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Figure 1. Examples of the synthetic LQ images generated using our proposed degradation pipeline and results produced by our method
and other state-of-the-art wild IR approaches: Real-ESRGAN [53], StableSR [51], and SUPIR [57]. Notably, both StableSR and SUPIR
adapt pretrained Stable Diffusion [39, 44] models to image restoration, and SUPIR further leverages textual semantic guidance using
LLaVA [26]. The proposed method successfully handles various complex degradations and produces clean and sharp results.

Abstract

Though diffusion models have been successfully applied
to various image restoration (IR) tasks, their performance
is sensitive to the choice of training datasets. Typically, dif-
fusion models trained in specific datasets fail to recover im-
ages that have out-of-distribution degradations. To address
this problem, this work leverages a capable vision-language
model and a synthetic degradation pipeline to learn im-
age restoration in the wild (wild IR). More specifically, all
low-quality images are simulated with a synthetic degrada-
tion pipeline that contains multiple common degradations
such as blur, resize, noise, and JPEG compression. Then
we introduce robust training for a degradation-aware CLIP
model to extract enriched image content features to assist
high-quality image restoration. Our base diffusion model
is the image restoration SDE (IR-SDE). Built upon it, we
further present a posterior sampling strategy for fast noise-

free image generation. We evaluate our model on both syn-
thetic and real-world degradation datasets. Moreover, ex-
periments on the unified image restoration task illustrate
that the proposed posterior sampling improves image gen-
eration quality for various degradations.

1. Introduction
Diffusion models have proven effective for high-quality
(HQ) image generation in various image restoration (IR)
tasks such as image denoising [7, 14, 30], deblurring [6,
43, 55], deraining [37, 59], dehazing [30, 31], inpaint-
ing [28, 44, 47], super-resolution [18, 48, 60], shadow re-
moval [11, 31], etc. Compared to traditional deep learning-
based approaches that directly learn IR models using an ℓ1
or ℓ2 loss [5, 23, 61, 62] or an adversarial loss [16, 52, 53],
diffusion models are known for their ability to generate
photo-realistic images with a stable training process. How-
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ever, they are mostly trained on fixed datasets and there-
fore typically fail to recover high-quality outputs when ap-
plied to real-world scenarios with unknown, complex, out-
of-distribution degradations [53].

Although this problem can be alleviated by leveraging
large-scale pretrained Stable Diffusion [39, 44] weights [25,
51, 57] and synthetic low-quality (LQ) image generation
pipelines [46, 53], it is still challenging to accurately restore
real-world images in the wild (i.e., wild IR). On the one
hand, Stable Diffusion uses an adversarially trained varia-
tional autoencoder (VAE) to compress the diffusion to la-
tent space, which is efficient but loses image details in the
reconstruction process. Moreover, in practice, the restora-
tion in latent space is unstable and tends to generate color-
shifted images [25]. On the other hand, most existing works
use a fixed degradation pipeline (with different probabilities
for each degradation) to generate low-quality images [53],
which might be insufficient to represent the complex real-
world degradations.

In this work, we aim to perform photo-realistic im-
age restoration with enriched vision-language features that
are extracted from a degradation-aware CLIP model (DA-
CLIP [32]). For scenes encountered in the wild, we as-
sume the image only contains mild, common degradations
such as light noise and blur, which can be difficult to rep-
resent by text descriptions. We thus add a fidelity loss to
reduce the distance between the LQ and HQ image embed-
dings. Then the enhanced LQ embedding is incorporated
into the image restoration networks (such as the U-Net [45]
in IR-SDE [30]) via cross-attention. Inspired by Real-
ESRGAN [53], we also propose a new degradation pipeline
with a random shuffle strategy to improve the generaliza-
tion. An optimal posterior sampling strategy is further pro-
posed for IR-SDE to improve its performance. Fig. 1 shows
the comparison of our method with other state-of-the-art
wild IR approaches.

In summary, our main contributions are as follows:
• We present a new synthetic image generation pipeline

that employs a random shuffle strategy to simulate
complex real-world LQ images.

