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Abstract

This paper reports on the NTIRE 2024 challenge on HR
Depth From images of Specular and Transparent surfaces,
held in conjunction with the New Trends in Image Restora-
tion and Enhancement (NTIRE) workshop at CVPR 2024.
This challenge aims to advance the research on depth es-
timation, specifically to address two of the main open is-
sues in the field: high-resolution and non-Lambertian sur-
faces. The challenge proposes two tracks on stereo and
single-image depth estimation, attracting about 120 regis-
tered participants. In the final testing stage, 2 and 8 partic-
ipating teams submitted their models and fact sheets for the
two tracks.

1. Introduction
Recovering the 3D structure of a scene directly from images
has been one of the most studied topics in computer vision.
Depth estimation represents the first step for this purpose
and a cornerstone for higher-level applications such as aug-
mented reality, autonomous or assisted driving, robotics,
and more. Although a variety of custom, active sensors ex-
ists for this task – LiDARs, Radars, Time-of-Flight (ToF),
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just to name a few – approaches estimating depth from one
or multiple color images have gained higher and higher pop-
ularity with the advent of deep learning. Despite the steady
improvements we witnessed in the last decade, estimating
depth in certain conditions remains an open challenge. In
particular, we identify two as the main sources of trouble.

The first is spatial resolution. Specifically, any depth sen-
sor mentioned before provides depth maps at a relatively
low resolution, usually not higher than 1 Megapixel (Mpx).
On the contrary, color cameras nowadays reach a resolution
of one or two orders of magnitude higher yet introduce sig-
nificant computational complexity for processing.

The second is caused by non-Lambertian surfaces, re-
sulting in a hard challenge for both active depth sensors and
image-based approaches. Materials featuring this property
violate the assumptions upon which active sensors are de-
veloped – e.g., light beams emitted by LiDARs are refracted
or surpass transparent surfaces. Image-based techniques are
also affected, with stereo matching algorithms or monocu-
lar depth estimation models, for instance, failing to estimate
the real distance of a transparent surface in favor of the dis-
tance of objects behind it. Although one may feel that this
latter example might not represent a real failure, we argue
it is: indeed, in several real applications, it might be crucial
to properly perceive the real depth for transparent objects as
well – for instance, when willing to grasp some glassy ob-
jects or when navigating and willing to avoid a glass door.

This NTIRE 2024 Challenge on HR Depth from Images
of Specular and Transparent Surfaces aims to encourage the
development of state-of-the-art methodologies for estimat-
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ing depth from single images that are robust and effective at
dealing with the aforementioned challenges. For this pur-
pose, we employ the Booster dataset [98, 100] in this chal-
lenge, a recent benchmark that represents a proving ground
for what concerns high-resolution and non-Lambertian sur-
faces, thanks to its 12Mpx images and the abundant pres-
ence of transparent and reflective objects. Following the
format of the first edition, the challenge is organized into
two tracks: one focusing on Stereo approaches, recovering
depth through triangulation from the disparity estimated be-
tween pixels into two rectified frames, and the other limiting
the input to a single image (Mono). The challenge has 120
registered participants. Among them, 8 and 2 teams for the
monocular and stereo tracks submitted their models and fact
sheets during the final phase. Some adopt off-the-shelf, ex-
isting solutions, while others combine different methodolo-
gies and exploit their synergy to obtain better results. The
outcome of this edition of our challenge is reported and dis-
cussed in detail in Section 4.

2. Related Work
We review the literature relevant to stereo and monocular
depth estimation, which is the object of our challenge.

