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Abstract

This paper provides a comprehensive review of the
NTIRE 2024 challenge, focusing on efficient single-image
super-resolution (ESR) solutions and their outcomes. The
task of this challenge is to super-resolve an input image with
a magnification factor of ×4 based on pairs of low and cor-
responding high-resolution images. The primary objective
is to develop networks that optimize various aspects such as
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runtime, parameters, and FLOPs, while still maintaining a
peak signal-to-noise ratio (PSNR) of approximately 26.90
dB on the DIV2K LSDIR valid dataset and 26.99 dB on
the DIV2K LSDIR test dataset. In addition, this challenge
has 4 tracks including the main track (overall performance),
sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track
3 (parameters). In the main track, all three metrics (i.e.,
runtime, FLOPs, and parameter count) were considered.
The ranking of the main track is calculated based on a
weighted sum-up of the scores of all other sub-tracks. In
sub-track 1, the practical runtime performance of the sub-
missions was evaluated, and the corresponding score was
used to determine the ranking. In sub-track 2, the number of
FLOPs was considered. The score calculated based on the
corresponding FLOPs was used to determine the ranking.
In sub-track 3, the number of parameters was considered.
The score calculated based on the corresponding param-
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eters was used to determine the ranking. RLFN is set as
the baseline for efficiency measurement. The challenge had
262 registered participants, and 34 teams made valid sub-
missions. They gauge the state-of-the-art in efficient single-
image super-resolution. To facilitate the reproducibility of
the challenge and enable other researchers to build upon
these findings, the code and the pre-trained model of val-
idated solutions are made publicly available at https:
//github.com/Amazingren/NTIRE2024_ESR/.

1. Introduction
Single image super-resolution (SR) aims at enhancing the
resolution of low-resolution (LR) images to generate high-
resolution (HR) counterparts. Typically, LR images are
acquired through a degradation process that involves blur-
ring and down-sampling. Among the models used to sim-
ulate this degradation in classical image SR, bicubic down-
sampling stands out as widely adopted [45, 49, 63, 64]. Its
prevalence as a benchmark enables the evaluation of differ-
ent SR methods and facilitates direct comparisons between
them, thereby validating the efficacy of novel SR methods.

Cutting-edge deep neural networks for SR face signifi-
cant challenges, including parameter overparameterization,
resource-intensive computation, and substantial latency.
These obstacles hinder their integration into mobile devices
for real-time SR applications. However, ongoing innovation
continues to address these challenges. Enter a diverse array
of research efforts focused on improving the efficiency of
various architectures, including Convolutional Neural Net-
works (CNNs), Multi-Layer Perceptrons (MLPs), Trans-
formers, and Mamba [6, 21, 29, 37, 68, 72, 86]. From
the meticulous approach of network pruning [43, 58] to
the straightforward technique of low-rank filter decompo-
sition, and from the systematic process of network quan-
tization to the advanced methods of neural architecture
search [44, 91, 92], a range of effective solutions have
emerged. Among these, knowledge distillation stands out as
particularly promising. These efforts in network compres-
sion mark a significant advancement for image SR, offering
not only improved resolution but also enhanced efficiency
and accessibility for all.

The efficiency of a deep neural network encompasses
various dimensions, evaluated across a range of metrics
such as runtime, parameter count, and computational com-
plexity (measured in FLOPs). These metrics play a crucial
role in determining the network’s feasibility for deployment
across diverse platforms. Among these, runtime emerges
as particularly significant, providing a direct indication of
a network’s operational efficiency and often serving as the
primary criterion for evaluation. Of utmost concern is the
relationship between computational complexity and energy
consumption, a pivotal axis that directly impacts the via-

bility of mobile devices. Higher computational complex-
ity correlates with increased energy consumption, posing a
significant threat to the delicate balance of battery life. Ad-
ditionally, the number of parameters exerts a substantial in-
fluence on AI chip design, determining chip area and manu-
facturing costs. An increase in parameter counts can lead to
larger chip sizes and elevated production expenses, thereby
shaping the landscape of the AI device market.

In partnership with the 2024 New Trends in Image
Restoration and Enhancement (NTIRE 2024) workshop, we
are proud to announce the inception of the Efficient Super-
Resolution Challenge. The challenge’s primary objective is
to achieve super-resolution of a low-resolution (LR) image
with a magnification factor of ×4, employing a network that
optimizes runtime, parameters, and FLOPs, building upon
the baseline method laid by RLFN [36]. Participants are
tasked with maintaining a minimum peak signal-to-noise ra-
tio (PSNR) of 26.90 dB on the DIV2K LSDIR valid dataset
and 26.99 dB on the DIV2K LSDIR test dataset. This chal-
lenge serves as a platform for exploring state-of-the-art so-
lutions in efficient super-resolution. We aim to rigorously
assess their effectiveness and identify key trends in the de-
sign of efficient SR networks. We welcome participants to
contribute to this endeavor by pushing the boundaries of
innovation and advancing streamlined and effective image
restoration and enhancement techniques.

This challenge is one of the NTIRE 2024 Workshop as-
sociated challenges on: dense and non-homogeneous de-
hazing [3], night photography rendering [4], blind com-
pressed image enhancement [83], shadow removal [73], ef-
ficient super resolution (this challenge), image super res-
olution (×4) [12], light field image super-resolution [80],
stereo image super-resolution [76], HR depth from images
of specular and transparent surfaces [85], bracketing image
restoration and enhancement [89], portrait quality assess-
ment [7], quality assessment for AI-generated content [56],
restore any image model (RAIM) in the wild [50], RAW
image super-resolution [17], short-form UGC video qual-
ity assessment [42], low light enhancement [57], and RAW
burst alignment and ISP challenge.

2. NTIRE 2024 Efficient Super-Resolution
Challenge

The objectives of this challenge are multifaceted: (1) To
stimulate curiosity and exploration within the field of effi-
cient super-resolution. (2) To create a platform where di-
verse methodologies can be directly compared in terms of
efficiency. (3) And to act as a dynamic hub where academic
and industrial leaders come together, exchanging ideas and
laying the groundwork for potential collaborations. This
section will elucidate the intricate details of the challenge,
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providing participants with clear guidance through its com-
plex structure and objectives.

2.1. Dataset

The DIV2K [1] dataset and the LSDIR [46] dataset are uti-
lized for this challenge. Specifically, the DIV2K dataset
consists of 1,000 diverse 2K resolution RGB images, which
are split into a training set of 800 images, a validation set
of 100 images, and a test set of 100 images. The LS-
DIR dataset contains 86,991 high-resolution high-quality
images, which are split into a training set of 84,991 im-
ages, a validation set of 1,000 images, and a test set of 1,000
images. In this challenge, the corresponding LR DIV2K
and LSDIR images are generated by bicubic downsampling
with a down-scaling factor of ×4. The training images from
DIV2K and LSDIR are provided to the participants of the
challenge. During the validation phase, 100 images from
the DIV2K validation set and 100 images from the LS-
DIR validation set, forming the DIV2K LSDIR valid set,
which is made available to participants. During the test
phase, 100 images from the DIV2K test set and another
100 images from the LSDIR test set are used, forming the
DIV2K LSDIR test set. Throughout the entire challenge,
the testing HR images remain hidden from the participants.

2.2. RLFN Baseline Model

The Residual Feature Distillation Network (RLFN) [36]
serves as the baseline model in this challenge. The aim is
to improve its efficiency in terms of runtime, number of pa-
rameters, and FLOPs, while at least maintaining 26.90 dB
on the DIV2K LSDIR valid dataset and 26.99 dB on the
DIV2K LSDIR test dataset.