• For degradations in the wild, we modify DACLIP to
reduce the embedding distance of LQ-HQ pairs, which
enhances LQ features with high-quality information.

• We propose a posterior sampling strategy for IR-
SDE [30] and show that it is the optimal reverse-time
path, yielding a better image restoration performance.

• Extensive experiments on wild IR and other specific
IR tasks demonstrate the effectiveness of each compo-
nent of our method.

2. Related Work
Blind Image Restoration Image restoration (IR) aims to
reconstruct a high-quality (HQ) image from its corrupted

counterpart, i.e. from a low-quality (LQ) image with task-
specific degradations [9, 20, 22, 61–64, 69]. Most learning-
based approaches directly train neural networks with an
ℓ1/ℓ2 loss on HQ-LQ image pairs, which is effective but
often overfit on specific degradations [53, 57, 65]. Thus
the blind IR approach is proposed and has gained grow-
ing attention in addressing complex real-world degrada-
tions. BSRGAN [65] is the pioneering work that designs
a practical degradation model for blind super-resolution,
and Real-ESRGAN [53] improves it by exploiting a ‘high-
order’ degradation pipeline. Most subsequent blind IR
methods [4, 25] follow their degradation settings but with
some improvements in architectures and loss functions. Re-
cently, some works [17, 32, 40] further propose to jointly
learn different IR tasks using a single model to improve the
task generalization, so-called unified image restoration.

Photo-Realistic Image Restoration Starting from ESR-
GAN [16], photo-realistic IR becomes prevalent due to the
increasing requirement for high-quality image generation.
Early research explored a variety of methods that combine
GANs [10, 34] and other perceptual losses [8, 13, 67] to
train networks to predict images following the natural image
distribution [16, 52, 53]. However, GAN-based approaches
often suffer from unstable performance and can be chal-
lenging to train on small datasets. Recent works therefore
introduce diffusion models in image restoration for realis-
tic image generation [14, 18, 30, 31, 37, 48]. Moreover,
leveraging pretrained Stable Diffusion (SD) models [39, 44]
as the prior is growing popular in real-world and blind IR
tasks [25, 51, 56, 57]. In particular, StableSR [51] and
DiffBIR [25] adapt the SD model to image restoration us-
ing an approach similar to ControlNet [66]. CoSeR [50],
SeeSR [56], and SUPIR [57] further introduce the textual
semantic guidance in diffusion models for more accurate
restoration performance.

3. Method
Our work is a set of extensions and improvements on the
degradation-aware CLIP [32] which, in turn, builds on a
mean-reverting SDE [30]. Thus, before going into our
contributions in the following sections, we first summa-
rize the main constructions of the mean-reverting SDE and
degradation-aware CLIP.

3.1. Preliminaries

Mean-Reverting SDE Given a random variable x0 sam-
pled from an unknown distribution, x0 ∼ p0(x), the mean-
reverting SDE [30] is defined according to

dx = θt (µ− x)dt+ σtdw, (1)

where θt and σt are predefined time-dependent coefficients
and w is a standard Wiener process. By restricting the coef-
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Figure 2. Overview of the proposed pipeline for synthetic image degradation. There are three degradation phases adopting the random
shuffle strategy. We use different types of filters in blur generation and add the Wiener deconvolution for simulating ringing artifacts
similar to the Sinc filter in Real-ESRGAN [53]. As a general ×1 image restoration pipeline, we use one ‘resize’ operation to provide
image resolution augmentation, and another resize operation to ensure that all the degraded images are resized back to their original size.

ficients to satisfy σ2
t / θt = 2λ2 for all timesteps t, we can

solve the marginal distribution pt(x) as follows:

pt(x) = N
(
xt | mt, vt

)
,

mt = µ+ (x0 − µ) e−θ̄t ,

vt = λ2
(
1− e−2 θ̄t

)
,

(2)

where θ̄t =
∫ t

0
θz dz. To simulate the image degradation

process, we set the HQ image as the initial state x0 and the
LQ image as the mean µ. Then the forward SDE iteratively
transforms the HQ image into the LQ image with additional
noise, where the noise level is fixed to λ.

