effectively restores large-scale degraded im-
ages affected by shadows, outperforming existing methods
across various objective metrics. In addition to winning the
NTIRE2024 image shadow removal challenge, we believe
that HirFormer also holds great potential for other high-
resolution image restoration tasks.
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