Deep Stereo Matching. Deep networks estimating
dense disparity maps in end-to-end manner have emerged
as the preferred paradigm to tackle stereo matching [53,
55]. This revolution ignited with DispNet [45], a 2D
CNN followed by more and more advanced architectures
[39, 50, 54, 62, 68, 75, 77, 92, 97]. An alternative fam-
ily of model emerged with GC-Net [29], that builds an ex-
plicit cost volume and then processes it with 3D convolu-
tions, an approach followed, again, by several following-up
works [5, 8, 9, 13, 22, 30, 67, 80, 85, 91, 103]. In the last
three years, two further trends emerged with Transformers
[20, 37, 43] and optimization-inspired architectures [76].
The latter in particular, starting with RAFT-Stereo [76], has
conquered the main stage lately [26, 34, 81, 88, 90, 102].
The steady advances in the design of deep stereo models
brought, through the years, to a saturation of the most pop-
ular benchmarks, starting with KITTI 2012 [16] and 2015
[47], then proceeding with ETH3D [66] and, only lately,
Middlebury 2014 [65]. Nevertheless, these benchmarks do
not specifically focus on the most arduous open challenges
for stereo matching, which are the main objects of study in
the Booster [100] dataset. Accordingly, in this challenge,
we rely on the latter.

Monocular Depth Estimation. To estimate depth out
of a single image, hand-crafted features at first were used to
encode perceptual cues such as texture gradient, object size,
and linear perspective – the cornerstones of early research
in the field [64]. The advent of deep learning made it possi-
ble to tackle this task and to achieve unprecedented results
by directly learning from data [6, 14, 33, 56, 84]. The in-

creasing availability of large-scale datasets annotated with
ground-truth depth labels [6, 14, 33, 56, 84] played a cru-
cial role in the quick escalation of this field, side by side
with the introduction of self-supervised paradigms [17–
19, 21, 25, 27, 52, 78, 79, 87, 105, 106] to address the lack
of annotations – specifically, by casting the depth estimation
task as an image reconstruction problem during training, by
exploiting either stereo pairs or monocular videos. In the
last four years, the development of affine-invariant monocu-
lar depth estimation models [58, 60] has gained popularity.
MiDaS [60] represents the pivotal work in this direction,
training a CNN on a mixture of several datasets to achieve
cross-domain generalization – followed by DPT [58], Depth
Anything [93], and Marigold [28]. Other works focused on
recovering the real point cloud shapes from the deformed
ones obtained from monocular depth maps [96] or restoring
high-frequency details [36, 48].

Despite these steady advances, little attention has been
given to single-view depth estimation networks capable
of handling transparent and reflective surfaces effectively.
This is mostly because of the scarcity of datasets specifi-
cally suited for this task – except for Booster [98], featur-
ing some very challenging yet accurately annotated non-
Lambertian objects in high-resolution images. On this
track, Costanzino et al. [12] developed a strategy for retriev-
ing pseudo-annotation for non-Lambertian objects by using
monocular depth estimation models and material segmenta-
tion masks while others have faced non-Lambertian depth
estimation through depth completion approaches [10, 63].

Competitions/Challenges on Depth Estimation. We
mention some past – and concurrent – challenges built
around the depth estimation task, both from stereo and
monocular images. Among them, the Robust Vision Chal-
lenge (ROB) [101] covering both, the Dense Depth for Au-
tonomous Driving challenge (DDAD)[15], the Fast and Ac-
curate Single-Image Depth Estimation on Mobile Devices
Challenge (MAI) [24], the Argoverse Stereo Challenge [32]
and the Monocular Depth Estimation Challenge (MDEC)
[70–72]. Finally, we recall the first edition of this challenge
[57], part of the NTIRE workshop at CVPR 2023.

NTIRE 2024 Challenges. This challenge is one of
the NTIRE 2024 Workshop 1 associated challenges on:
dense and non-homogeneous dehazing [1], night photog-
raphy rendering [2], blind compressed image enhance-
ment [94], shadow removal [82], efficient super resolu-
tion [61], image super resolution (×4) [7], light field image
super-resolution [86], stereo image super-resolution [83],
HR depth from images of specular and transparent sur-
faces [99], bracketing image restoration and enhance-
ment [104], portrait quality assessment [4], quality as-
sessment for AI-generated content [41], restore any im-
age model (RAIM) in the wild [38], RAW image super-

1https://cvlai.net/ntire/2024/
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resolution [11], short-form UGC video quality assess-
ment [35], low light enhancement [42], and RAW burst
alignment and ISP challenge.