The main idea within RLFN is the use of three convolu-
tional layers for residual local feature learning to simplify
feature aggregation, which achieves a good trade-off be-
tween model performance and inference time. Moreover,
the popular contrastive loss was explored and RLFN pro-
posed that the selection of intermediate features of its fea-
ture extractor has a great influence on the overall perfor-
mance. Specifically, the initial feature extraction is carried
out by a 3 × 3 convolution that generates coarse features
from the input LR image. The second part of RLFB con-
sists of four RLFBs, stacked in a chain-like manner, to pro-
gressively refine the extracted features. After gradual re-
finement by the RLFBs, all intermediate features are com-
bined using a 1 × 1 convolution layer. An additional 3 × 3
convolution layer is then utilized to smooth the aggregated
features. Finally, the super-resolved images are generated
by pixel shuffle operation.

The baseline RLFN emerges as the winner of the
NTIRE2022 Challenge on Efficient Super-Resolution [36].
The quantitative performance and efficiency metrics of
RLFN are given in Table 1, and summarized as follows:

(1) The number of parameters is 0.317M. (2) The average
PSNRs on validation (DIV2K 100 valid images and LSDIR
100 valid images) and testing (DIV2K 100 test images and
LSDIR 100 test images) sets of this challenge are 29.96 dB
and 27.07 dB, respectively. (3) The runtime averaged 11.77
ms on the validation and test set with PyTorch 1.13.1+cu117
on a single NVIDIA GeForce RTX 3090 GPU. (4) The
number of FLOPs for an input of size 256× 256 is 19.67G.

2.3. Tracks and Competition

This challenge aims to devise a network that reduces
one or several aspects such as runtime, parameters, and
FLOPs, while at least maintaining the 26.90 dB on
the DIV2K LSDIR valid dataset, and 26.99 dB on the
DIV2K LSDIR test dataset with a common GPU (i.e.,
NVIDIA GeForce RTX 3090 GPU).

Main Track: Overall Performance. The aim is to obtain a
network design/solution with the best overall performance
in terms of inference runtime, FLOPS, and parameters on a
common GPU while being constrained to maintain or im-
prove the threshold PSNR results.

Sub-Track 1: Runtime Performance. The aim is to ob-
tain a network design/solution with the lowest inference
time (runtime) on a common GPU while being constrained
to maintain or improve over the baseline method RLFN in
terms of number of parameters, FLOPs, and the threshold
PSNR result.

Sub-Track 2: FLOPs Performance. The aim is to ob-
tain a network design/solution with the lowest amount of
FLOPs on a common GPU while being constrained to main-
tain or improve the inference runtime, the parameters, and
the threshold PSNR results.

Sub-Track 3: Parameters Performance. The aim is to
obtain a network design/solution with the lowest amount of
parameters on a common GPU while being constrained to
maintain the FLOPs, the inference time (runtime), and the
threshold PSNR results.

Challenge phases: (1) Development and validation phase:
Participants were given access to 800 LR/HR training im-
age pairs and 200 LR/HR validation image pairs from
the DIV2K and the LSDIR datasets. Additional 84,991
LR/HR training image pairs from the LSDIR dataset are
also provided to the participants. The RLFN model, pre-
trained parameters, and validation demo script are available
on GitHub https://github.com/Amazingren/
NTIRE2024_ESR, allowing participants to benchmark
their models’ runtime on their systems. Participants could
upload their HR validation results to the evaluation server to
calculate the PSNR of the super-resolved image produced
by their models and receive immediate feedback. The cor-
responding number of parameters, FLOPs, and runtime will
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be computed by the participants. (2) Testing phase: In the
final testing phase, participants were granted access to 100
LR testing images from DIV2K and 100 LR testing images
from LSDIR, while the HR ground-truth images remained
hidden. Participants submitted their super-resolved results
to the Codalab evaluation server and emailed the code and
factsheet to the organizers. The organizers verified and ran
the provided code to obtain the final results, which were
then shared with participants at the end of the challenge.

Evaluation protocol: Quantitative evaluation metrics in-
cluded validation and testing PSNRs, runtime, FLOPs, and
the number of parameters during inference. PSNR was
measured by discarding a 4-pixel boundary around the im-
ages. The average runtime during inference was computed
on the 200 LR validation images and the 200 LR testing
images. The average runtime on the validation and test-
ing sets served as the final runtime indicator. FLOPs are
evaluated on an input image of size 256×256. Among
these metrics, runtime was considered the most important.
Participants were required to maintain a PSNR of at least
26.90 dB on the DIV2K LSDIR valid dataset, and 26.99
dB on the DIV2K LSDIR test dataset during the chal-
lenge. The constraint on the testing set helped prevent
overfitting on the validation set. It’s important to highlight
that methods with a PSNR below the specified threshold
(i.e., , 26.90 dB on DIV2K LSDIR valid and, 26.99 dB on
DIV2K LSDIR test) will not be considered for the subse-
quent ranking process. It is essential to meet the minimum
PSNR requirement to be eligible for further evaluation and
ranking. A code example for calculating these metrics is
available at https://github.com/Amazingren/
NTIRE2024_ESR.

To better quantify the rankings, we have designed a scor-
ing function for three evaluation metrics in this challenge:
runtime, FLOPs, and parameters. This scoring aims to
convert the performance of each metric into corresponding
scores to make the rankings more significant. Especially,
the score for each separate metric (i.e., Runtime, FLOPs,
and parameter) for each sub-track is calculated as:

Score Metric =
exp(2×MetricTeamX)

MetricBaseline
, (1)

based on the score of each metric, the final score used for
the main track is calculated as:

Score F inal = w1 × Score Runtime

+ w2 × Score FLOPs

+ w3 × Score Params,

(2)

where w1, w2, and w3 are set to 0.7, 0.15, and 0.15, respec-
tively. This setting is intended to incentivize participants
to design a method that prioritizes speed efficiency while
maintaining a reasonable model complexity.

3. Challenge Results
The final test results and rankings are presented in Table
1. The table also includes the baseline method RLFN [36]
for comparison. In Sec.4, the methods evaluated in Ta-
ble 1 are briefly explained, while the team members are
listed in A. The performance of different methods is com-
pared from four different perspectives including the run-
time, FLOPs, the parameters, and the overall performance.
Furthermore, in order to promote a fair competition empha-
sizing efficiency, the criteria for image reconstruction qual-
ity in terms of test PSNR are set to 26.90 and 26.99 on the
DIV2K LSDIR valid and DIV2K LSDIR test sets, resp.
Runtime. In this challenge, runtime stands as the
paramount evaluation metric. XiaomiMM’s solution
emerges as the frontrunner with the shortest runtime among
all entries in the efficient SR challenge, securing the top po-
sition. Following closely, the Cao Group and BSR claim
the second and third spots, respectively. Remarkably, the
average runtime of the top three solutions on both the val-
idation and test sets remains below 10 ms. Impressively,
the first 15 teams present solutions with an average runtime
below 13 ms, showcasing a continuous enhancement in the
efficiency of image SR networks. Despite the slight differ-
ences in runtime among the top three teams, the challenge
retains its competitive edge. Furthermore, the XiaomiMM
team achieves the highest PSNR on both the validation and
test sets among the top three teams.
FLOPs. FLOPs, representing the number of floating-point
operations, serve as a critical metric for assessing model
complexity. In this sub-track, PiXupt secures the top po-
sition, followed by XJU 100 th Ann and VPEG C in sec-
ond and third places, respectively. Remarkably, the dispar-
ity among the top three methods is minimal, underscoring
their competitiveness and proficiency in managing model
complexity. However, it’s noteworthy that both PiXupt and
XJU 100th Ann exhibit relatively high runtimes. Further
exploration is warranted to address and mitigate such chal-
lenges.
Parameters. Parameters serve as another critical metric
for assessing model complexity, which was also evaluated
in this challenge. As shown in Table 1, XJU 100th Ann,
VPEG C, and ZHEstar secured the first three places. How-
ever, akin to the FLOPs sub-track, the runtime of these
methods lags significantly behind that of the other meth-
ods. Further exploration is warranted to address and miti-
gate such challenges.
Overall evaluation. In the final assessment, performance
is meticulously evaluated based on an aggregate metric that
intricately weaves together runtime, FLOPs, and the num-
ber of parameters. Notably, the XiaomiMM Group emerges
triumphant, securing the coveted top spot under this com-
prehensive metric, with the Cao Group and BSR clinch-
ing the 2nd and 3rd places, respectively. This outcome un-
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Table 1. Results of Ninth NTIRE 2024 Efficient SR Challenge. The performance of the solutions is compared thoroughly from three
perspectives including the runtime, FLOPs, and the number of parameters. The underscript numbers associated with each metric score
denote the ranking of the solution in terms of that metric. For runtime, “Val.” is the runtime averaged on DIV2K LSDIR valid validation
set. “Test” is the runtime averaged on a test set with 200 images from DIV2K LSDIR test set, respectively. “Ave.” is averaged on the
validation and test datasets. “#Params” is the total number of parameters of a model. “FLOPs” denotes the floating point operations. Main
Track combines all three evaluation metrics. The ranking for the main track is based on the score calculated via Eq. 2, and the ranking for
other sub-tracks is based on the score of each metric score via Eq. 1. Please note that this is not a challenge for PSNR improvement.
The “validation/testing PSNR” is not ranked. For all the scores, the lower, the better.