Moreover, Anderson [2] states that the forward process
(Eq. (1)) has a reverse-time representation as

dx =
[
θt (µ− x)− σ2

t ∇x log pt(x)
]
dt+ σtdŵ, (3)

where ∇x log pt(x) is the score function, which can be
computed via Eq. (2) during training since we have access
to the ground truth LQ-HQ pairs in the training dataset. Fol-
lowing IR-SDE [30], we train the score prediction network
with a maximum likelihood loss which specifies the optimal
reverse path x∗

t−1 for all times:

x∗
t−1 =

1− e−2 θ̄t−1

1− e−2 θ̄t
e−θ

′
t(xt − µ)

+
1− e−2 θ

′
t

1− e−2 θ̄t
e−θ̄t−1(x0 − µ) + µ,

(4)

where θ
′

i =
∫ i

i−1
θtdt. The proof can be found in [30].

Once trained, we can simulate the backward SDE (Eq. (3))
to restore the HQ image, similar to what is done in other
diffusion-based models [49].

Degradation-Aware CLIP The core component of the
degradation-aware CLIP (DACLIP [32]) is a controller that
explicitly classifies degradation types and, more impor-
tantly, adapts the fixed CLIP image encoder [42] to output
high-quality content embeddings from corrupted inputs for
accurate multi-task image restoration. DACLIP uses a con-
trastive loss to optimize the controller. Moreover, the train-
ing dataset is constructed with image-caption-degradation
pairs where all captions are obtained using BLIP [19] on
the clean HQ images of a multi-task dataset.

The trained DACLIP model is then applied to down-
stream networks to facilitate image restoration. Specifi-
cally, the cross-attention [44] mechanism is introduced to
incorporate image content embeddings to learn semantic
guidance from the pre-trained DACLIP. For the unified im-
age restoration task, the predicted degradation embedding
is useful and can be combined with visual prompt learn-
ing [71] modules to further improve the performance.

3.2. Synthetic Image Degradation Pipeline

To restore clean images from unknown and complex degra-
dations, we use a synthetic image degradation pipeline for
LQ image generation, as shown in Fig. 2. Common degra-
dation models like blur, resize, noise, and JPEG com-
pression are repeatedly involved to simulate complex sce-
narios. Following the high-order degradation in Real-
ESRGAN [53], all degradation models in our pipeline have
individual parameters that are randomly picked in each
training step, which substantially improves the generaliza-
tion for out-of-distribution datasets [29, 53, 65]. In particu-
lar, in the blur model, we add some specific filter types (e.g.,
defocus, box, and motion filters) rather than only Gaussian
filters for more general degradations, and the Wiener de-
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convolution is included to simulate natural ringing artifacts
(which usually occurs in the preprocessing steps in some
electronic cameras [15, 58]). Wiener deconvolution gen-
erates more distinct ringing artifacts on textures than the
Sinc filter [53], which can be seen in the two examples of
applying Wiener deconvolution to blurry images in Fig. 3.
For ×1 image restoration (no resolution changes), we use
two resize operations (with different interpolation modes) to
provide random resolution augmentation and ensuring that
all degraded images then are resized back to their original
size. Note that our model focuses on image restoration in
the wild (wild IR) and we therefore set all degradations to
be light and diverse. Moreover, we randomly shuffle the
degradation orders to further improve the generalization.

HQ Input Blur Degradation Wiener Deconvolution Sinc Filter

Figure 3. Examples of applying Wiener deconvolution to gener-
ate ringing artifacts. Compared to the Sinc filter used in Real-
ESRGAN [53], the proposed Wiener deconvolution generates
more distinct ringing artifacts on textures.

3.3. Robust Degradation-Aware CLIP

As introduced in Sec. 3.1, DACLIP leverages a large-scale
pretrained vision-language model, namely CLIP, for multi-
task image restoration. While it works well on some (rel-
atively) large and distinct degradation types such as rain,
snow, shadow, inpainting, etc., it fares worse on the wild IR
task since most degradations are mild, hard to describe in
text, and contain multiple degradations in the same image.

