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Abstract

In the rapidly evolving landscape of deep learning, gen-
erative models such as Generative Adversarial Networks
(GANs) and diffusion models have significantly advanced
the capabilities of Artificial Intelligence Generated Con-
tent (AIGC). These technologies have streamlined the cre-
ative process, enabling AI to autonomously produce a di-
verse range of content with minimal human input. Despite
the remarkable progress in AI-generated images (AIGIs),
evaluating the quality of AIGIs remains a complex chal-
lenge. Traditional image quality assessment (IQA), focus-
ing on aspects like distortion and blurriness, are insufficient
for capturing the correspondence between AIGIs and their
prompts. To address this, we propose a novel AIGC image
quality assessment (AIGCIQA) framework that emphasizes
the correspondence between images and prompts. Utiliz-
ing the CLIP model’s pre-trained image and text encoders,
our method effectively measures the correspondence be-
tween visual and textual inputs. By transforming the assess-
ment into classification probabilities and subsequently into
a precise regression task, our method enhances the CLIP
model’s performance in AIGCIQA. Our method’s effective-
ness is confirmed by its first place in the image track of
the NTIRE 2024 Quality Assessment for AI-Generated Con-
tent challenge and its state-of-the-art (SOTA) performance
on benchmark datasets AGIQA-1K, AGIQA-3K, and AIG-
CIQA2023. This research represents a significant advance-
ment in the field, offering an efficient and versatile tool for
the evaluation of AIGIs and contributing to the ongoing de-
velopment of AIGC technologies. Our codes are available
at https://github.com/pf0607/IPCE.

1. Introduction

In recent years, the field of generative models within deep
learning has seen an extraordinary evolution, particularly
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with the advent of Generative Adversarial Networks [6, 11,
13, 15, 32] (GANs) and diffusion models [7, 17, 37, 38, 58].
This progress has propelled Artificial Intelligence Gener-
ated Content (AIGC) to the forefront of technological inno-
vation, capturing the interest of the computer science com-
munity with its significant contributions to both research
and practical applications. AIGC has revolutionized the
creative process by leveraging the sophisticated capabili-
ties of deep learning to emulate the human approach to con-
tent creation. Unlike traditional methods, which require ex-
tensive human involvement, contemporary AIGC simplifies
the process by merely providing a prompt to an AI genera-
tive model. This model then autonomously produces a wide
range of content, spanning from texts to intricate images,
audio, and dynamic videos. This automated creation pro-
cess has significantly enhanced efficiency and has democ-
ratized creativity, making it more accessible to a broader
range of users.

In the realm of image generation, AIGC has made sig-
nificant strides, with groundbreaking works such as DALLE
[34], Imagen [38] and Stable Diffusion [35], showcasing the
potential for generating high-quality images. However, the
absence of effective supervision often results in a percep-
tual divide between AI-generated images (AIGIs) and hu-
man expectations. Evaluating the quality of AIGIs, includ-
ing the correspondence with the original prompts and the
quality of AIGIs, presents a complex challenge. The accu-
rate assessment of image quality is pivotal for refining these
models and remains a critical area of focus. Although exist-
ing research [5, 10, 14, 28–30, 41, 42, 46–48, 53, 57, 59, 60]
has achieved significant progress in image quality assess-
ment (IQA) by focusing on conventional metrics such as
distortion, blurriness, and resolution, these methods often
overlook the context provided by prompts when directly in-
putting images and regressing scores. This oversight lim-
its their effectiveness in accurately assessing the quality of
AIGIs, which requires a nuanced evaluation of the corre-
spondence between the generated images and their prompts.
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To bridge this gap, we introduce a novel method to AIGC
image quality assessment (AIGCIQA) that centers on the
correspondence between images and prompts. By utilizing
the CLIP [33] model, we process the AIGIs and prompts
through the model’s respective image and text encoders,
thereby generating corresponding visual and textual em-
beddings. This method benefits from the CLIP model’s
extensive contrastive learning pre-training on vast image-
text datasets, which aligns the embeddings within a shared
vector space. The cosine similarity calculation between
these embeddings quantifies the degree of correspondence
between the image and text. Drawing inspiration from
previous research[16, 20, 44, 49, 51, 60] employing the
language-image model for IQA tasks, we devise text tem-
plates that articulate various levels of correspondence be-
tween the prompts and images. We further transform the
evaluation of image-text correspondence into classification
probabilities and then convert the final score calculation,
through weighted summation, into a precise regression task,
thereby enhancing the CLIP model’s efficacy in the domain
of AIGCIQA.