Teams PSNR [dB] Runtime [ms] FLOPs #Params Sub-Track Scores Main-Track
Val. Test Val. Test Ave. [G] [M] Runtime FLOPs #Params Score Ranking

XiaomiMM 26.94 27.01 5.62 5.57 5.59 0.151 9.83 2.59(1) 2.59(7) 2.72(8) 2.61 1
Cao Group 26.90 27.00 10.99 5.76 8.37 0.215 13.05 4.15(2) 3.88(13) 3.77(13) 4.05 2
BSR 26.90 27.00 11.96 6.80 9.38 0.218 11.95 4.93(3) 3.96(14) 3.37(10) 4.55 3
VPEG O 26.90 27.01 12.20 7.06 9.63 0.212 13.86 5.14(4) 3.81(12) 4.09(14) 4.78 4
CMVG 26.90 27.01 12.58 7.46 10.02 0.202 12.17 5.49(5) 3.58(10) 3.45(12) 4.90 5
LeESR 26.91 27.02 13.21 8.04 10.62 0.165 9.75 6.08(7) 2.83(9) 2.69(6) 5.09 6
AdvancedSR 26.91 27.02 12.94 8.04 10.49 0.263 16.20 5.94(6) 5.26(17) 5.19(17) 5.73 7
ECNU MViC 26.90 27.00 14.10 8.87 11.49 0.163 9.78 7.05(10) 2.80(8) 2.70(7) 5.76 8
HiSR 26.91 27.03 13.69 8.83 11.26 0.208 11.99 6.78(9) 3.71(11) 3.38(11) 5.81 9
MViC SR 26.90 27.00 14.53 9.23 11.88 0.138 8.16 7.53(11) 2.39(6) 2.29(5) 5.97 10
LVTeam 26.91 27.02 13.79 8.71 11.25 0.266 16.34 6.77(8) 5.36(18) 5.27(18) 6.33 11
Fresh 26.90 27.00 14.52 9.29 11.90 0.245 14.97 7.56(12) 4.69(16) 4.58(16) 6.68 12
Lanzhi 26.93 27.02 14.86 9.53 12.19 0.318 19.70 7.94(13) 7.44(20) 7.41(20) 7.79 13
Supersr 26.90 27.01 15.16 9.90 12.53 0.298 18.67 8.40(15) 6.55(19) 6.67(19) 7.87 14
MeowMeowMeow 26.92 27.03 16.18 10.95 13.57 0.238 14.47 10.03(16) 4.49(15) 4.35(15) 8.35 15
Just Try 26.90 27.00 15.23 9.75 12.49 0.380 24.81 8.35(14) 11.00(22) 12.46(23) 9.36 16
VPEG C 26.90 27.03 18.76 13.31 16.03 0.084 4.97 15.24(17) 1.70(3) 1.66(2) 11.17 17
VPEG E 26.90 27.01 21.21 15.74 18.48 0.093 5.89 23.09(20) 1.80(5) 1.82(4) 16.71 18
BU-ESR 27.00 27.11 19.47 14.07 16.77 0.433 27.05 17.28(18) 15.36(24) 15.65(24) 16.75 19
Lasagna 26.90 27.00 20.11 14.59 17.35 0.657 41.21 19.08(19) 63.12(25) 66.03(26) 32.73 20
ZHEstar 26.93 27.04 31.07 24.66 27.87 0.090 5.81 113.87(21) 1.76(4) 1.81(3) 80.25 21
BlingBling 26.93 27.04 40.75 34.63 37.69 0.424 20.17 604.72(22) 14.51(23) 7.77(21) 426.64 22
PiXupt 26.91 27.00 52.91 44.21 48.56 0.060 9.84 383.46e1(23) 1.46(1) 2.72(9) 268.49e1 23
Minimalist 26.91 27.02 53.37 47.02 50.20 0.346 20.65 506.53e1(24) 8.87(21) 8.16(22) 354.82e1 24
XJU 100th Ann 26.90 27.02 61.89 55.78 58.84 0.069 4.39 219.74e2(25) 1.55(2) 1.56(1) 153.82e2 25
MagicSR 27.03 27.17 461.32 443.38 452.35 1.019 38.47 241.07e31(26) 619.57(26) 49.98(25) 168.75e31 26

The following methods are not ranked since their validation/testing PSNR (underlined) is not on par with the threshold.

FireWork 26.86 26.96 13.26 7.99 10.62 0.441 28.85 6.08 16.16 18.79 9.50
DIRN 26.22 26.33 21.45 15.96 18.71 0.097 6.48 24.01 1.84 1.93 17.38
VIP 26.89 27.02 25.60 19.87 22.73 0.088 5.56 47.61 1.74 1.76 33.85
DASE-IDEALab 26.89 27.00 38.95 33.42 36.19 0.088 4.50 468.34 1.74 1.58 328.34
ACVLAB 25.31 25.45 206.29 196.24 201.26 0.753 55.89 712.28e12 115.68 293.76 499.60e12
SPAN-T 26.92 26.98 5.91 6.04 5.98 0.131 8.54 2.76 2.29 2.38 2.63
hajnal 27.00 26.95 13.40 7.94 10.67 0.243 14.89 6.13 4.63 4.54 5.67
KLETech
CEVI Lowlight Hypnotise 24.53 24.75 315.17 302.12 308.64 16.698 1174.94 597.94e20 566.23e43 763.95e49 114.59e49

RLFN (Baseline) 26.96 27.07 14.35 9.19 11.77 0.317 19.67 7.39 7.39 7.39 7.39

derscores the meticulous craftsmanship and ingenuity em-
bedded within their methodologies. With runtime bearing
significant weight in the scoring system, it’s noteworthy
how closely the overall performance of each method mir-
rors their rankings in the runtime sub-track, reflecting the
discernible impact of efficiency optimization on overall suc-
cess. Indeed, our overarching objective this year has been to
incentivize participants to embark on a quest for speed and
efficiency in their designs—a mission that has undoubtedly
borne fruit in the form of groundbreaking advancements and
innovative solutions.

