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Abstract

In this paper, we propose a novel approach for image
restoration refinement, aiming to refine the result of restor-
ing a clear original image from a noisy or blurry one.
Our proposed method, Uformer GAN, combines the use of
Transformer blocks and restoration refinement to achieve
superior performance in image restoration tasks. The gen-
erator in our Uformer GAN model comprises Transformer
blocks followed by a convolution layer. This design allows
the model to learn the connections among each pixel of an
image and capture local context features. The discrimi-
nator, on the other hand, consists of Transformer blocks
and convolution blocks to balance the model’s capability
and efficiency. Additionally, instead of adopting multi-stage
networks like other image restoration methods and train-
ing them concurrently, we solely focus on training a post-
processing network for refined image restoration. This ap-
proach reduces the complexity of the overall image restora-
tion process and ensures that our refinement is scalable to
various image restoration techniques. We demonstrate the
effectiveness of our proposed methods on two datasets: the
image deblurring GOPRO dataset and the image denoising
SIDD dataset. Our approach shows superior performance
compared to other state-of-the-art methods in both datasets.

1. Introduction
Image restoration is a widespread technique used in various
computer vision applications, such as image denoising, im-
age deblurring, image deraining and so on. Recently, convo-
lutional neural network-based autoencoders have achieved
significant success in image restoration tasks through dif-
ferent architectures and convolution layers (e.g., [4, 18, 21–
23, 29]). However, these models have limitations in captur-
ing high-resolution features due to the limited capacity of
the convolutional receptive field.

Generative Adversarial Networks (GANs) [11] provide
an effective deep neural network framework that can cap-
ture data distributions, resulting in sharper and more realis-

tic textures than traditional convolutional models. In GANs
model, the generative network maps from a latent space
to a data distribution of interest, while the discriminative
network distinguishes between generated and real data dis-
tributions. GANs have achieved significant success in im-
age generation tasks, such as image deblurring [13], image
super-resolution [15], caption generation from images [19],
and image generation from captions [3]. In particular, vari-
ous GANs structures and loss functions have been proposed
for image deblurring tasks (e.g., [13], [14], [32]). While
GANs improve the upper bound of the capacity of convolu-
tional models, the fundamental problem of the limitation of
convolutional receptive fields remains.

The Vision Transformer [9] introduces a self-attention
based neural network, which is a novel technique differ-
ent from convolution-based models in image classification
tasks. The transformer builds connections among each pixel
of the image, thus overcoming the shortcomings of convo-
lution layers. Inspired by the variant of the Vision Trans-
former, known as the Swin Transformer [16], [27] de-
signed a Uformer for image restoration tasks. The Uformer
is a hierarchical encoder-decoder based on UNet [24]
skip connections structure, where convolution layers are
replaced with Locally-enhanced Window (Lewin) Trans-
former blocks. However, it is still an autoencoder model
and lacks the capabilities of GANs, which can learn to map
from a latent space to a data distribution.

In this paper, we aim to combine the advantages of the
Transformer and GANs models, which not only can learn
the connections among each pixel of the image but also can
learn to map from one data distribution to another. Thus,
we propose the Uformer GAN, which has a UNet-shaped
structure with Transformer blocks in the generator and a
combination of Transformer blocks and convolution layers
in the discriminator. Furthermore, to improve the image
restoration quality, we use the output of the Uformer as the
input of the Uformer GAN directly for training.

In the Uformer GAN model, the Swin Transformer block
from [16] is used in both the generator and discrimina-
tor. The Swin Transformer block includes non-overlapped
windows and shifted window-based self-attention, which
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can capture global features and has linear computational
complexity, compared to self-attention, which has quadratic
computational complexity. To capture local features and re-
duce the complexity of the neural network, we introduce
convolution layers in both the generator and discriminator.

During training, we adopt a distinct approach from other
multi-stage training methods [10, 25, 29, 31]. These meth-
ods train multiple neural networks in one step and perform
back-propagation from the output of the last model to the in-
put of the first model. In contrast, our process involves two
steps. First, we train a Uformer for image restoration until
it converges. Then, in the second step, we train a Uformer
GAN to refine the result from the Uformer. Inspired by
semantic segmentation refinement works, CascadePSP [7]
and SegFix [28], we are the first to introduce this image
restoration refinement method, which offers three advan-
tages: the second step can refine the results from any kind
of neural networks for image restoration tasks; the train-
ing system is deep enough and can even exceed the capac-
ity of GPU memory since we do not need to do the back-
propagation of multiple neural networks simultaneously;
this refinement method can prevent the gradient vanishing
problem since there are two individual deep neural networks
separately trained in two different steps. Additionally, we
have skip connections in the first step, so the input of the
second step includes all the information of the input of the
first step, which means the two-step training can still reach
optimal results.