Our proposed method, which we name Image-Prompt
Correspondence Estimator (IPCE), is validated through its
triumph in the image track of the NTIRE 2024 Quality As-
sessment for AI-Generated Content challenge [27], where it
wins the first place. Moreover, our method achieves state-
of-the-art (SOTA) performance across existing AIGCIQA
datasets, including AGIQA-1K [61], AGIQA-3K [20], and
AIGCIQA2023 [45], as demonstrated through rigorous ex-
perimentation. These achievements underscore the effec-
tiveness and versatility of our method in evaluating the qual-
ity of AIGIs, marking a contribution to the ongoing devel-
opment of AIGC technologies.

The contributions of this paper can be summarized as
follows:

• AIGCIQA Method based on Image-Prompt Cor-
respondence: This paper introduces a method that
focuses on the correspondence between AIGIs and
their prompts, which is achieved by utilizing the CLIP
model’s image and text encoders to generate embed-
dings, which are then compared using cosine similar-
ity to quantify correspondence.

• Integration of Classification and Regression for As-
sessment: The research pioneers a method that trans-
forms the assessment of image-text correspondence
into classification probabilities and further refines the
score calculation into a precise regression task, en-
hancing the efficiency of the AIGCIQA task.

• Validation and Benchmark Performance: The pro-
posed method has been rigorously validated and
proven effective through its first place in the NTIRE
2024 challenge and its SOTA performance on bench-
mark datasets such as AGIQA-1K, AGIQA-3K, and

AIGCIQA2023, demonstrating its versatility in AIGC
quality assessment tasks.

The rest of this paper is structured as follows. In Sec. 2,
we provide a brief overview of existing IQA methods and
Language-Image Models. The proposed method is elabo-
rated upon in Sec. 3, followed by experiments in Sec. 4.
Lastly, Sec. 5 offers an overall conclusion.

2. Related Work
2.1. IQA

In recent years, the field of IQA has witnessed signif-
icant advancements. A multitude of effective methods
[5, 10, 14, 28–30, 41, 42, 46–48, 53, 57, 59, 60] has
emerged, which are widely applied across various bench-
marks [3, 4, 10, 18, 25, 39]. The input for these methods
typically consists solely of images, with models directly re-
gressing to output scores, employing Spearman’s rank cor-
relation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC) as evaluation metrics. The quality of
images is usually correlated with various low-level indica-
tors such as distortions and blurs. The rapid development in
the field of AIGC has garnered the attention of researchers.
Recently, several AIGCIQA datasets, including AGIQA-
1K [61], AGIQA-3K [20], AIGCIQA2023 [45], and PKU-
I2IQA[55], have been proposed. However, methods specif-
ically tailored to the characteristics of AIGCIQA task re-
main relatively scarce. Current research primarily utilizes
existing methods [9, 12, 30, 40, 41, 44], without consider-
ing the correspondence between the image and the prompt
in the AIGCIQA task. Yuan et al. [55] propose an image-to-
image (I2I) AIGCIQA method based on references, which
is not applicable to I2T task. The PSCR [54] method intro-
duced a contrastive regression approach, which also lacks
consideration for the prompt. TIER [56] method concate-
nates text features and image features and inputs them into a
multi-layer perceptron (MLP) to regress scores, considering
both the prompt and the image, which aligns with the AIG-
CIQA task. However, the direct use of different encoders
for text and image features may result in features that are
distributed across vastly different vector spaces, which may
pose a challenge for the network in assessing the similar-
ity between these two types of features. ImageReward [51]
In this paper, we employ the CLIP [33] model, which can
map text and images to the same vector space, to calculate
the correspondence between the image and the prompt for
quality assessment. This approach simply and effectively
considers the characteristics of the AIGCIQA task.

2.2. Language-Image Model

CLIP [33] has gained popularity due to its powerful image-
text alignment capabilities acquired through contrastive
learning. It can possess strong capabilities for downstream
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tasks [8, 19, 24, 50, 62] such as classification, semantic seg-
mentation and object detection with appropriating textual
input. Influenced by CLIP, several stronger language-image
models have emerged, such as BLIP [22, 23], LLaVA [26],
and MiniGPT-4 [64].

Zhang et al. [60], Wang et al. [44] introduce CLIP into
the IQA task by setting different image quality level text
templates. Wu et al. [49], Li et al. [20], Kirstain et al. [16]
and Xu et al. [51] apply CLIP and BLIP to the AIGCIQA
task, simulating human preferences by utilizing image-text
similarity. Our method draws inspiration from theirs [16,
20, 44, 49, 51, 60], enhancing the application of CLIP in the
AIGCIQA task by embedding prompt content into various
designed text templates.