PSNR. While MagicSR, BU-ESR, ZHEstar, and BingBing
showcase impressive PSNR performance—traditionally
regarded as a cornerstone metric in method evalua-
tion—MagicSR notably attains a remarkable 27.17 dB,
closely followed by BU-ESR at 27.11 dB, and ZH-

Estar and BingBing both achieving 27.04 dB on the
DIV2K LSDIR test set. However, amidst these acco-
lades, it is paramount to underscore the overarching fo-
cus of this challenge: efficiency in super-resolution. Thus,
in alignment with this objective, we opted to relax the
PSNR threshold to a stringent lower bound of 26.90 and
26.99 for ranking on both the DIV2K LSDIR valid and
DIV2K LSDIR test sets. This strategic adjustment aims to
underscore the importance of balancing performance with
efficiency. Notably, a total of 26 teams successfully met this
revised requirement, showcasing their adeptness in navigat-
ing the delicate equilibrium between quality and compu-
tational efficiency. While several teams, such as SPAN-T,
hajnal, FireWork, DIRN, and VIP, exhibit commendable ef-
ficiency performance, it is lamentable that they fell short
of meeting the PSNR threshold, highlighting the multi-
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faceted challenges inherent in the pursuit of efficient super-
resolution excellence.

3.1. Main Ideas

Throughout this challenge, several techniques have been
proposed to enhance the efficiency of deep neural networks
for image super-resolution (SR) while striving to maintain
optimal performance. The choice of techniques largely de-
pends on the specific metrics that a team aims to optimize.
Below, we outline some typical ideas that have emerged:
• Parameter-free attention mechanism is validated as

a useful technique to enhance computational effi-
ciency [22, 82]. Specifically, XiaomiMM proposed
a swift parameter-free attention network based on
parameter-free attention, which achieves the lowest run-
time while maintaining a decent PSNR performance.

• Re-parameterization [20] [22, 82] is commonly used
in this challenge. Usually, a normal convolutional layer
with multiple basic operations (3 × 3 convolution, 1 ×
1 operation, first and second-order derivative operators,
skip connections) is parameterized during network train-
ing. During inference, the multiple operations that repa-
rameterize a convolution could be merged back into a sin-
gle convolution. e.g., All the top three teams (i.e., Xi-
aomiMM, Cao Group, and BSR) used this operation in
their solutions.

• Incorporating multi-scale information and hierarchi-
cal module design are proven strategies for effectively
fusing critical information. For instance, solutions such
as PiXupt, XJU 100th Ann, and ZHEstar have success-
fully utilized multi-scale residual connections and hierar-
chical module designs to enhance their performance.

• Network pruning plays an important role. It is ob-
served that a couple of teams (i.e., CMVG, AdvancedSR,
and HiSR) used network pruning techniques to slightly
compress a network. This leads to more lightweight ar-
chitecture without heavy performance drop.

• Exploration with new network architectures is con-
ducted. Besides the common CNN or Transformers, the
state space model (i.e., vision mamba [29]) was tried by
BlingBling for the first time in this challenge.

• Various other techniques are also attempted. Some
teams also proposed solutions based on neural architec-
ture search, vision transformers, and advanced training
strategies.

3.2. Fairness

To uphold the integrity and fairness of the efficient SR chal-
lenge, a series of rules were meticulously crafted, primar-
ily focusing on the dataset utilized for training the network.
Firstly, participants were granted permission to train their
models with additional external datasets, such as Flickr2K,
thereby fostering a diverse and comprehensive training reg-

imen. However, to ensure unbiased evaluation, the use of
the additional DIV2K and LSDIR validation sets compris-
ing either high-resolution (HR) or low-resolution (LR) im-
ages was strictly prohibited during training. This measure
was implemented to preserve the integrity of the validation
set, which served as a crucial yardstick for assessing the
overall performance and generalizability of the proposed
networks. Furthermore, training with DIV2K and LSDIR
test LR images was unequivocally forbidden, safeguarding
the sanctity of the test dataset and maintaining the sanctity
of the evaluation process. Lastly, employing advanced data
augmentation strategies during training was deemed a fair
and equitable approach, empowering participants to opti-
mize their models while adhering to the established guide-
lines and regulations.

3.3. Conclusions

Several conclusions can be drawn from the analysis of dif-
ferent solutions as follows. Firstly, The competition for
the efficient image SR community is still fierce. This year
the challenge had 262 registered participants, and 34 teams
made valid submissions. All the proposed methods im-
prove the state-of-the-art for efficient SR. Secondly, re-
parameterization and network compression play an impor-
tant role in efficient SR. More exploration is still encour-
aged to further improve the model’s efficiency with these
techniques. Thirdly, regarding the training, the adoption of
large-scale dataset [46] for pre-training improves the ac-
curacy of the network and for most of the methods, the
training of the network proceeds in several phases with in-
creased patch size and reduced learning rate. Fourthly, the
state space model was explored for the first time in the chal-
lenge, which may draw a new model choice for the upcom-
ing works. Finally, by jointly considering runtime, FLOPs,
and the number of parameters, it is possible to design a bal-
anced model that optimizes more than one evaluation met-
ric. Finally, as computational capabilities advance, the op-
timization of models for runtime, FLOPs, and parameter
count will become increasingly crucial. With ongoing de-
velopments in hardware and algorithmic efficiency, there is
a strong likelihood of even more sophisticated and resource-
efficient models emerging in the field of super-resolution
(SR). We anticipate that the pursuit of efficiency in SR
will persist and be further explored, leading to continued
progress and innovation in the field.

4. Challenge Methods and Teams
4.1. XiaomiMM

Method. The authors propose the Swift Parameter-free At-
tention Network (SPAN) [75], a highly efficient SISR model
that balances parameter count, inference speed, and im-
age quality. As shown in Figure 1, SPAN consists of 6
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Figure 1. Team XiaomiMM: The proposed SPAN architecture [75]. The brown area indicates the internal structure of each SPAB module.
Att.Map2 denotes the generated attention map.

consecutive SPABs and each SPAB block extracts progres-
sively higher-level features sequentially through three con-
volutional layers with C ′-channeled H ′×W ′-sized kernels
(In our model, they choose H ′ = W ′ = 3). The extracted
features Hi are then added with a residual connection from
the input of SPAB, forming the pre-attention feature map Ui

for that block. The features extracted by the convolutional
layers are passed through an activation function σa(·) that
is symmetric about the origin to obtain the attention map
Vi. The feature map and attention map are element-wise
multiplied to produce the final output Oi = Ui ⊙ Vi of the
SPAB block, where ⊙ denotes element-wise multiplication.
They use W

(j)
i ∈ RC′×H′×W ′

to represent the kernel of
the j-th convolutional layer of the i-th SPAB block and σ
to represent the activation function following the convolu-
tional layer. Then the SPAB block can be expressed as:

Oi = F
(i)
Wi

(Oi−1) = Ui ⊙ Vi,

Ui = Oi−1 ⊕Hi, Vi = σa(Hi),

Hi = F
(i)
c,Wi

(Oi−1),

= W
(3)
i ⊗ σ(W

(2)
i ⊗ σ(W

(1)
i ⊗Oi−1)),

(3)

where ⊕ and ⊗ represent the element-wise sum between ex-
tracted features and residual connections, and the convolu-
tion operation, respectively. F (i)

Wi
and F

(i)
c,Wi

are the function
representing the i-th SPAB and the function representing the

3 convolution layers of i-th SPAB with parameters Wi =

(W
(1)
i ,W

(2)
i ,W

(3)
i ), respectively. O0 = σ(W0 ⊗ ILR) is

a C ′-channeled H ×W feature map from the C-channeled
H ×W -sized low-resolution input image ILR undergone a
convolutional layer with 3×3 sized kernel W0. This convo-
lutional layer ensures that each SPAB has the same number
of channels as input. The whole SPAN neural network can
be described as