To address this problem, we update DACLIP to learn
more robust embeddings with the following aspects: 1) In
dataset construction, instead of only using one degradation
for each image, we use different combinations of degrada-
tion types such as ‘an image with blur, noise, ringing ar-
tifacts’ as the degradation text. 2) We add an ℓ1 loss to
minimize the embedding distance between LQ and HQ im-
ages, where the HQ image embedding is extracted from
the frozen CLIP image encoder. An overview of the ro-
bust DACLIP is illustrated in Fig. 4. The multi-degradation
texts enable DACLIP to handle images that contain multiple
complex degradations in the wild. Moreover, the additional
ℓ1 loss forces DACLIP to learn accurate clean embeddings

wild degradation
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Figure 4. The proposed robust degradation-aware CLIP (DACLIP)
model. eTc and eTd are caption and degradation text embeddings,
respectively. The embeddings (eLQ

c , eLQ
d ) are extracted from LQ

images, and eHQ
c represents the HQ image embedding extracted

from the original CLIP image encoder.

from our synthetic corrupted inputs.
As Luo et al. [32] illustrates, the quality of the image

content embedding significantly affects the restoration re-
sults, thus encouraging us to extend the DACLIP base en-
coders to larger models for better performance. Specifically,
we first generate clean captions using HQ images and then
train the ViT-L-14 (rather than ViT-B-32 in DACLIP) based
on the synthetic image-caption-degradation pairs, where the
LQ images are generated following the pipeline in Fig. 2.
The dimensions of both image and text embeddings have
increased from 512 to 768, which introduces more details
for downstream IR models.

We use IR-SDE [30] for realistic image generation and
insert the image content embedding into the U-Net via
cross-attention [44], analogously to what was done in [32].
Since the degradation level is difficult to describe using text
(e.g., the blurry level, noise level, and quality compression
rate), we thus abandon the use of degradation embeddings
for wild image restoration in both training and testing, sim-
ilar to the single task setting in DACLIP [32]. In addition,
to enable large-size inputs, we simply modify the network
with an additional downsampling layer and an upsampling
layer before and after the U-Net for model efficiency.

3.4. Optimal Posterior Sampling for IR-SDE

It is worth noting that the forward SDE in Eq. (1) requires
many timesteps to converge to a relatively stable state, i.e.
a noisy LQ image with noise level λ. The sampling process
(HQ image generation) uses the same timesteps as the for-
ward SDE and is also sensitive to the noise scheduler [36].
To improve the sample efficiency, Zhang et al. [68] propose
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a posterior sampling approach by specifying the optimal
mean and variance in the reverse process. However, their
method sets the SDE mean µ to 0, and only uses it to gen-
erate actions as a typical diffusion policy in reinforcement
learning applications. In this work, we extend their poste-
rior sampling strategy into a more general form for IR-SDE.

Let us use the same notation as in Sec. 3.1. Formally,
given the initial state x0 and any other diffusion state xt at
time t ∈ [1, T ], we can prove that the posterior of the mean-
reverting SDE is tractable when conditioned on x0. More
specifically, this posterior distribution is given by

p(xt−1 | xt, x0) = N (xt−1 | µ̃t(xt, x0), β̃tI), (5)

which is a Gaussian with mean and variance given by:

µ̃t(xt, x0) =
1− e−2 θ̄t−1

1− e−2 θ̄t
e−θ

′
t(xt − µ)

+
1− e−2 θ

′
t

1− e−2 θ̄t
e−θ̄t−1(x0 − µ) + µ,

(6)

and β̃t =
(1− e−2θ̄t−1)(1− e−2θ

′
t)

1− e−2θ̄t
. (7)

Note that the posterior mean µ̃t(xt, x0) has exactly the same
form as the optimal reverse path x∗

t−1 in Eq. (4), meaning
that sampling from this posterior distribution is also optimal
for recovering the initial state, i.e. the HQ image.