3. NTIRE Challenge on HR Depth from Im-
ages of Specular and Transparent Surfaces

We host the NTIRE 2024 Challenge on HR Depth from
Images of Specular and Transparent Surfaces to encourage
the community to develop state-of-the-art solutions capable
of dealing with high-resolution images and non-Lambertian
surfaces – such as mirrors, glasses, and more. We now in-
troduce the main details of the challenge.

Tracks. Our challenge is organized into two tracks:
Stereo, focusing on estimating the disparity between pairs
of rectified images, and Mono, which instead requires esti-
mating depth from a single input image.

• Track 1: Stereo. In this track, the participants are
asked to obtain high-quality, high-resolution disparity
maps from 12Mpx stereo pairs. The main difficulties are
represented by the resolution itself, which is prohibitive
for most state-of-the-art existing stereo networks, and the
presence of non-Lambertian objects, violating the basic
assumptions allowing to retrieve depth out of correspon-
dences.

• Track 2: Mono. Conversely, this track consists of esti-
mating depth out of a single 12Mpx image. This prob-
lem is more challenging than the former because of the
inherent ill-posed nature of the problem. Furthermore,
the presence of several transparent objects and mirrors
– rarely appearing in most depth estimation datasets –
makes it even more complex.

Datasets. Our challenge takes place over the Booster
dataset [98, 100], consisting of 419 high-resolution bal-
anced and unbalanced stereo pairs, collected in 64 differ-
ent scenes and respectively divided into 228 and 191 pairs
for training and testing purposes – with 38 and 26 for the
two sets respectively. An extended version of Booster [98]
releases a second testing split, dedicated to the evaluation
of monocular depth estimation approaches and made of 187
single frames, collected from 21 new environments.

As in the first edition [57], we adopt the original 228
training stereo pair as the training split for both tracks. We
identify two distinct validation splits by sampling images
with different illuminations from 3 scenes of the stereo and
monocular testing splits – respectively Microwave, Mirror1,
Pots for the Stereo track, and Desk, Mirror3, Sanitaries for
the Mono track, yielding 15 validation samples for each
track, out of the total 26 and 28 available from the selected
scenes. The remaining frames of the two original testing
splits become the official stereo and mono testing splits for
this challenge, resulting in 169 and 159 samples.

Evaluation Protocol. Depending on the specific track,

Stereo or Mono, we select the official metrics used by
the Booster benchmark [98, 100]. For the former track,
we measure the percentage of pixels with disparity errors
larger than a threshold τ (bad-τ , with τ ∈ [2, 4, 6, 8]), as
well as the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). For the latter Track, we measure
the percentage of pixels having the maximum between the
prediction/ground-truth and ground-truth/prediction ratios
lower than a threshold (δ < i, with i being 1.05, 1.15,
and 1.25) and the absolute error relative to the ground truth
value (Abs Rel.), as well as the mean absolute error (MAE),
and Root Mean Squared Error (RMSE). Differently from
the previous edition [57], we compute metrics on three dif-
ferent sets of pixels, following [12]: ToM regions – i.e.,
those belonging to non-Lambertian surfaces – All pixels and
Others – i.e., the difference between All and ToM sets. To
rank submissions, we use bad-2 and δ < 1.05 – respec-
tively for Stereo and Mono tracks – averaged over all pix-
els, highlighted in red in the tables. We define two rank-
ings based on performance on ToM and All regions respec-
tively2. Finally, since most monocular networks estimate
depth up to an unknown scale and shift factors, before com-
puting metrics we recover metric depth from predicted maps
d̂ as αd̂+β, with α, β being a scale and shift factor. Accord-
ing to [60], α, β are estimated with Least Square Estimation
(LSE) regression over the ground truth depth map d:

(α, β) = argmin
α,β

∑
p

(
αd̂(p) + β − d(p)

)2

(1)

where p are the pixel locations where both predictions and
ground truth depths are defined.