IHR = F (ILR) = PixelShuffle[Wf2 ⊗O)],

O = Concat(O0, O1, O5,Wf1 ⊗O6),
(4)

where O is a 4C ′-channeled H×W -sized feature map with
multiple hierarchical features obtaining by concatenating
O0 with the outputs of the first, fifth, and the convolved
output of the sixth SPAB blocks by C ′-channeled 3 × 3-
sized kernel Wf1. O is processed through a 3 × 3 convo-
lutional layer to create an r2C channel feature map of size
H×W . Then, this feature map goes through a pixel shuffle
module to generate a high-resolution image of C channels
and dimensions rH × rW , where r represents the super-
resolution factor. The idea of computing attention maps di-
rectly without parameters from features extracted by convo-
lutional layers led to two design considerations for our neu-
ral network: the choice of activation function for comput-
ing the attention map and the use of residual connections,
more details about activation function and SPAB module
are in [75].
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Figure 2. Team Cao Group: The structure of R2Net

Figure 3. Team Cao Group: The structure of ReNRB and repa-
rameterization in R2Net

Training Details. The dataset utilized for training com-
prises DIV2K and LSDIR. During each training batch, 64
HR RGB patches are cropped, measuring 256 × 256, and
subjected to random flipping and rotation. The learning rate
is initialized at 5 × 10−4 and undergoes a halving process
every 2 × 105 iterations. The network undergoes training
for a total of 106 iterations, with the L1 loss function be-
ing minimized through the utilization of the Adam opti-
mizer [35]. They repeated the aforementioned training set-
tings four times after loading the trained weights. Subse-
quently, fine-tuning is executed using the L1 and L2 loss
functions, with an initial learning rate of 1×10−5 for 5×105

iterations, and an HR patch size of 512. They conducted the
finetuning on four models utilizing both L1 and L2 losses,
employed batch sizes of 64 and 128, and integrated these
four models to obtain the ultimate model.

4.2. Cao Group

Method. The overall architecture of their network is shown
in Figure 2, which is inspired by previous leading meth-
ods, DIPNet [84] and SRN [79]. They propose a Dou-
ble Reparameterization Network (R2Net). Specifically,
they build upon the SRN framework by combining Resid-
ual Blocks (RB) and Enhanced Spatial Attention (ESA) to
form a new feature extraction module with reparameteriza-
tion, named reNRB, as shown in Figure 3. They remove
the residual connections within RB and the 1x1 convolu-
tions on the residual connections in ESA, retaining only the
global residual connections. Furthermore, different from
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Figure 4. Team BSR: PFDNLite Architecture.

SRN [79], they find that preserving the last convolution be-
fore the global residual connection significantly boosts per-
formance. For the sake of lightweight design, they set its
kernel size to 1x1. Notably, they eliminate biases in all con-
volutional layers, as this not only significantly accelerates
inference speed and reduces parameters but also slightly en-
hances network performance.

As for the reparameterization technique, they adopt
RRRB [24] for all 3x3 convolutions. And inspired by the
Feed Forward Network (FFN) module structure in trans-
former, they propose a reparameterization module to en-
hance the performance of 1x1 convolutions by expanding
the intermediate channel, thereby harnessing the represen-
tation capability of complex structures during optimization,
as shown in Figure 3(c).
Training Details. They train the network on RGB chan-
nels and augment the training data with random flipping and
rotation. The number of ESA channels is set to 16, while the
number of feature channels is set to 48. Following previous
methods, the training process is divided into three stages:

1. In the first stage, they randomly crop 256x256 HR
image patches from ground truth images, with a batch size
of 32. They use the Adam optimizer, setting β1 = 0.9 and
β2 = 0.999, and minimize the Charbonnier loss function.
The initial learning rate is set to 2e-4, with a cosine learning
rate decay strategy. The number of iterations is set to 2e-6.

2. In the second stage, they increase the size of the HR
image patches to 512x512, with other settings remaining the
same as in the first stage.

3. In the third stage, the batch size is set to 64, and L2
loss is adopted to optimize over 2e-6 iterations. The initial
learning rate is set to 2e-5.

Throughout the entire training process, they employ an
Exponential Moving Average (EMA) strategy to enhance
the robustness of training.

4.3. BSR

Method. Inspired by ABPN [23] and PFDN [47], the
PFDNLite, as shown in Fig. 4, consists of two PFDBLite
blocks and two pruned-PFDBLite blocks. For ×4 SR, the
input image is repeated r2 times and then added to the final
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feature. Based on EFDN [78] and PFDN [47], they modify
a more lightweight partial feature distillation block, dubbed
PFDBLite to chase faster feature extraction. Generally, they
execute two modifications focusing on the reparameteriz-
able convolution and attention module. For the convolu-
tion block, they employ RepMBConv, which squeezes the
MobileNetv3 block into vanilla convolution for better trade-
offs between performance and memory access. Moreover,
they add a reparameterizable point-wise convolution to co-
operate with the middle RepMBConv as an approximation
of partial convolution [8]. For the attention module, they
propose a local attention (LocalAttn), which applies a local
gate and MaxPool-based importance map to modulate input
features. As illustrated in Fig. 5, they provide the details of
RepMBConv and LocalAttn.

Additionally, as exhibited in Fig. 6, the Pruned-
PFDBLite is similar to PFDBLite but drops the second
RepMBConv of PFDBLite and decreases the output chan-
nels of the first RepMBConv from 48 to 24. Besides, they
add the point-wise convolution after the first RepMBConv.
Training details. The training process contains two
stages with four steps. And the training dataset is the
DIV2K LSDIR train [1].

I. At the first stage, they only use PFDBLite blocks in
the PFDNLite.
• Step1. HR patches of size 256×256 are randomly

cropped from HR images, and the mini-batch size is set
to 96. L1 loss with AdamW optimizer is used and the ini-
tial learning rate is set to 0.0005 and halved at every 100k
iterations. The total iterations is 500k.

• Step2. HR patches of size 256×256 are randomly
cropped from HR images, and the mini-batch size is set
to 96. Charbonieer loss with AdamW optimizer is used
and the initial learning rate is set to 0.0003 and halved at
every 100k iterations. The total iterations is 500k.

• Step3. HR patches of size 480×480 are randomly
cropped from HR images, and the mini-batch size is set
to 64. MSE loss with AdamW optimizer is used and the
initial learning rate is set to 0.0001 and halved at every
100k iterations. The total iterations is 500k.
II. At the second stage, they replace the second and the

third PFDBLite block with Pruned-PFDBLite and use the
weight of PFDBLite to initialize Pruned-PFDBLite.
• Step4. HR patches of size 480x480 are randomly cropped

from HR images, and the mini-batch size is set to 64.
MSE loss with AdamW optimizer is used and the initial
learning rate is set to 0.0001 and halved at every 100k
iterations. The total iterations is 500k.

4.4. PiXupt

Method. The PiXupt team proposed the Hierarchical At-
tention Residual Network (HARN), as shown in Fig. 7.
HARN adopts a similar basic framework to [34, 48, 52, 62].