To demonstrate the effectiveness of our proposed
Uformer GAN for image restoration refinement, we
conducted experiments and compared with existing im-
age restoration methods such as the convolution-based
HINet [4], transformer-based Uformer [27], and multi-stage
based MPRNet [29]. Our experimental results indicate that
our proposed method achieved higher PSNR and SSIM
scores than the other methods on the image deblurring GO-
PRO [18] and image denoising SIDD [1] datasets.

In summary, this paper makes the following contribu-
tions: 1) We propose a Uformer GAN that combines the
benefits of UNet-shaped and transformer-convolution layer
based autoencoder in the generator, and a transformer-
convolution layer combined model in the discriminator. 2)
We introduce image restoration refinement method where
we first train a Uformer until convergence, and then fine-
tune the results using a Uformer GAN. 3) We conduct
experiments on various image restoration tasks and show
improvement (0.1 dB on PSNR) over state-of-the-art ap-
proaches. Note that the significance of this improvement
is consistent with prior improvements in this area.

2. Related Work
MPRNet [29] proposes a three-stage progressive neural net-
work for image restoration tasks. The first two stages ap-

ply two autoencoders to learn multi-scale local context,
and the third stage employs an original-resolution subnet-
work to learn global context. A supervised attention mod-
ule is added between each stage to refine the results before
they are passed to the next stage. Cross-stage feature fu-
sion is also used to propagate contextualized features be-
tween stages. However, the system is complex with multi-
ple stages and added modules.

DeblurGAN [13] is a conditional GAN for image
restoration tasks. The generator is an autoencoder with
residual blocks and a global skip connection, while the
discriminator is similar to PatchGAN [12]. Wasserstein
GAN with gradient penalty and perceptual loss are used
for training. In DeblurGAN v2 [14], the generator uses
an Inception-ResNet-v2 with a Feature Pyramid Network,
and the discriminator uses a relativistic discriminator with
least-square loss. Two branches are integrated into evalu-
ate global and local features, and MSE loss is added to the
generator loss to correct both color and texture distortions.
However, the problem of the limited convolutional receptive
field still exists.

Uformer [27] is the first work to apply vision transformer
for image restoration tasks. It uses a Unet-shaped autoen-
coder with skip-connections. To capture local context, con-
volutional layers are added to the encoder and transposed
convolutional layers are added to the decoder. To capture
global context, Locally enhanced Window (LeWin) Trans-
former blocks are added to each convolutional layer in both
the encoder and decoder. These blocks use non-overlapped
windows-based self-attention to capture global dependen-
cies of features with linear computational complexity. Ad-
ditionally, a learnable multi-scale restoration modulator is
proposed to adapt to different image degradations in each
layer of the decoder. It uses a multi-scale spatial bias to
adjust features and restore more details. The use of self-
attention mechanism in Uformer leads to state-of-the-art
performance in various image restoration tasks. In this
paper, we explore the potential of Uformer by building a
Uformer GAN, which combines the Uformer model with
GANs model.

RFormer [8] introduces a transformer-based Genera-
tive Adversarial Network for real fundus image restora-
tion. It constructs both the generator and discriminator us-
ing Window-based Self-Attention Blocks (WSABs). How-
ever, they utilize multifaceted loss functions, still based on
the original GAN loss, and only offer one stage of train-
ing. Inspired by this work, we present the Uformer GAN
model. Our model employs WGAN loss for both the gen-
erator and discriminator. To enhance computational effi-
ciency, we utilize shifted window self-attention, reducing
complexity from quadratic to linear. Furthermore, our de-
sign incorporates a partially transformer-based discrimina-
tor to optimize memory usage.
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Figure 1. The structure of the generator in the Uformer GAN. The generator has two parts: the encoder which captures multi-scale feature
contexts and the decoder which restores features. The feature maps in the decoder are stacked with the corresponding feature maps in the
encoder using skip connections. In the encoder, the refined image is processed by a convolution layer and then passed through several
Transformer blocks followed by convolution layers. In the decoder, the image is passed through several Transformer blocks followed by
transposed convolution layers and finally processed by a convolution layer to obtain the refined image.