4. Challenge Results
For the two distinct tracks, 2 and 8 teams participated re-
spectively in the final testing phase. We are now discussing
the outcome of both in Sections 4.1 and 4.2. Each method
for stereo and mono tracks is briefly described in Section 5.1
and Section 5.2, with team members listed in the appendix.

4.1. Track 1: Stereo

Table 1 collects the results for this first track. At the bottom,
we report the baseline method – i.e., the CREStereo [34]
model using the weights publicly available. From left to
right, we report bad-τ metrics, MAE, and RMSE metrics
for Tom, All, and Other pixels respectively. On the right
of the team’s name, we report their overall rank, computed
according to bad-2 errors on ToM and All regions.

Both methods participating in this track outperformed
the baseline, with MiMcAlgo [Stereo] consistently achiev-
ing lower error rates than SRC-B [Stereo] on ToM and All

2we will observe that the two coincide on the Stereo track
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ToM All Other
Team Rank bad-2 bad-4 bad-6 bad-8 MAE RMSE bad-2 bad-4 bad-6 bad-8 MAE RMSE bad-2 bad-4 bad-6 bad-8 MAE RMSE
MiMcAlgo [Stereo] #1 52.46 33.56 23.38 18.75 6.70 11.51 32.56 16.32 11.01 8.61 3.50 8.31 29.18 12.70 8.31 6.31 2.85 7.09
SRC-B [Stereo] #2 59.27 38.24 31.08 27.04 8.81 13.21 32.79 19.39 14.59 11.86 4.19 9.22 28.51 14.60 10.02 7.66 2.94 6.92
CREStereo [baseline] #3 59.64 47.26 40.27 35.41 24.69 42.28 35.75 23.51 18.98 16.42 12.13 28.46 28.34 13.93 7.91 4.64 2.95 7.59

Table 1. Stereo Track: Evaluation on the Challenge Test Set. Predictions evaluated at full resolution (4112×3008) on All pixels and
pixels belonging to ToM (Transparent or Mirror) or Other materials. In gold , silver , and bronze , we show first, second, and third-rank
approaches, respectively. We rank methods on the bad-2 metric.
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Figure 1. Qualitative results – Stereo track. From top to bottom: RGB reference image, ground-truth disparity, predictions by CREStereo
[34], MiMcAlgo [Stereo], and SRC-B [Stereo].

pixels, with very few exceptions on Other regions – i.e., on
bad-2 and RMSE. Interestingly, we can notice how the two
achieve very close bad-2 rates on All pixels, as a compro-
mise between the much more accurate results achieved by
MiMcAlgo [Stereo] on ToM regions – i.e., about 7% lower
error – and the slightly lower errors on Other pixels yielded
by SRC-B [Stereo] – that is 0.7%, yet represents the major-
ity of the pixels in the images. Fig. 1 shows some results
from the stereo testing set. We can notice how both submit-
ted methods learn to deal with some specific challenges –
the bottles in column 5 and the window in column 6 – while
they still struggle at properly dealing with very challenging
elements, such as the water surface in the rightmost column.

4.2. Track 2: Mono

Table 2 shows the results for the second track. At the
very bottom, we report the results achieved by the baseline
method – i.e., the ZoeDepth [3] model using the weights
provided by the authors. From left to right, we report deltas,
Abs Rel., MAE, and RMSE metrics for Tom, All, and Other
pixels respectively. We report two different rankings, ac-

cording to the performance observed on the reference met-
rics computed over ToM and All pixels respectively.

All of the submitted methods consistently outperformed
the ZoeDepth baseline. For what concerns ToM regions, the
top #3 methods manage to push the strictest accuracy metric
– δ < 1.05 – beyond 70%, as well as to reduce the Abs
Rel. below 4%. The improvements are consistent on Other
pixels as well – and, consequently, on All. There, the gain
over the baseline is minor compared to what was observed
on ToM regions, yet consistent.