In addition, combining the reparameterization trick
(xt = mt +

√
vt ϵt) with the noise prediction network

ϵ̃ϕ(xt, µ, t) gives us a simple way to estimate x0 at time t:

x̂0 = eθ̄t
(
xt − µ−

√
vtϵ̃ϕ(xt, µ, t)

)
+ µ, (8)

where mt and vt are the forward mean and variance in
Eq. (2), and ϕ is the learnable parameters. Then we itera-
tively sample reverse states based on this posterior distribu-
tion starting from noisy LQ images for efficient restoration.

4. Experiments
We provide evaluations on different image restoration tasks
to illustrate the effectiveness of the proposed method.

Implementation Details For all experiments, we use the
AdamW [27] optimizer with β1 = 0.9 and β2 = 0.99. The
initial learning rate is set to 2 × 10−4 and decayed to 1e-6
by the Cosine scheduler for 500 000 iterations. The noise
level is fixed to 50 and the number of diffusion denoising
steps is set to 100 for all tasks. We set the batch size to 16
and the training patches to 256 × 256 pixels. All models
are implemented with PyTorch [38] and trained on a single
A100 GPU for about 3-4 days.

4.1. Evaluation of IR in the Wild

Datasets and Metrics We train our model on the LS-
DIR dataset [21] which contains 84 991 high-quality images
with rich textures and their downsampled versions. In train-
ing, we only utilize the collected HQ images and synthet-
ically generate all HQ-LQ image pairs following the pro-
posed degradation pipeline in Fig. 2. In testing, we evaluate
our model on two external datasets: DIV2K [1] and RealSR
×2 [3]. Specifically, the DIV2K dataset contains 100 2K
resolution image pairs with all LQ images generated using
our degradation pipeline, while the RealSR ×2 dataset con-
tains 30 high-resolution real-world captured image pairs. In
both datasets, we upscale all LQ images to have the same
size as the corresponding HQ images for ×1 image restora-
tion. For wild IR, we pay more attention to the visual qual-
ity of restored images and thus prefer to compare percep-
tual metrics such as LPIPS [67], DISTS [8], FID [12], and
NIQE [35]. Note that NIQE is a non-reference metric that
only evaluates the quality of the output. In addition, we also
report distortion metrics like PSNR and SSIM since we also
want the prediction to be consistent with the input.

Comparison Approaches We compare our method
DACLIP-IR with other state-of-the-art photo-realistic wild
image restoration approaches: Real-ESRGAN [53], Sta-
bleSR [51], SeeSR [56], and SUPIR [57]. All these com-
parison methods use the same degradation pipeline as that
in Real-ESRGAN. Moreover, StableSR, SeeSR, and SUPIR
employ pretrained Stable Diffusion models [39, 44] as dif-
fusion priors for better generalization on out-of-distribution
images. SeeSR and SUPIR further leverage powerful
vision-language models (RAM [70] and LLaVA [26], re-
spectively) to provide additional textual prompt guidance
for image restoration in the wild.

Results The quantitative results on the DIV2K and Re-
alSR ×2 datasets are summarized in Table 1 and Table 2,
respectively. It is observed that DACLIP-IR achieves the
best performance over all approaches on the two datasets.
The results are quite expected for the DIV2k dataset since
we use the same degradation pipeline in both training and
testing. For the RealSR ×2 images, their degradations are
unseen for all approaches and our DACLIP-IR still outper-
forms other methods on most metrics. Moreover, one can
observe that changing the degradation pipeline directly de-
creases the performance on both datasets. And it is worth
noting our SDE model is trained from scratch while all
other diffusion-based approaches (StableSR, SeeSR, and
SUPIR) leverage pretrained Stable Diffusion models as pri-
ors, demonstrating the effectiveness of the proposed method
and our new degradation pipeline.

A visual comparison of the proposed method with other
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LQ Image StableSR SeeSR SUPIR Ours
Figure 5. Visual comparison of the proposed model with other state-of-the-art photo-realistic image restoration approaches on our synthetic
DIV2K [1] dataset. Our method trains the diffusion model from scratch while other approaches leverage pretrained Stable Diffusion models.
Note that all methods using Stable Diffusion are prone to generate unrecognizable text, such as for the white shirt in the second row.