3. Method
3.1. Basic Framework

This study introduces the Image-Prompt Correspondence
Estimator (IPCE), an advanced model structure depicted in

Fig. 1. The structure of the CLIP [33] model is depicted
in Fig. 2, comprising a text encoder and an image encoder.
The text encoder adopts a transformer structure, while the
image encoder offers two selectable architectures: convolu-
tional neural network (CNN) and visual transformer (VIT).
Through extensive contrastive learning of text-image pairs,
CLIP is capable of mapping input image and text into the
same vector space, thereby computing the cosine similarity
between text and image. Let Fi be the extracted image fea-
ture and Ft be the extracted text feature, the calculation of
their cosine similarity S is as follows:

S =
Ft ⊙ Fi

||Ft|| · ||Fi||
(1)

Our method involves feeding images and text templates de-
scribing different levels of correspondence between images
and prompts into the CLIP model. This process calculates
the cosine similarity between images and prompts at differ-
ent levels of correspondence and then processes the discrete
cosine similarities to obtain weighted continuous quality as-
sessment scores. This method enables consideration of the
correspondence between images and prompts in AIGCIQA.

3.2. Text Templates

Our method applies CLIP to the AIGCIQA task, which is
not the first to utilize CLIP for IQA tasks. Let’s briefly re-
view previous CLIP-IQA [44] and LIQE [60] methods, and
compare them with our method.

CLIP-IQA is proposed earlier to assess image quality
from the perspective of simulating human perception us-
ing powerful language-image models. It employs a prompt-
engineering approach by setting text templates describing
different levels of image quality to calculate the similar-
ity between images and different quality levels. CLIP-IQA
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uses simple text templates as follows:

[“Good photo.”, “Bad photo.”]

Similar to CLIP-IQA, LIQE introduces more text templates
of quality levels and fine-tuned the model. Let c be a re-
placeable adjective describing different quality levels, LIQE
uses text templates as follows:

“A photo of {c} quality.”,

c ∈ [“bad”, “poor”, “fair”, “good”, “perfect”]

In the AIGCIQA task, assessing the quality of an image re-
quires considering the correspondence between the image
and the prompt used to generate it. These methods aim to
solve IQA tasks from the perspective of simulating human
perception, although they introduce text information, fun-
damentally they are general IQA regression methods that
only consider the quality of the image itself without incor-
porating prompt information. To introduce the calculation
of correspondence between images and prompts, let v be a
replaceable adverb describing different levels, we redesign
the text templates as follows:

“A photo that {v} matches ′prompt′”,
v ∈ [“badly”, “poorly”, “fairly”, “well”, “perfectly”]

By modifying the text templates to describe different levels
of correspondence with the prompt, we consider both the
prompt and image information, which adapts to the AIG-
CIQA task.

For a given input image, assuming there are N (N=5 in
this paper) different descriptions for quality levels, we can
obtain the cosine similarity Si (1 ≤ i ≤ N) of the image with
each text template using Eq. (1). To further normalize the
assessment results, we employ Softmax option to convert
the cosine similarities into quality probabilities that sum up
to 1. Let Pi represent the quality probabilities, which can
be calculated using the following formula:

Pi =
eSi∑N

k=1 e
Sk

, (1 ≤ i ≤ N) (2)

3.3. Image Segmentation

The image sizes in general IQA datasets may vary, and the
common use of generalized resizing operations directly af-
fects image quality because the resolution itself is also a
component of image quality. The usual practice in exist-
ing IQA tasks is to segment images into multiple image
patches using sliding windows, and then average the assess-
ment results for each image patch. In the AIGCIQA task,
segmenting images may compromise the semantic informa-
tion contained in the images. Our method adopts the design

of two types of image inputs: one part is the segmented
image patches, and the other part is an additional resized
whole image. The quality probabilities obtained from av-
eraging the results of segmented image patches are further
averaged with those of the resized whole image to obtain
the final quality probability, balancing original image qual-
ity and whole image semantic information.