Finally, we can appreciate the substantial improvement
achieved by the two absolute winners, MiMcAlgo [Mono]
and SmartLab, respectively, according to ToM and All rank-
ings. Fig. 2 shows some qualitative examples from the
mono testing set: we can appreciate how, in some cases,
any of the submitted models can properly handle ToM re-
gions – as for the oven in the third row. However, we can
still observe failure cases in most of them in the presence of
mirrors (first row) or water surfaces (second row).
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ToM All Other
Team Rank δ <1.05 δ < 1.15 δ < 1.25 Abs Rel. MAE RMSE Rank δ <1.05 δ < 1.15 δ < 1.25 Abs Rel. MAE RMSE δ < 1.05 δ < 1.15 δ < 1.25 Abs Rel. MAE RMSE
MiMcAlgo [Mono] #1 77.11 98.09 99.66 3.38 3.44 4.60 #2 71.64 94.86 98.46 5.03 4.39 8.09 69.93 93.99 98.06 5.54 4.68 9.04
SmartLab #2 75.78 99.08 99.84 3.40 3.44 4.65 #1 79.97 97.95 99.53 3.77 3.25 6.32 79.59 97.33 99.32 4.09 3.38 7.13
PD&HPC #3 70.04 96.79 99.56 3.98 4.16 5.06 #6 65.43 93.27 96.35 6.20 5.37 8.67 63.68 92.33 95.90 6.77 5.70 9.76
UW IPL #4 63.48 96.47 99.64 4.21 4.42 5.29 #3 68.08 95.52 98.80 5.19 4.48 8.00 67.25 94.34 98.48 5.64 4.71 8.89
Marigold-LCM #5 62.88 92.59 98.25 5.40 5.57 7.21 #4 66.27 89.62 96.10 6.87 5.68 10.38 63.96 88.14 96.09 7.50 5.95 11.35
THU-808 #6 59.72 90.00 97.92 5.71 5.93 7.23 #5 65.81 90.14 96.69 6.61 5.55 10.08 64.44 89.46 97.08 7.06 5.66 10.92
SRC-B [Mono] #7 57.01 95.31 96.88 5.73 5.83 6.93 #7 63.61 90.62 95.13 7.16 5.88 10.07 61.65 88.28 94.83 7.94 6.07 11.24
DVision #8 56.59 90.28 97.23 5.83 6.08 7.12 #8 61.95 91.01 96.09 6.72 5.86 9.48 61.50 91.23 96.58 7.02 5.81 10.17
ZoeDepth [Baseline] #9 45.21 82.27 93.06 8.04 8.71 9.57 #9 61.31 87.97 94.38 7.60 6.38 10.88 60.23 87.43 93.71 8.34 6.31 12.18

Table 2. Mono Track: Evaluation on the Challenge Test Set. Predictions evaluated at full resolution (4112×3008) on All pixels and
pixels belonging to ToM (Transparent or Mirror) or Other materials. In gold , silver , and bronze , we show first, second, and third-rank
approaches, respectively. We rank methods on two metrics, δ <1.05 computed on either ToM or All pixels.

RGB GT ZoeDepth[3] MiMcAlgo [Mono] SmartLab PD-HPC UW IPL Marigold

Figure 2. Qualitative results – Mono track. From left to right: RGB reference image, ground-truth disparity, predictions by ZoeDepth
[3] and five among the participant methods.

5. Challenge Methods

5.1. Track 1: Stereo

5.1.1 Baseline - CREStereo [34]

For the Stereo track, we select the state-of-the-art
CREStereo architecture [34] as the baseline. It consists of a
hierarchical network with recurrent refinement, designed to
update disparities in a coarse-to-fine manner. At its core, an
adaptive group correlation layer (AGCL) is designed to mit-
igate the impact of non-ideal rectification, where an alter-
nate 2D-1D local search strategy with deformable windows
is employed for robust matching. Conversely to the all-pairs
correlation module in RAFT-Stereo [40], AGCL computes
correlations only in local search windows, reducing mem-
ory and computation requirements. We process images at
quarter resolution and upsample predicted disparity maps
to the original resolution.