Figure 2. The structure of the Transformer block. There are two window-based blocks: a non-overlapped windows block (NW block)
that consists of a standard multi-head self-attention (MSA) module, followed by a 2-layer MLP with GELU nonlinearity in between. A
LayerNorm layer is applied before each MSA module and each MLP, and a residual connection is applied after each module. A shifted
window block replaces the MSA with a shifted window-based MSA which builds cross-window connections. The remaining design
elements are the same as in the NW block.

3. Proposed approach

3.1. Architecture

In this section, we present our Uformer GAN model. The
Uformer GAN model consists of two deep neural networks:
the generator G, which is used to restore the image, and
the discriminator D, which is used to determine whether the
generated image from G is real or fake.

The generator, as shown in Figure 1, comprises an en-
coder that captures multi-scale feature contexts and a de-
coder that restores features from the encoder. Meanwhile,
the generator builds up several skip connections between
the encoder and the decoder. In the encoder part of the gen-
erator, the image first passes through a convolution layer to
obtain non-overlapping patches. These are then reshaped
into 2D patch features. Subsequently, the patch feature is
passed through several Transformer blocks, in conjunction
with Convolution layers.

The Transformer block is used to capture the global fea-
ture context. It includes a non-overlapped windows block
(NW block) followed by a shifted windows block (SW
block) as shown in Figure 2. The NW block consists of a

standard multi-head self-attention (MSA) module, followed
by a 2-layer MLP with GELU nonlinearity in between.
A LayerNorm layer is applied before each MSA module
and each MLP, and a residual connection is applied after
each module. In the SW block, the MSA is replaced with
a shifted window-based MSA which builds cross-window
connections and the remaining design elements are the same
as in the NW block.

The convolution layer after each Transformer block is
used to capture local feature context and downsample the
feature for lower-level feature learning. To make the fea-
ture suitable for the convolution layer, the 2D patch feature
from the Transformer block is reshaped into a 3D feature
map. After passing through each convolution layer, the 3D
feature map is reshaped back to a 2D patch feature for sub-
sequent Transformer block learning.

In the decoder part of the generator, the patch feature
is passed through several Transformer blocks together with
transposed convolution layers. The Transformer blocks are
the same as in the encoder and are used for global fea-
ture context learning. The transposed convolution layer af-
ter each Transformer block is used to capture local feature
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Figure 3. The structure of the discriminator in the Uformer GAN. The discriminator has two stages: four Transformer Blocks followed by
a convolution layer which can learn global and local context features; three convolution layers followed by batch normalization layers and
Leaky ReLU activation functions to balance model power and efficiency. The feature map is finally passed through a convolution layer to
obtain a 1D output for fake or real prediction.

context and upsample the feature for higher-level feature
learning. After passing through each transposed convolu-
tion layer, the feature map is stacked with the corresponding
feature map in the encoder using skip connections. In the
end, the feature map is passed through a convolution layer
to obtain the restored image.

The discriminator, as shown in Figure 3, is a classifier
that is used to distinguish whether the input image is real or
fake. The image is first passed through a convolution layer
to obtain a feature map, which is then reshaped into a 2D
patch feature. The patch feature is then passed through sev-
eral Transformer blocks together with convolution layers,
with the same design as in the generator. The Transformer
block is used to capture global feature context, and the con-
volution layer after the Transformer block is used to capture
local feature context and downsample the feature.

To balance memory and computation costs, we propose
a solution. The patch feature is reshaped into a 3D feature
map. This occurs after passing through four Transformer
blocks along with convolution layers. The feature map is
then passed through three convolution blocks consisting of
a convolution layer, batch normalization (BN) layer, and a
Leaky ReLU activation function. The Batch Normalization
layer is crucial to ensure that the model converges, as we
found that the model will collapse without it. In the end, the
feature map is passed through a convolution layer to obtain
a 1D output for fake or real prediction.