Suppose the image is segmented into multiple patches
using a fixed window size (e.g., 224×224), and M patches
are selected from them, along with one resized whole im-
age. Then, by multiplying with N text templates, we obtain
N×(M+1) quality probabilities. The quality probabilities
obtained from calculating M image patches are denoted as
Pij (1 ≤ j ≤ M+1), and the quality probability for the re-
sized whole image is denoted as P ∗

i . Let the final combina-
tion be a set of quality weights Wi, which can be calculated
as follows:

Wi = (

∑M
j=1 Pij

M
+ P ∗

i )/2 (3)

3.4. Regression

After obtaining final weights Wi summing to 1 (1≤ i ≤5).
Weight values Vi are set to 1-5 for the five correspondence
levels. Finally, the predicted result Q is calculated as the
weighted sum of Wi and Vi, with the following calculation
formula:

Q =

5∑
i=1

Wi × Vi, (4)

Vi = i (1 ≤ i ≤ 5)

LIQE uses the common IQA loss function fidelity loss [43],
which does not require predicting scores as accurately as
possible but only needs the order of predicted scores for dif-
ferent inputs to be correct. In the AIGCIQA task, the assess-
ment results between different input prompt-image pairs are
influenced by correspondence, making it difficult to directly
compare the quality of two sets of inputs. Therefore, we op-
timize the problem into a precise regression task for score
prediction, mapping the weighted scores to the actual score
distribution range (0, 5), where the direct weighted score
range in Eq. (4) is (1, 5). Then, we use Mean Absolute Er-
ror (MAE) as the loss function to allow the model to directly
learn the image-prompt correspondence score distribution.
Let QT be the ground truth score of input prompt-image
pair, the fine-tuning loss L for the CLIP model can be cal-
culated as follows:

L = |QT − (Q− 1)× 5

4
| (5)

4. Experiments
Comparative experiments are conducted to showcase the ef-
ficacy of our IPCE model. We utilize three publicly avail-
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able AIGCIQA datasets for both training and testing, to
thoroughly assess the performance of the model under con-
sideration. Ablation studies are meticulously carried out
to evaluate the contribution of each component within the
proposed model framework. Through a series of quantita-
tive tests and analyses, we substantiate the effectiveness, ro-
bust performance, and distinct advantages that our proposed
methodology offers in this section.

4.1. Datasets

We primarily validate our proposed method on datasets
AGIQA-1K [61], AGIQA-3K [20], and AIGCIQA2023
[45]. Additionally, we also consider AGIQA-20K [21]
dataset from the NTIRE 2024 Quality Assessment for AI-
Generated Content challenge [27].
AGIQA-1K. The AGIQA-1K dataset contains 1080 AI-
generated images from two Text-to-Image (T2I) models
[35]: stable-inpainting-v1 and stable-diffusion-v2. It uti-
lizes Mean Opinion Score (MOS) as the quality assessment
annotation, which is obtained through manual scoring by
human annotators.
AGIQA-3K. In the AGIQA-3K dataset, there are 2982
AIGIs generated by six T2I models, including GLIDE [31],
Stable Diffusion [35, 36], Midjourney, AttnGAN [52], and
DALLE2 [34]. This dataset is unique as it combines AIGIs
from GAN, auto-regression, and diffusion-based models. It
annotates MOS for both image quality and alignment be-
tween image and prompt.
AIGCIQA2023. The AIGCIQA2023 dataset includes 2400
images generated by six T2I models like Glide [31], Lafite
[63], DALLE [34], and others [1, 35, 58]. Each prompt
has four randomly generated images, resulting in a total of
2400 AIGIs across 100 prompts. It annotates MOS from
three perspectives: image quality, authenticity, and corre-
spondence.
AGIQA-20K. The AGIQA-20K dataset comprises 20,000
images generated by various state-of-the-art T2I models. It
is divided into 70% for training, 10% for validation, and
20% for testing. It annotates MOS by combining image
quality and alignment.

4.2. Evaluation Metrics

We primarily utilize two commonly used evaluation met-
rics for comparing model performance: Spearman Rank
Correlation Coefficient (SRCC) and Pearson Linear Cor-
relation Coefficient (PLCC). These metrics are commonly
employed to measure the correlation between two variables
and are frequently used to evaluate the performance of mod-
els in ranking or regression tasks.
SRCC. SRCC measures the strength and direction of asso-
ciation between two variables by assessing the monotonic
relationship between their ranks. It can be calculated as fol-

lows:

SRCC = 1−
6
∑N

i=1 d
2
i

N (N2 − 1)
(6)

Where di represents the difference in ranks between the two
variables. N is the number of observations in the sample.
PLCC. PLCC measures the strength and direction of a lin-
ear relationship between two continuous variables.It can be
calculated as follows:

PLCC =

∑N
i=1 (si − s̄) (pi − p̄)√∑N

i=1 (si − s̄)
2
√∑N

i=1 (pi − p̄)
2

(7)

Where si represents the i-th observed value in the sample, pi
represents the corresponding predicted value, s̄ is the mean
of the observed values, and p̄ is the mean of the predicted
values.