5.1.2 Team 1 - MiMcAlgo [Stereo]

The team MiMcAlgo [Stereo] (CodaLab: MiDualCam)
proposed a teacher-student framework for learning to han-

dle non-Lambertian surfaces.
Specifically, IGEV-Stereo [89] is adopted as the base-

line architecture for both the teacher and student, as it relies
on the strong semantical and context information extracted
from the left image to refine disparity predictions with con-
vGRUs. Furthermore, the team observed that training the
model with low-resolution images is more likely to predict
the correct disparity for ToM objects, whereas a network
trained with high-resolution images is more prone to errors
in these regions, which may be related to the fact that mirror
objects require larger receptive fields and high-level seman-
tic information to be recognized [23].

Accordingly, the Booster training set was downsampled
to 1

5 and 1
8 of the input resolution to train two different

teacher networks. Then, N different weak augmentations
(mainly on color and brightness) were applied to the unla-
beled training images, downsampled by the aforementioned
factors, and sent to the two teacher networks for inference
to produce 2×N predictions. These are upsampled to the
original resolution and, among them, the best are selected
as pseudo-labels and used to train the student network on 1

8 ,
specifically by alternating between labeled and unlabeled
data to learn more robust feature representations (see Fig. 3

6503



Augmentation

...

IGEV H

IGEV L

Pseudo Label
Selector

Weak 
Augmentation

IGEV L
student

N paires

Predictions H

…
Unlabeled Data

Labeled Data Labeled Data GT

Pseudo Label

Predictions L

…

Figure 3. Network Architecture – Team MiMcAlgo [Stereo].

Figure 4. Network Architecture – Team Samsung R&D Insti-
tute China-Beijing (SRC-B [Stereo]).

for an overview). Pseudo-labels for training are obtained by
computing the per-pixel average across the N predictions
at 1

8 resolution and selecting those closest to the average
as GT1 labels. Then, among the N predictions at 1

5 , those
closest to GT1 are selected as GT2. Finally, the bad-4 er-
ror between the two is computed: if it exceeds a threshold
(15%), GT1 are selected as final pseudo-labels – assuming
that GT2 fails on ToM objects because of its lower receptive
field, otherwise GT2 are used for training the student.

5.1.3 Team 2 – SRC-B [Stereo]

Samsung R&D Institute China-Beijing (SRC-B [Stereo])
(CodaLab: pixinsight) proposed a two-branch architecture
combining the power of stereo and mono, shown in Fig 4.

In the first branch, it adopts Depth-Anything [93], which
maximizes the preservation of the DinoV2’s semantic fea-
tures and utilizes both labeled and unlabeled images to facil-
itate better monocular depth estimation. The second branch
implements CREStereo [34], a hierarchical network to pre-
dict disparities in a coarse-to-fine manner. This approach
employs an adaptive group local correlation layer that uses
cross and self attention [73] to aggregate global context in-
formation, a 2D-1D alternate local strategy to handle im-
perfect epipolar images, a deformable search window to re-
duce matching ambiguity, and feature map grouping [22]
to improve performance. The relative disparity predicted
by Depth-Anything [93] is aligned with the metric disparity
predicted by the stereo network using least squares to cal-
culate a global translation and scaling. Then, the aligned

monocular disparity replaces the prediction of the stereo
network and is used to carry out subsequent iterative op-
timization. Overview in Fig. 4.

The framework is implemented using Pytorch [51] and
trained on 4× 3090 GPUs. In the first stage, the dispar-
ity maps of the Booster training dataset are aligned to the
Depth-Anything prediction range and used to fine-tune the
depth head of Depth-Anything itself for 100 iterations with
an L1 loss, starting from the pre-trained model from [93].
Then, in the second stage, the monocular module is frozen,
and CREStereo is fine-tuned for an additional 1000 epochs.
During the training phase, they apply several augmentation
techniques to the training samples, including random scal-
ing, cropping, chromatic augmentation, and random occlu-
sions. During the inference phase, images are downsampled
to 1

8 , 1
4 , 1

2 to construct an image pyramid that is then fed into
the network following [34].