3.2. Algorithm

In this section, we present our proposed Uformer GAN for
image restoration refinement as outlined in Algorithm 1. In
the first step, the degraded image x is passed through the
Uformer (U) to obtain the restored image y′. We then cal-
culate the Charbonnier loss LU (y′, y) defined as:

LU (y
′, y) =

√
||y′ − y||2 + ϵ2 (1)

where y′ = U(x), y is the ground-truth image, and ϵ is a
constant set to 10−3 for all experiments, following the set-

Algorithm 1 Image restoration refinement training

• parameters: Uformer (U) parameters (θu) in step 1;
Uformer GAN generator (G) parameters (θg) and dis-
criminator (D) parameters (ψd) in step 2.

• variables: input image (x) and output image (y′) in step
1; output image (y′′) in step 2; real image (y) in both
steps.

1: for iteration in step 1 do
2: compute the loss LU (y′, y)
3: update the parameters θu by AdamW optimizer
4: end for
5: for iteration in step 2 do
6: compute the loss LG(y′′, y)
7: update the parameters θg by AdamW optimizer
8: compute the loss LD(y′′), y)
9: update the parameters ψd by AdamW optimizer

10: end for

ting in [27]. The parameters of the Uformer, θu, are then
updated using the Adam optimizer with decoupled weight
decay (AdamW) [17] until convergence. The AdamW opti-
mizer decouples weight decay from the gradient-based up-
date, which improves regularization in Adam and has re-
cently been used in Vision Transformer training.

In the second step, the Uformer GAN attempts to capture
the data distribution using the restored image y′. GANs are
modeled as a min-max two-player game between a discrim-
inator network Dψ(x) and a generator network Gθ(z). The
optimization problem in GANs is defined as:

min
G

max
D

V (G,D) = Ex ∼ pdata[f(D(x))]+

Ez ∼ platent[f(−D(G(z)))] (2)

where G : Z → X maps from the latent space Z to the
input space X; D : X → R maps from the input space to a
classification of the example as fake or real; and f : R → R
is a concave function. The GANs model will reach the
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global optimal when pgen = pdata, where pgen is the gener-
ative data distribution and pdata is the real data distribution.
However, in practice, GANs have the well-known problem
of training instability. To alleviate this problem, we use the
Wasserstein GAN loss [2] in our Uformer GAN model ob-
tained when using f(x) = x.

Following the above GANs training processing, the re-
stored image y′ is passed through the generator G of the
Uformer GAN to obtain the refined image y′′. Both the re-
fined image y′′ and the ground-truth image y are then passed
through the discriminator D of the Uformer GAN. However,
since the restored image y′ is already of high quality, the
discriminator struggles to distinguish it from the ground-
truth image. As a result, we train the generator and dis-
criminator separately. During the initial stages of training,
the generator loss does not include an adversarial loss. The
early-stage generator loss LGi

(y′′, y) is defined as:

LGi
(y′′, y) = Lcha(y

′′, y) + 100.0 ∗ Lmse(y′′, y) (3)

Where Lcha is the Charbonnier loss, which is effective at
handling outliers and improving performance, and Lmse is
the mean square error, which helps correct color and tex-
ture distortions. The discriminator loss LD(y′′, y) is also
computed as:

LD(y′′, y) = Ladv(D(y′′))− Ladv(D(y)) (4)

Where Ladv is the WGAN loss for the discriminator. The
generator parameters θG and the discriminator parameters
ψD are updated using the AdamW optimizer. After sev-
eral training epochs, we introduce a new generator loss
LG(y′′, y) which is defined by:

LG(y′′, y) = Ladv(D(y′′)) + Lcha(y′′, y)
+ 100.0 ∗ Lmse(y′′, y) (5)

Where Ladv is the WGAN loss for the generator, which
aims to learn the distribution of real images Y from the dis-
tribution of restored images Y ′. The generator parameters
θG and the discriminator parameters ψD are updated using
the adaptive update strategy proposed in [20]. This strat-
egy balances the number of updates for the generator and
discriminator based on the change ratios of LD(y′′, y) and
LG(y

′′, y). Unlike traditional fixed-number updating strate-
gies, this strategy updates the generator or discriminator by
comparing the weighted loss change ratios, which are the
differences between the current and previous losses. This
can accelerate the training convergence and reach the op-
timal solution. Our two-step training strategy also allows
reaching the optimal solution by adding the input image to
the end of the network in the first step, which means we still
keep the data flow in the second step.