4.3. Implementation Details

For the AGIQA-1K, AGIQA-3K, and AIGCIQA2023
datasets, we randomly divide the data into training and test-
ing sets at a ratio of 4:1. In the case of the AGIQA-3K
dataset, we ensure that data with the same prompt falls into
the same set. Each experiment is repeated 10 times, and the
average of the final results is taken. For the AGIQA-20K
dataset, we directly follow the dataset partitioning provided
by the competition.

Considering the dataset sizes and to prevent overfitting,
we use the ViT-B/32 as the image encoder for CLIP on
the lightweight datasets AGIQA-1K, AGIQA-3K, and AIG-
CIQA2023. For the larger dataset AGIQA-20K, we employ
the ViT-L/14 as the image encoder for CLIP.

During the training phase, we set the batch size to 16 and
utilize the AdamW optimizer with an initial learning rate of
1× 10−5. We set the weight decay to 1× 10−2 and employ
a cosine annealing learning rate strategy, with the cosine
function completing half a cycle every 5 updates. We use
MAE as the loss function. Other implementation details are
shown as follows:

• GPU: RTX 4090

• Operating System: Ubuntu 20.04

• CUDA: 11.3

• Language: Python 3.8

• Platform: PyTorch 1.10.0

4.4. Experimental Results

AGIQA-1K. To validate the effectiveness of our method
and considering that deep learning methods generally out-
perform hand-crafted-based methods in current research,
we compare our method with SOTA methods ResNet50 [9],
StairIQA [42], and MGQA [46] on the AIGC-1K dataset.
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Quality Authenticity CorrespondenceMethods SRCC PLCC SRCC PLCC SRCC PLCC
WaDIQaM-NR [2] 0.4447 0.4996 0.3936 0.3906 0.3027 0.2810

CNNIQA [12] 0.7160 0.7937 0.5958 0.5734 0.4758 0.4937
VGG16 [40] 0.7961 0.7973 0.6660 0.6807 0.6580 0.6417
VGG19 [40] 0.7733 0.8402 0.6674 0.6565 0.5799 0.5670
ResNet18 [9] 0.7583 0.7763 0.6701 0.6528 0.5979 0.5564
ResNet34 [9] 0.7229 0.7578 0.5998 0.6285 0.7058 0.7153
IPCE(ours) 0.8640 0.8788 0.8097 0.7998 0.7979 0.7887

Table 1. Quantitative comparison on AIGCIQA2023 [45] dataset. Evaluated on the quality, authenticity and correspondence metrics. The
best results are bolded.

MOSMethods SRCC PLCC
ResNet50 [9] 0.6365 0.7323
StairIQA [42] 0.5504 0.6088
MGQA [46] 0.6011 0.6760
IPCE(ours) 0.8535 0.8792

Table 2. Quantitative comparison on AGIQA-1K [61] dataset. The
best results are bolded.

The results are presented in Tab. 2. The results demon-
strate that our method outperforms the others in terms of
both SRCC and PLCC metrics.
AGIQA-3K. Since the AGIQA-3K dataset provides anno-
tations for both image perception and alignment quality,
we compare our method with general SOTA IQA meth-
ods DBCNN [30], CLIPIQA [44], CNNIQA [12], and Hy-
perNet [41] on the perception metric and with image-text
SOTA IQA methods CLIP [33], ImageReward [51], HPS
[49], PickScore [16], and StairReward [20] on the align-
ment metric. The experimental results are shown in Tab. 3
and Tab. 4, respectively. Our method achieves the best
SRCC and PLCC scores on both metrics, demonstrating its
effectiveness for the AIGCIQA task.
AIGCIQA2023. On the AIGCIQA2023 dataset, we
conduct experiments on quality, authenticity, and corre-
spondence metrics, comparing our method with methods
WaDIQaM-NR [2], CNNIQA [12], VGG16 [40], VGG19
[40], ResNet18 [9], and ResNet34 [9]. The experimental
results are listed in Tab. 1, where our method achieves the
best SRCC and PLCC scores on all three metrics. This in-
dicates that our method performs well in evaluating various
aspects of AIGC image quality.
AGIQA-20K. Our method participates in the image track
of the NTIRE 2024 Quality Assessment for AI-Generated
Content challenge, which aims to discover effective quality
assessment algorithms for AI-generated images that align
with human perception. The final test results of the chal-
lenge are presented in Tab. 5, listing the top 10 ranked par-
ticipants. Our team achieves first place in the challenge