5.2. Track 2: Mono

5.2.1 Baseline - ZoeDepth [3]

For the Mono track, we adopt the ZoeDepth model as the
baseline, a state-of-the-art network for the monocular depth
estimation task. It relies on DPT [59] as its main back-
bone, an encoder-decoder model that leverages a vision
transformer (ViT) as a building block for the encoder, en-
riched by a metric bins module designed for learning a met-
ric depth representation. Similar to the Stereo track, we use
the available weights provided by the authors.

5.2.2 Team 1 - Marigold-LCM

The Marigold-LCM team (CodaLab: anton) combines the
recently proposed Marigold depth estimator [28] with La-
tent Consistency Models (LCM) [44, 69] to achieve effi-
cient inference while maintaining high-quality depth pre-
dictions. Marigold leverages the pre-trained Stable Diffu-
sion model for conditional depth generation, with only the
latent U-Net component being fine-tuned during training on
a dataset of 73K synthetic samples from Hypersim and Vir-
tual KITTI. To enhance inference efficiency, the team em-
ploys LCM by distilling knowledge from Marigold into a
student model, which is trained to produce outputs identical
to Marigold’s through a self-consistency function. During
testing, Marigold’s U-Net is replaced with the trained stu-
dent model, the DDIM scheduler is replaced with the LCM
scheduler, and only 3 denoising steps are run, along with
test-time ensembling of 10 samples, ultimately achieving
high-quality depth predictions with significantly fewer de-
noising steps. The input images are downsampled to the
resolution of 374 × 512 for inference and then upsampled
to the original resolution. Notably, the Booster dataset is
not seen during the original fine-tuning of Marigold or dis-
tillation of Marigold-LCM. Overview in Fig. 5.
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Figure 5. Network Architecture – Team Marigold-LCM.

Figure 6. Network Architecture – Team SRC-B [Mono].

5.2.3 Team 2 - SRC-B [Mono]

The SRC-B [Mono] team exploits the Depth Anything [93]
base model, which follows the training strategy of MiDaS
[60] by using a mixed training set and extending it to 62M
unlabeled data. The Depth Anything model enhances the
preservation of semantic features from DINOv2 [49] while
using a teacher-student framework to train on unlabeled
data. Specifically, the method employs an affine-invariant
loss, introduces strong color and spatial distortions, and in-
tegrates the Depth Anything encoder into the ZoeDepth [3]
framework to convert relative disparity to metric depth. For
fine-tuning on the Booster dataset, the team adjusts the in-
put image dimensions to 770×770 and conducts fine-tuning
over 100 epochs. Overview in Fig. 6.

5.2.4 Team 3 - SmartLab

The “SmartLab” team presents a training-free approach for
estimating depth in scenes with transparent and mirror sur-
faces. The method employs a coarse-to-fine strategy, first
using a glass detection model, GDNet [46], to generate a
coarse mask of potential transparent and mirror surfaces.
The refined masks are used to sample points within the
masked regions, which are fed into the Segment Anything
Model (SAM) [31] to obtain more precise masks enriched
with semantic information. The masked regions of the in-
put image are inpainted using a strategy of filling with the
most frequently occurring color similarly to [12]. Finally,
the Metric3D [95] depth predictor is used to estimate the
depth of the transparent and mirror surfaces based on the
inpainted image. Overview in Fig. 7.

Figure 7. Network Architecture – Team SmartLab.

Figure 8. Network Architecture – Team PD&HPC.