4. Experimental results

4.1. Dataset

We evaluate the image deblurring task using the GOPRO
dataset [18]. This dataset is designed for dynamic scene
deblurring and was created by taking 240 fps videos with
GOPRO4 Hero Black camera, and then averaging a number
of successive latent frames to produce blurry images. The
dataset includes 3,214 blur/sharp image pairs, each with a
resolution of 720x1080. We split these image pairs into a
training dataset of 2,103 pairs and a testing dataset of 1,111
pairs, following the method outlined in [27]. During train-
ing, we randomly crop the images to a size of 256x256 as
the input for the neural network.

We evaluate the image denoising task using the SIDD
dataset [1]. This dataset contains 30,000 noisy images
from 10 scenes under different lighting conditions, taken
with several different smartphone cameras. For our image
denoising experiments, we use the SIDD Medium dataset
which consists of 320 noisy/clear standard RGB (sRGB)
image pairs, with two image pairs from each scene. We
split each image into several 256x256 size patches, gener-
ating a training dataset of 96,000 pairs and a testing dataset
of 1,280 pairs, following the method outlined in [27].

4.2. Implementation details

We employ various data augmentation techniques when
loading images into the neural network. We use the AdamW
optimizer for training both the Uformer and the Uformer
GAN. The initial learning rate is set to 2e − 4, and a co-
sine learning rate decay is employed to gradually decrease
it. In the first step of training, a warm-up period of 10
epochs is utilized for the Uformer. We follow the original
Uformer-B architecture with depths 1, 2, 8, 8 in the encoder
and 8, 8, 2, 1 in the decoder, and set the window size to 8x8
in all Transformer blocks. In the second step of training, we
use a warm-up period of 50 epochs for the Uformer GAN,
and separately update the generator and discriminator dur-
ing this period, since the discriminator is difficult to train
with already high-performing input images y′. The genera-
tor has the same depths and window size as in Uformer. The
discriminator has depths 1, 2, 8, 8 Transformer blocks with
a window size of 8x8.

In both image deblurring and image denoising tasks, we
use two popular evaluation metrics: the structural similarity
index (SSIM) [26] and the peak signal to noise ratio (PSNR)
to measure the similarity between the restored images and
the target images. SSIM is based on computing the mean,
variance and co-variance of a variety of windows of two
different images, while PSNR is based on the inverse of
the mean squared error (MSE). Generally, higher values for
both metrics indicate that the restored images are more sim-
ilar to the real images.
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blur sharp Uformer/30.87 dB Uformer GAN/31.81 dB

blur sharp Uformer/31.92 dB Uformer GAN/32.32 dB

blur sharp Uformer/37.50 dB Uformer GAN/39.08 dB

blur sharp Uformer/32.31 dB Uformer GAN/33.75 dB

Figure 4. Comparison of our Uformer GAN with the Uformer for deblurring task using three different blur/sharp image pairs from the
GOPRO dataset. The first column shows the blur image, the second column shows the corresponding sharp image, the third column shows
the deblurred image produced by the Uformer, and the fourth column shows the refined deblurred image produced by our Uformer GAN.

4.3. Qualitative evaluation

Figure 4 shows four different visualized results on the im-
age deblurring GoPro dataset. We compared our Uformer
GAN with the baseline method Uformer model. As we can
see, in the first row, Uformer GAN gets more texture details
on the bottom of bag; in the second row, Uformer GAN gets

more texture details on the top right of background; in the
third row, Uformer GAN synthesizes darker wall on the left
region; in the fourth row, Uformer GAN generates brighter
lines between two vehicles. Figure 5 shows four different
visualized results on the image denoising SIDD dataset. We
also compared our Uformer GAN with the Uformer model.
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noisy clear Uformer/44.86 dB Uformer GAN/45.90 dB

noisy clear Uformer/40.32 dB Uformer GAN/40.85 dB

noisy clear Uformer/34.78 dB Uformer GAN/35.40 dB

noisy clear Uformer/45.96 dB Uformer GAN/46.38 dB

Figure 5. Comparison of the results of our Uformer GAN and the Uformer for image denoising using three different noisy/clear image
pairs from the SIDD dataset. The first column shows the noisy image, the second column shows the clear image, the third column shows
the denoised image generated by the Uformer, and the fourth column shows the refined denoised image generated by our Uformer GAN.