MOS PerceptionMethods SRCC PLCC
DBCNN [30] 0.8207 0.8759
CLIPIQA [44] 0.8426 0.8053
CNNIQA [12] 0.7478 0.8469
HyperNet [41] 0.8355 0.8903
IPCE(ours) 0.8841 0.9246

Table 3. Quantitative comparison on AGIQA-3K [20] dataset.
Evaluated on the perception metric. The best results are bolded.

MOS AlignmentMethods SRCC PLCC
CLIP [33] 0.5972 0.6839

ImageReward [51] 0.7298 0.7862
HPS [49] 0.6349 0.7000

PickScore [16] 0.6977 0.7633
StairReward [20] 0.7472 0.8529

IPCE(ours) 0.7697 0.8725

Table 4. Quantitative comparison on AGIQA-3K [20] dataset.
Evaluated on the alignment metric. The best results are bolded.

Methods Main Score
1st IPCE(Ours) 0.9175

2nd 0.9169
3rd 0.9157
4th 0.9138
5th 0.9091
6th 0.9087
7th 0.9065
8th 0.9044
9th 0.9023
10th 0.8835

Table 5. Quantitative comparison on AGIQA-20K [21] dataset
from image track of the NTIRE 2024 Quality Assessment for AI-
Generated Content challenge. This table only shows part of the
participants and the best result is bolded.
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MOSMethods SRCC PLCC
IPCE w/ F 0.8469 0.8375
IPCE w/ M 0.8394 0.8727
IPCE w/ C 0.8261 0.8615

IPCE w/o R 0.8418 0.8724
IPCE 0.8535 0.8792

Table 6. Ablation studies of IPCE. Evaluated on AGIQA-1K [61]
dataset and the best results are bolded. “w/ F/M/C” refers to re-
placing loss function with fidelity loss, MSE loss, and replacing
the image encoder with CNN (ResNet50 [9]) architecture. “w/o
R” refers to removing resized whole image.

based on the main score, which is calculated as the aver-
age of SRCC and PLCC scores.

4.5. Ablation Studies

To validate the effectiveness of our method, we conduct
several ablation experiments. The experimental results are
shown in Tab. 6. Firstly, we replace the loss function with
fidelity loss and MSE loss, denoted as “w/ F” and “w/ M”
respectively. As shown in Tab. 6, using fidelity loss leads
to a significant decrease in the PLCC score by 0.0417, in-
dicating that the direct regression approach is more suit-
able for the AIGCIQA task. After using MSE loss, SRCC
and PLCC decrease slightly by 0.0141 and 0.0065 respec-
tively, suggesting that MAE is more effective in ensuring
the smoothness and robustness of the model in the AIG-
CIQA task.

We consider two options for the image encoder of the
CLIP model: ViT and CNN. Our method exclusively uti-
lizes the ViT architecture, but we also experiment with re-
placing ViT with the CNN architecture ResNet50 [9], de-
noted as “w/ C”. As observed in Tab. 6, SRCC and PLCC
decrease by 0.0274 and 0.0177 respectively, indicating that
the ViT architecture is more suitable for extracting image
features in the AIGCIQA task.

Finally, to demonstrate the effectiveness of using the
complete semantic information provided by the whole im-
age in the AIGCIQA task, we remove the resized whole
image input as described in Sec. 3.3, denoted as “w/o R”.
The results in Tab. 6 show a certain degree of decrease in
both SRCC and PLCC.

5. Conclusion
This paper introduces the Image-Prompt Correspondence
Estimator (IPCE), a novel method for assessing the qual-
ity of AI-generated images (AIGIs). IPCE utilizes the
CLIP model’s capabilities to measure the correspondence
between images and designed textual prompts templates,
effectively addressing the unique challenges of AIGCIQA.

Our method achieves state-of-the-art results on several
benchmark datasets and win first place in the image track
of the NTIRE 2024 Quality Assessment for AI-Generated
Content challenge, as validated through extensive experi-
ments and ablation studies. In summary, IPCE represents
a significant step forward in the assessment of AIGC, pro-
viding a robust and efficient solution that aligns well with
human perception. Future work will focus on refining this
framework to further enhance its performance and applica-
bility in the evolving landscape of AIGC.
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