LQ Image StableSR SeeSR SUPIR Ours
Figure 6. Visual comparison of the proposed model with other state-of-the-art photo-realistic image restoration approaches on the RealSR
×2 [3] dataset. Our method trains the diffusion model from scratch while other approaches leverage pretrained Stable Diffusion models.
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Table 1. Quantitative comparison between the proposed method
with other real-world image restoration approaches on our syn-
thetic DIV2K [1] test set. ‘†’ means that our model is trained with
the Real-ESRGAN [53] degradation pipeline.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓
Real-ESRGAN [53] 27.71 0.810 0.200 0.107 27.32 4.41
StableSR [51] 26.04 0.759 0.241 0.123 34.74 4.11
SeeSR [56] 26.29 0.721 0.223 0.114 27.94 3.56
SUPIR [57] 26.81 0.741 0.194 0.099 21.73 3.52
DACLIP-IR† 27.56 0.796 0.195 0.113 24.32 3.43
DACLIP-IR (Ours) 29.93 0.837 0.153 0.085 15.94 3.24

Table 2. Quantitative comparison between the proposed method
with other real-world IR approaches on the RealSR ×2 [3] test set.
All inputs are pre-upsampled with scale factor 2. ‘†’ means our
model trained with the Real-ESRGAN [53] degradation pipeline.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓
Real-ESRGAN [53] 28.03 0.855 0.151 0.117 47.65 4.84
StableSR [51] 27.55 0.838 0.169 0.112 54.87 5.45
SeeSR [56] 28.38 0.815 0.212 0.139 40.85 4.20
SUPIR [57] 29.32 0.826 0.175 0.122 31.75 4.61
DACLIP-IR† 28.92 0.858 0.184 0.138 33.76 4.19
DACLIP-IR (Ours) 30.65 0.878 0.148 0.113 30.09 4.31

state-of-the-art photo-realistic IR approaches on the two
datasets is illustrated in Fig. 5 and Fig. 6. One can see that
all these methods can restore visually high-quality images.
Moreover, results produced by SeeSR and SUPIR seem to
have more details than StableSR, indicating the importance
of textual guidance in diffusion-based image restoration.
But in terms of distortion metrics that measure the consis-
tency w.r.t the input, we found that pretrained Stable Diffu-
sion models might introduce unclear priors and thus tend to
generate text stroke adhesion which is unrecognizable, for
example on the back of the white shirt in the second-row
of Fig. 5. And in some cases, the SUPIR further produces
fake textures and block artifacts, as shown in the third-row
of Fig. 5 (the yellow window frames) and the third-row
of Fig. 6 (the weird block around ‘5’). Although our method
trains the diffusion model from scratch, its results still look
realistic and are consistent with the inputs.

Results on the NTIRE Challenge We also evaluate our
model on the NTIRE 2024 ‘Restore Any Image Model
(RAIM) in the Wild’ challenge [24], as shown in Table 3. To
generalize to the challenge dataset, we first train our model
on LSDIR [21] with synthetic image pairs, and then fine-
tune it on a mixed dataset that contains both synthetic and
real-world images from LSDIR [21] and RealSR [3]. Note
that we use the same model for both phase two and phase
three of the challenge, but employ the original reverse-time
SDE sampling in phase three for better visual results (small

Table 3. Final results of the NTIRE 2024 RAIM challenge.

Team Phase 2 Phase 3 Final Score Rank

MiAlgo 79.13 57 91.65 1
Xhs-IAG 81.96 47 82.07 2
So Elegant 79.69 46 80.09 3
IIP IR 80.03 14 45.94 4
DACLIP-IR 78.65 9 40.03 5
TongJi-IPOE 72.99 11 39.91 6
ImagePhoneix 78.93 4 34.79 7
HIT-IIL 69.80 1 27.92 8

Web Face Image DACLIP DACLIP-robust DACLIP-robust*

Figure 7. Inpainting results on a web-downloaded face image.

noise makes the photo look more realistic).

4.2. Effectiveness of the Posterior Sampling

This section adopts the same settings as the DACLIP [32]
and focuses on unified image restoration (UIR) which trains
and evaluates a single model on multiple IR tasks.