5.2.5 Team 4 - THU-808

The THU-808 team’s “FuseDepth” method is inspired by
the Boosting Monocular Depth (BMD) [48] work, which
suggests that different resolution inputs yield depth maps
with varying levels of detail. The approach builds upon
the Marigold [28] diffusion-based depth estimation method.
The team devises a depth fusion approach tailored to in-
puts of different resolutions, specifically 512 and 1024. In-
stead of training a depth fusion network that could disrupt
the original depth distribution, they employ guided filtering
to fuse the depth maps. The threshold and radius for the
guided filtering are set to 64 and 1e−8, respectively. Al-
though simple, this method effectively enhances depth ac-
curacy by leveraging the varying levels of detail obtained
from different resolution inputs.

5.2.6 Team 5 - PD&HPC

The PD&HPC team’s ”DepthBlur” approach begins by fine-
tuning the Depth Anything model [93] on the Booster train-
ing set, modeling the training phase as in ZoeDepth [3].
This fine-tuning process significantly improves the model’s
performance in handling complex surfaces. The team in-
vestigates the effect of image preprocessing techniques on
further enhancing the model’s accuracy. They apply Gaus-
sian blurring to the ToM portions of the images, which are
identified using a segmentation model. This preprocessing
step mimics the real-world light scattering effect on these
surfaces and provides additional visual cues for depth esti-
mation. However, the team observes that hardware limita-
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Figure 9. Network Architecture – Team DVision.

Figure 10. Network Architecture – Team MiMcAlgo [Mono].

tions constrain the input image resolution during training,
impacting the effectiveness of the results when upscaling to
match the test set resolution. Overview in Fig. 8.

5.2.7 Team 6 - DVision

The DVision team’s ”Masked-Depth-Anything” method ad-
dresses the challenge of training the Depth Anything [93]
model with the provided dataset, downsampling the high-
resolution images to (3, 518, 714) for compatibility with the
model. To minimize information loss from ToM surfaces
during resizing, they divide the images into smaller sections
of size (3, 1400, 1400) with a 20% overlap. The team fo-
cuses on retraining Depth Anything with the segments con-
taining ToM surfaces and introduces a MaskLoss function
to prioritize the model’s attention on these surfaces. The
MaskLoss function computes the mean squared error be-
tween the predicted and actual depth values for pixels cor-
responding to the ToM mask. However, using MaskLoss
alone results in good predictions on ToM surfaces but poor
performance on other surfaces. To address this issue, the
team incorporates three additional loss functions with pre-
assigned weights: SMLoss (Sobel filter-based edge loss),
SSIMLoss (Structural Similarity Index Measure loss), and
L1Loss (mean absolute error loss). The final loss function
is a weighted combination of these four losses.

Figure 11. Network Architecture – Team UW IPL.

5.2.8 Team 7- MiMcAlgo [Mono]

The MiMcAlgo [Mono] team’s (CodaLab: Sunyj) method
uses the state-of-the-art Depth Anything-L [93] depth net-
work as the base model. They adapt the fine-tuning method
from [12] with additional improvements to address the chal-
lenging task. Here, mirror data is inpainted using the LaMa
[74] model, while transparent data follows the default pro-
cessing flow from [12]. The model is fine-tuned with the
official weights on the MSD and Trans 10K test sets us-
ing specific hyperparameters and data augmentation tech-
niques. A gray-world algorithm, horizontal flipping, and
averaging are applied during inference to improve perfor-
mance. A gamma coefficient of 0.5 is used to adapt the
results to the test set’s depth range. Overview in Fig. 10.

5.2.9 Team 8- UW IPL

The UW IPL team’s “DepthanyTM” method builds upon
the Depth Anything [93] model. The pipeline initializes the
ViT-L model with pre-trained Depth Anything weights, then
in-paints selected data from Trans10K and MSD following
the strategy proposed in [12]. The team fine-tunes the model
on the in-painted data using pseudo-ground-truth depth and
further fine-tunes it on the Booster training set. The en-
coder is initialized with Depth Anything weights pre-trained
on NYUv2, while the decoder is randomly initialized. The
ZoeDepth codebase is used to predict metric depth, and the
model is fine-tuned for 5 epochs at different stages using
default parameters. Overview in Fig. 11.
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