However, HARN uses the Hierarchical Self-Attention Mod-
ule (HSAM) instead of the original spatial attention in
[62], and uses the Hierarchical Separable Residual Block
(HSRB) instead of the original Blueprint Shallow Resid-
ual Block (BSRB) in [48, 62]. As shown in the Fig. 9
(b), HSAM first divides the inputs into four groups from
the channel dimension, where the first group performs the
self-attention calculation within a large window, and then
the output features are fused as hidden state with the inputs
of the next group using a Gate Recurrent Unit[16] (GRU).
Such an approach allows feature information to be shared
between different groups, which can help different groups
to use the large window information without having to use
the large window for each head. Secondly, as shown in
Fig. 9 (a), the proposed HSRB improves on the depth-wise
convolution used in the BSRB. HSRB first fuses the chan-
nel information of the input features using point-wise con-
volution, then groups the features and uses different sizes
of depth-wise convolution kernels for different groups and
connects them using a hierarchical structure to extract richer
local features. HSAM and HSRB are contained in the basic
module of HARN, Hierarchical Attention Distillation Block
(HADB), as shown in Fig. 8.
Training Details. The proposed HARN has 4 HADBs, in
which the number of feature channels is set to 20. The de-
tails of training steps are as follows:
1. Pretraining on DIV2K[71]: HR patches of size 256 ×

256 are randomly cropped from HR images, and the
mini-batch size is set to 64. The model is trained
by minimizing L1 loss function with Adam optimizer.
The initial learning rate is set to 2 × 10−3 and halved
at {100k, 500k, 800k, 900k, 950k}-iteration. The total
number of iterations is 1000k.

2. Finetuning on 800 images of DIV2K and the first 10k
images of LSDIR. HR patch size and mini-batch size
are set to 384 × 384 and 32, respectively. The model
is fine-tuned by minimizing Charbonnier loss function.
The initial learning rate is set to 5 × 10−4 and halved
at {100k, 500k, 800k, 900k, 950k}-iteration. The total
number of iterations is 1000k.

3. Finetuning on 800 images of DIV2K and the first 10k
images of LSDIR again. HR patch size and the mini-
batch size are set to 384 × 384 and 32, respectively. The
model is fine-tuned by minimizing the L2 loss function.
The initial learning rate is set to 2× 10−4 and halved at
{100k, 300k, 600k}-iteration. The total number of iter-
ations is 650k.

4.5. XJU 100th Ann

Method. They propose an attention guidance distilla-
tion network (AGDN) for efficient image super-resolution,
which is influenced by existing studies such as IMDN[34],
RFDN[52], BSRN[48], and MDRN[62], and further im-
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proved based on these studies. Fig.10 illustrates the overall
architecture of their network, which has been extensively
validated in previous studies.
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They have reconsidered the previous network structure,
and the feature extraction phase remains a key limiting fac-
tor for network performance. The feature distillation block
comprises distillation in the pre-phase and enhancement in
the post-phase. Thus, improving both distillation and en-
hancement can significantly boost network performance.

Based on the above analysis, they propose the new atten-
tion guidance distillation block (AGDB) with more efficient
spatial attention, channel attention and self-attention as the
base block of AGDN. As shown in Fig.11, they use the
multi-level variance-aware spatial attention (MVSA) and
reallocated contrast-aware channel attention (RCCA) as al-
ternatives to the enhanced spatial attention (ESA) [53] and
contrast-aware channel attention (CCA) [34], and introduce
sparse global self-attention (SGSA) [41] to achieve further
feature enhancement.

In MVSA, they consider the impact of multi-level
branching and local variance on performance. Multi-level
branches with small windows cannot cover a sufficient
range of information while using local variance in a sin-
gle branch can lead to large differences in weights between
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Figure 10. Team XJU 100th Ann: The overall architecture of attention guidance distillation network (AGDN).

Figure 11. Team XJU 100th Ann: The details of each component. (a) AGDB: Attention Guidance Distillation Block; (b) BSRB: Blueprint
Shallow Residual Block; (c) BSConv: Blueprint Separable Convolution; (d) MVSA: Multi-level Variance-aware Spatial Attention; (e)
RCCA: Reallocated Contrast-aware Channel Attention; (f) SGSA: Sparse Global Self-attention.

branches. Therefore, they improved MDSA [62] to obtain
D5 and D7 branches that contain both local variance to bet-
ter capture structurally information-rich regions while bal-
ancing performance and model complexity In RCCA, they
not only consider the reallocation of weights across chan-
nels by traditional channel attention but also enhance the
treatment of common information across all channels. They
added complementary branches with 1 × 1 convolution and
GELU activation representations to reallocate complemen-
tary channel information, promoting the uniqueness of each
channel. Finally, they introduce SGSA for selecting the
most useful similarity values, aiming to better utilize es-
sential global features for image reconstruction. In image
reconstruction, there is usually a gap in global attention be-
tween the training and testing phases. Therefore, they adopt
the default enhancement approach of SGSA, which is to ap-
ply the test-time localizer converter (TLC) [15] approach
during the testing phase.

Training Details. The proposed AGDN has 4 AGDBs, in
which the number of feature channels is set to 24. The de-
tails of the training steps are as follows:

1. Pretraining on the DIV2K [1] and Flickr2K [51]
datasets. HR patches of size 256 × 256 are randomly
cropped from HR images, and the mini-batch size is set to
64. The model is trained by minimizing the L1 loss func-
tion with the Adam optimizer. The initial learning rate is
set to 2 × 10−3 and halved at {100k, 500k, 800k, 900k,
950k}-iteration. The total number of iterations is 1000k.

2. Finetuning on 800 images of DIV2K and the first 10k
images of LSDIR[46]. HR patch size and mini-batch size
are set to 384 × 384 and 32, respectively. The model is
fine-tuned by minimizing the L2 loss function. The initial
learning rate is set to 5 × 10−4 and halved at 50k iteration.
The total number of iterations is 100k.

6605



4.6. VPEG C

Method. They introduce a self-modulation feature aggre-
gation (SMFA) module as shown in Figure 12 to collabora-
tively exploit both local and non-local feature interactions
for image super-resolution. Specifically, the SMFA mod-
ule employs an efficient approximation of the self-attention
(EASA) branch to model non-local information and uses a
local detail estimation (LDE) branch to capture local details.
Additionally, they further introduce a partial convolution-
based feed-forward network (PCFN) to refine the represen-
tative features derived from the SMFA. Given the input fea-
ture Fin ∈ RH×W×C , where H×W denotes the spatial size
and C is the number of channels, they first apply a 1×1 con-
volution to the normalized Fin to expand the channel, and
then split the channel into two parts as inputs to the efficient
approximation of self-attention (EASA) and local detail es-
timation (LDE) branches:

{X,Y } = S(Conv1×1(||Fin||2)), (5)

where || · ||2 is the L2 normalization, Conv1×1(·) denotes a
1 × 1 convolutional layer, S(·) denotes a channel splitting
operation, and {X,Y } ∈ RH×W×C . They then process
the features X and Y in parallel via the EASA and LED
branches, producing the non-local feature Xl and local fea-
ture Yd, respectively. Finally, they fuse Xl and Yd together
with element-wise addition and feed them into a 1× 1 con-
volution to form a representative output of the SMFA mod-
ule. This process can be formulated as:

Fρ = Fin + Conv1×1(Xl + Yd), (6)

where Fρ ∈ RH×W×C is the output feature.
For an efficient approximation of self-attention, they ob-
tain the low-frequency components through a downsam-
pling operation and feed them into a 3× 3 depth-wise con-
volution to generate non-local structure information Xs ∈
RH/8×W/8×C :

Xs = DWConv3×3(D(X)), (7)

where D(·) denotes the adaptive max pooling with a scal-
ing factor of 8, DWConv3×3(·) is a 3× 3 depth-wise con-
volutional layer. To embed global descriptions for modu-
lating non-local representation Xs, they introduce variance
ν(X) ∈ R1×1×C of the input X and calculate it in the spa-
tial dimension. Xs and ν(X) are then added and fed into a
1× 1 convolution to fuse the information thoroughly:

Xm = Conv1×1(Xs + ν(X)), (8)

where Xm ∈ RH×W×C represents the modulated feature.
This variance modulation mechanism facilitates better ex-
ploring non-local information.