Robust DACLIP Model Notice that the original DACLIP
is sensitive to input degradations since it is trained on spe-
cific datasets without data augmentation. To address this is-
sue, we follow the synthetic training idea from wild image
restoration and propose a robust DACLIP model. Similar
to the original DACLIP, this robust model is trained on 10
datasets for unified image restoration. However, we now
also add mild degradations such as noise, resize, and JPEG
compression (first part of the degradation pipeline in Fig. 2)
to the LQ images for data augmentation. The resulting
model can then better handle real-world inputs that contain
minor corruptions. Fig. 7 shows a face inpainting compari-
son for a web-downloaded image example. As one can see,
the original DACLIP model completely fails to inpaint this
image. On the other hand, the robust DACLIP model re-
stores the face well, illustrating its robustness.

Evaluation and Analysis To analyze the effectiveness
of the proposed posterior sampling, we choose 3 (out of
10) tasks for evaluation: raindrop removal on the Rain-
Drop [41] dataset, low-light enhancement on the LOL [54]
dataset, and color image denoising on the CBSD68 [33]
dataset. The comparison methods include recent all-in-
one image restoration approaches: AirNet [17], Promp-
tIR [40], IR-SDE [30], and the original DACLIP [32]. Fi-
nally, the posterior sampling is applied to our robust DA-
CLIP model. The comparison results are reported in Ta-
ble 4. The PromptIR performs better on distortion metrics
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Table 4. Comparison of different methods on the unified image restoration task. ‘robust’ means we add mild synthetic degradations (e.g.,
resize, noise, and JPEG) to LQ images in training as a data augmentation strategy for out-of-distribution data generalization. ‘*’ means
the method uses the proposed optimal posterior sampling approach for image generation. Here we report the results on the RainDrop [41],
LOL [54], and CBSD68 [33] datasets for raindrop removal, low-light enhancement, and denoising task evaluation, respectively.

Method
RainDrop [41] LOL [54] CBSD68 [33]

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

AirNet [17] 30.68 0.926 0.095 52.71 14.24 0.781 0.321 154.2 27.51 0.769 0.264 93.89
PromptIR [40] 31.35 0.931 0.078 44.48 23.14 0.829 0.140 67.15 27.56 0.774 0.230 84.51
IR-SDE [30] 28.49 0.822 0.113 50.22 16.07 0.719 0.185 66.42 24.82 0.640 0.232 79.38
DACLIP [32] 30.81 0.882 0.068 38.91 22.09 0.796 0.114 52.23 24.36 0.579 0.272 64.71

DACLIP-robust 30.82 0.869 0.078 27.96 22.05 0.782 0.136 51.01 23.90 0.543 0.310 74.83
DACLIP-robust* 31.68 0.921 0.051 21.92 22.78 0.848 0.092 41.50 25.86 0.723 0.167 62.12

LQ Image PromptIR DACLIP GTOurs

Figure 8. Visual comparison of the proposed posterior sampling for the DACLIP model on the unified IR task.

(PSNR and SSIM) while diffusion-based approaches have
better perceptual performance (LPIPS and FID). Although
the robust DACLIP model involves more degradations in
training, it still performs similarly to its original version.
By using the proposed posterior sampling in inference, the
performance of the robust DACLIP model is significantly
improved across all metrics and tasks. Especially for the
denoising task, posterior sampling leads to the best LPIPS
and FID performance, proving its effectiveness.

5. Conclusion
This paper addresses the problem of photo-realistic image
restoration in the wild. Specifically, we present a new degra-
dation pipeline to generate low-quality images for synthetic
data training. This pipeline includes diverse degradations
(e.g., different blur kernels) and a random shuffle strategy
to increase the generalization. Moreover, we improve the
degradation-aware CLIP by adding multiple degradations

to the same image and minimizing the embedding distance
between LQ-HQ image pairs to enhance the LQ image em-
bedding. Subsequently, we present a posterior sampling ap-
proach for IR-SDE, which significantly improves the per-
formance of unified image restoration. Finally, we evaluate
our model on various tasks and the NTIRE RAIM challenge
and the results demonstrate that the proposed method is ef-
fective for image restoration in the wild.
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