As we can see, in the first row, Uformer GAN synthesizes
clear grids near the edge; in the second row, Uformer GAN
generates stripes which color is more similar than Uformer;
in the third row, Uformer GAN synthesizes a clear lower-
case ’e’ without connection between the tail and the middle
line; in the fourth row, Uformer GAN generates more con-

tents near the edge. In conclusion, our approach results in
clearer and more detailed textures in image deblurring task
and in less noise and fewer texture distortions in image de-
noising task.
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Metrics Dataset DBGAN MPRNet HINet Uformer Uformer GAN (refine)
PSNR↑ GOPRO 31.10 32.66 32.71 33.06 33.17
SSIM↑ GOPRO 0.942 0.959 0.962 0.967 0.970
PSNR↑ SIDD 35.78 39.72 39.99 39.89 39.97
SSIM↑ SIDD 0.919 0.959 0.958 0.960 0.962

Table 1. Comparison of our novel two-step Uformer GAN and four previous state-of-the-art methods on the GOPRO dataset and the SIDD
dataset. Each column represents a different image restoration model. The first and third row are the PSNR scores of each method, and the
second and fourth row are the SSIM scores of each method. Our Uformer GAN for refinement achieves the best performance compared to
all other methods on the GOPRO dataset, and the best SSIM and approximate best PSNR on the SIDD dataset.

4.4. Quantitative evaluation

We compare our Uformer GAN with GAN-based mod-
els DeblurGAN-v2 [14] and DBGAN [32], a convolution-
based model HINet [4], a multi-stage model MPRNet [29],
and a transformer-based model Uformer [27]. We evaluate
the image deblurring task on the GOPRO dataset, and the
image denoising task on the SIDD dataset. We use PSNR
and SSIM scores, which are well-known image restoration
performance evaluation metrics. We show the evaluation re-
sults for both image debluring and image denoising task in
Table 1. As observed, our novel Uformer GAN achieves the
highest PSNR and SSIM scores compared to other methods
on both datasets. As can be observed, our Uformer GAN
achieves the highest PSNR and SSIM scores compared to
other methods on the GOPRO dataset. And our Uformer
GAN reaches the highest SSIM scores and approximate
highest PSNR scores. In summary, our approach results in
better performance than other image restoration methods.

4.5. Ablation Study

We investigate the effects of GAN model and image restora-
tion refinement on the image deblurring GOPRO dataset
and the image denoising SIDD dataset. We train in four
different ways: a one-step training that trains a Uformer to
obtain the restored image; a one-step training that trains
a Uformer GAN model to obtain the restored image; a
two-step training that trains a Uformer until convergence
in step 1, then trains another Uformer with the restored

image from step 1; and a two-step training that trains a
Uformer until convergence in step 1, then trains a Uformer
GAN with the restored image from step 1. We show
the ablation study results in Table 2. Notably, the one-
step Uformer GAN approach outperformed the singular
Uformer method. The two-step Uformer model also sur-
passed the one-step Uformer, while the combination of two-
step Uformer and Uformer GAN excelled over the stan-
dalone two-step Uformer. In essence, the ablation study
highlights the efficacy of our Uformer GAN and the advan-
tages of adopting a two-step training paradigm for superior
image restoration.

5. Conclusion

In this paper, we propose a Uformer GAN model and im-
age restoration refinement method. The Uformer GAN is
a combination of Transformer and Convolution based neu-
ral networks which can capture both global and local con-
text features. Additionally, the image restoration refinement
method trains a Uformer in the first step, and then trains a
Uformer GAN in the second step using the output from the
first step as input, which can help refine the restored image.
We demonstrate that our method outperforms the Uformer
in both image deblurring and image denoising tasks. In
future work, we plan to apply our GAN-based refinement
method to different pretrained models for various image
generation tasks, such as Restormer [30], NAFNet [5], and
Diffusion models [6] for image restoration refinement.

Metrics Dataset Uformer Uformer GAN Uformer (refine) Uformer GAN (refine)
PSNR↑ GOPRO 33.06 33.09 33.13 33.17
SSIM↑ GOPRO 0.967 0.967 0.969 0.970
PSNR↑ SIDD 39.89 39.92 39.95 39.97
SSIM↑ SIDD 0.960 0.959 0.962 0.962

Table 2. Ablation study measuring the effect of the Uformer GAN model and the two-step training strategy on image deblurring (GOPRO
dataset) and the image denoising (SIDD dataset). Each column represents different Uformer models and training strategies. The first and
third row are the PSNR scores of each method, and the second and fourth row are the SSIM scores of each method. Our Uformer GAN for
refinement achieves the best performance compared to all other methods.
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