Finally, they use the modulated features to aggregate the
input feature X for extracting the representative structure
information Xl:

Xl = X ⊙ U(ϕ(Xm)), (9)

where ϕ(·) refers to the GELU activation function [32], U(·)
denotes a nearest upsampling operation, and ⊙ represents
the element-wise product operation.
Training Details. The proposed SMFAN consists of 8
FMBs and the number of channels is set to 24. They
first train the proposed SMFAN on the DIV2K [71] and
Flickr2K [51] datasets. The cropped LR image size is 96
× 96 and the mini-batch size is set to 64. The SMFAN is
trained by minimizing L1 loss and the frequency loss [13]
with Adam optimizer for total of 800,000 iterations. They
set the initial learning rate to 2 × 10−3 and the minimum
one to 1× 10−5, which is updated by the Cosine Annealing
scheme [60]. After that, they use the first 10,000 images of
LSDIR [46] dataset for fine-tuning. The cropped LR image
size is 160 × 160 and the mini-batch size is set to 32. The
fine-tuning stage uses MSE loss and the frequency loss [13]
with 500,000 iterations. The initial learning rate is set to
2× 10−5 and the minimum one to 1× 10−7.

4.7. ZHEstar

Method. The ZHEstar team proposed Large Kernel
Frequency-enhanced Network (LKFN) [9]. The architec-
ture is shown in Fig.13. It is based on BSRN [48]. They
replaced the RBSB in BSRN with their Partial Large Kernl
Block (PLKB) shown in Fig.14. Inspired by PConv [8],
PLKB first divides the input feature map into two halves in
the channel dimension. One half undergoes a 5 × 5 depth-
wise convolution (The third PLKB with a dilation rate of
3.), and the result is then concatenated with the unprocessed
other half. A 1 × 1 convolution is subsequently used to
perform data exchange between these two parts. For their
Frequency-enhanced Pixel Attention (FPA) module, it first
transforms the spatial domain feature map to the frequency
domain through Fourier transform, then pass the frequency
domain map through a three-layer 1 × 1 convolution, fol-
lowed by two LeakyReLUs. The result is added to the initial
frequency domain map via a residual connection to obtain
the enhanced frequency domain attention map. Then it was
transformed back to the spatial domain and multiplied by
the input spatial feature map.
Training Details. The proposed LKFN consists of 8
LKFBs and the feature channel is set to 28. The training
data includes 800 images from DIV2K [1] and the first 10K
images from LSDIR [46]. They use the default parameter
settings of the Adan optimizer [81] in the whole process.
The training process is as follows:
1. Training with an input patch size of 64× 64 and a mini-

batch size of 64 from scratch by minimizing the L1 loss.

6606



Conv 1×1

(c) PCFN

... ...

(a) SMFANet

Pi
xe

l
Sh

uf
fle

C
on

v
3×

3

C
on

v
3×

3

(b) SMFA

FMB

SM
FA

PC
FN

C
on

v
3×

3

Conv 1×1

FM
B

FM
B

FM
B

FM
B

X 𝑿𝑿𝒍𝒍Xre

…

Yd

H×W×C

D
W

C
on

v

C
on

v
1×

1

C
on

v
1×

1

H/8×W/8 ×C C
on

v
1×

1

C
on

v
1×

1

𝓢𝓢

𝓓𝓓 𝓤𝓤

𝒗𝒗

𝒗𝒗(𝑿𝑿)Fin Fρ
𝓢𝓢

c

𝑭𝑭𝝆𝝆

𝑭𝑭𝝆𝝆𝟏𝟏 𝑭𝑭𝝆𝝆𝟐𝟐

�𝑭𝑭𝝆𝝆

H×W×C

H×W×C

H×W×C

H×W×C

Y

H×W×C

D
W

C
on

v

C
on

v
1×

1
Yh

H×W×2C

Element-wise Product

Element-wise Addition

Nearest Up-sampling𝓤𝓤

Adaptive Max Pooling 𝓓𝓓

Variance Calculation𝒗𝒗

Channel Split𝓢𝓢

c Channel Concat

GELU Activation

Figure 12. Team VPEG C : An overview of the proposed SMFAN.

Figure 13. Team ZHEstar: The framework of Large Kernel
Frequency-enhanced Network (LKFN)

Figure 14. Team ZHEstar: Large Kernel Frequency-enhanced
Block (LKFB)

The initial learning rate is set to 5× 10−3. The learning
rate decay is following cosine annealing with Tmax =
total iterations, ηmin = 1 × 10−7. The total number of
iterations is 1000K.

2. Finetuning with an input patch size of 120 × 120 and a
mini-batch size of 64 by minimizing the MSE loss. The
learning rate is set to 2 × 10−5 during this stage. The
total number of iterations is 150K.

4.8. VPEG O

Method. The VPEG O team introduces SAFMN++, an
improved version of SAFMN [70] for solving efficient
SR. This solution mainly concentrates on improving the
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Figure 15. Team VPEG O: The overall network architecture of
their proposed SAFMN++.

effectiveness of the spatially adaptive feature modulation
(SAFM) [70] layer. Different from the original SAFM, as
shown in Fig 15, the improved SAFM (SAFM+) can extract
both local and non-local features. In SAFM+, a 3×3 con-
volution is first utilized to extract local features and a single
scale feature modulation is then applied to a portion of the
extracted features for non-local feature interaction. After
this process, these two sets of features are aggregated by
channel concatenation and fed into a 1×1 convolution for
feature fusion.
Training details. The proposed SAFMN++ consists of
6 feature mixing modules, and the number of channels
is set to 36. They train the proposed SAFMN++ on the
LSIDR [46] dataset. The cropped LR image size is 120 ×
120 and the mini-batch size is set to 64. The SAFMN++
is trained by minimizing L1 loss and the frequency loss[13]
with Adam optimizer for total 800, 000 iterations. They
set the initial learning rate to 3 × 10−3 and the minimum
one to 1× 10−6, which is updated by the Cosine Annealing
scheme [60].

4.9. CMVG

Method. They propose a residual knowledge distillation
super-resolution network named RDEN for efficient super-
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Figure 16. Team CMVG: The framework of RDEN

Figure 17. Team CMVG: The framework of SRRB

resolution(SR) as shown in Figure.16. The RDEN model is
composed of a large teacher network and a lightweight stu-
dent network, they apply the superior SR model HAT[10] as
a teacher network. The distillation training provides addi-
tional effective supervision information for student training,
and enhance the performance and generalization ability of
the student network. The student network includes the shal-
low feature extraction, the depth feature extraction, and the
reconstruction modules. There are four simplified reparam-
eterization residual blocks (SRRB) in depth feature extrac-

tion modules, as shown in Figure.17. The reconstruction
module includes a 4× and 2× upsampling head. A SRRB
block is composed of three residual connected ECB[88]
blocks and ESA[36]. They utilize ECB blocks during the
training phase, while they can be merged into a single 3x3
convolution layer during inference through mathematical
transformation. The number of feature maps of Conv3 and
SRRB is set to 38 respectively, after the pruning, the fea-
ture maps are reduced to 37 finally. Although the model
is small, the knowledge distillation and reparameterization
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provide the information compensation, which enables their
model to achieve good reconstruction performance. They
train the teacher network with L1 loss, the teacher loss is
denoted as follows:

LT = ∥Y SR
T − Y HR

T ∥ (10)

Where the Y SR
T is SR image from teacher and Y HR

T is
HR image. The student network is trained by the distillation
loss, L1 loss, and joint supervision loss. They extract fea-
tures from the 0th, 2nd, 4th, and 5th blocks of the teacher
model, and features from each SRRB block, then they use a
1*1 convolution to expand the student feature dimension to
match corresponding teacher features. The distillation loss
is denoted as follows:

Ldistillation = λi

4∑
i=0

∥F i
T − F i

S∥+ µ∥Y SR
T −XSRx4

S ∥

(11)

where F i
S represents the feature map of the output of the

i-th block of the student network, and F i
T is the correspond-

ing features of teacher model. XSRx4
S represents the output

of 4x upsample heads in student network. The joint super-
vision loss is composed of GM loss, FFT loss, and 2x su-
pervision loss, denoted as follows:

LGM = ∥GM(XSRx4
S )−GM(XHRx4

S )∥ (12)

LFFT = ∥FFT (XSRx4
S )− FFT (XHRx4

S )∥ (13)

LX2 = ∥XSRx2
S −XHRx2

S ∥ (14)

where GM(.) and FFT (.) respectively represent the
gradient map and focal frequency extraction operators, the
XSRx2

S denotes the output from 2× upsampling head, the
XHRx4

S and XHRx2
S are corresponding 4×and 2× HR im-

age. Finally, the student loss for training student network is
:

LS = α∥XSRx4
S −XHRx4

S ∥+ βLdistillation + γLGM

+ δLFFT + ϵLX2

(15)

Training Details. They train their model on DIV2K,
Flickr2K, and LSDIR datasets, and the multi-stage progres-
sive training strategy is used to optimize and finetune. The
progressive training strategy gradually increases patch size,

changes loss function, and loads weights from the previous
step to improve performance. The training details are de-
scribed as follows:
Stage1 Training teacher network: The teacher network
HAT is trained from scratch with teacher loss.
Stage2 Training student network: The teacher network is
fixed, and they pretrain a 2× network to initialize the stu-
dent network. Then, the student network is optimized
through distillation training by student loss. The initial
learning rate is set to 5e-4 and halved at every 60 epochs
and the total number of epochs is 500. The batch size and
patch size are set to 64 and 256 separately. Data augmenta-
tion is also adopted.
Stage3 The finetune steps of the student network are de-
scribed as follows:
(1) The student model is initialized from Stage 2 and trained
with the same settings as in the previous step.
(2) The student model is initialized from Stage 3.1 and
trained with the same settings as Stage 3.1, especially since
the loss function is only MSE loss.
(3) The student model is initialized from the previous step
and finetuned by MSE loss further, it is worth noting that
the patch size is set to 512. Other parameter settings are not
changed and finally, the student model is finetuned with 640
HR patches and MSE loss.

4.10. LeESR

Method. Inspired by the RLFN [36] and BSRN [48],
this team proposed a Separable-Mixable Residual Network
(SMRN) as illustrated in Fig.18 for Efficient image Super-
Resolution, which can maintain lower parameters and com-
putation while performing faster. Unlike the popular RFDB
(see Fig.19(a)) in RFDN [52], the RLFB (see Fig.19(b))
in RLFN, and the ESDB (see Fig.19(c)), the BSConv (see
Fig.19(d)) in the proposed SMRB consists of a 1×1 pixel-
wise convolution and a depth-wise convolution and con-
siders the intra kernel correlation. Among it, a kernel on
a single channel (as a blueprint) is multiplied with differ-
ent weights (e.g., 1×1 pixel-wise convolution) to obtain the
convolution kernels on other different channels. Obviously,
the strategy can greatly simplify traditional convolution op-
erations. However, only the kernel of different channels
separately is limited, the features of different channels still
need to mix for performance improvement. Therefore, as
shown in Fig.19(d), a Separable-Mixable Residual Block
(SMRB) is designed, which consists of both the blueprint
separable operation and the information mixable operation.
Specifically, they introduce traditional convolutional ker-
nels to be used in conjunction with BSconv for feature sep-
aration and mixable.

Reparameterization has improved the performance of
ESR without introducing any inference cost. In Separable-
Mixable Residual Block (SMRB), they introduce the Re-
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Figure 18. Team LeESR: The framework of the proposed
Separable-Mixable Residual Network (SMRN).

parameterized Blueprint Separable Block (RBSB) to im-
prove the BSconv representation, while a Re-parameterized
Information Mixable Block (RIMB) is designed to replace
the regular convolution. Specifically, inspired by SESR [5],
during training, the conv in RIMB is a collapsible block
which consists of a 3 × 3 convolution and a 1×1 convolu-
tion in the expanded space. During inference, they collapse
them to a single 3×3 convolution as depicted in Fig.19(d).
In image reconstruction, a re-parameterized 3 × 3 convolu-
tion (RepConv) as shown in Fig.18 is utilized to replace the
single 3 × 3 convolution.
Training Details. The proposed SMRN contains four SM-
RBs, in which they set the number of feature maps to 48.
Also, the channel number of the ESA is set to 16 similar to
[36]. Besides, the collapsed channel number in the collapsi-
ble block is 256. Throughout the entire training process,
they use the Adam optimizer [35], where β1 = 0.9 and β2
= 0.999. The model is trained for 1000k iterations in each
stage. Input patches are randomly cropped and augmented.
Data augmentation strategies included horizontal and verti-
cal flips, and random rotations of 90, 180, and 270 degrees.
Model training was performed using Pytorch 1.11.0 [66] on
one NVIDIA A100 40G GPUs. Specifically, the training
strategy consists of several steps as follows.

1. In the starting stage, they train the model from scratch
on the 800 images of DIV2K [71] and the first 10k im-
ages of LSDIR [46] datasets. The model is trained for total
106 iterations by minimizing Charbonnier loss and FFT loss
[13]. The HR patch size is set to 256×256, while the mini-
batch size is set to 64. They set the initial learning rate to
1 × 10−3 and the minimum one to 1 × 10−6, which is up-
dated by the Cosine Annealing scheme.

2. In the second stage, they increase the HR patch size to
384. The model is fine-tuned by minimizing the Charbon-
nier loss and FFT loss. They utilize the MultiStepLR sched-
uler with a warm-up strategy (2,000 iterations for warm-up),
where the initial learning rate is set to 5 × 10−4 and halved
at 200k, 400k, 800k-iterations.

3. In the third stage, the model is initialized with the pre-
trained weights of Stage 2, and fine-tuned with larger HR
patches of size 480x480. Other settings are the same as in
the second stage.

4. In the fourth stage, the model is further fine-tuned with
480×480 HR patches, however, the loss function is changed
to minimize the combination of L2 loss and FFT loss. Other

settings are the same as Stage 3.

4.11. AdvancedSR

Method. The AdvancedSR team proposes a kernel-
pruning-based Residual Local Feature Network [36] for ef-
ficient SR. The overall network architecture is illustrated
in Figure.20. It is a lightweight network consisting of a se-
ries of RLFB blocks, similar to RLFN. However, they prune
the second convolution in the pruned-RLFB block based on
sensitivity analysis. Additionally, the pixel shuffle block is
used for image restoration.

Additionally, this team perform the pruning steps based
on NTIRE2024 official baseline model [36]. The pruning
process consists of two stages. In the first stage, they apply
progressive kernel-pruning on the re-parameterized model
inspired by UPDP[55]. And in the second stage, they apply
bias prune in their model to accelerate the runtime.

Stage 1. Kernel Pruning. They conducted a sensitivity
analysis on all the conv3×3 of the RLFN Network. Based
on the proportion of responses of the center weights in
Conv3, they replaced the conv3 with conv1 progressively.
The experiments show that replacing Conv3 with Conv1s
scarcely degrades the performance but can enhance runtime
efficiency. Despite channel pruning boasting fewer FLOPs,
its runtime performance falls short of kernel pruning.

Stage 2. Bias Pruning. After kernel pruning, they obtain
a subnet with a modified RLFB network. They preserve
the biases of the first conv and ESA module, then retrain
the subnet by removing the remaining biases thus further
enhancing runtime efficiency.
Training Details. The model is trained on LSDIR
dataset[46] and they use RLFN (the official baseline model
of NTIRE2024) as their basemodel. The training HR patch
size is set as 256×256 with data augmentation such as rota-
tion and horizontal flip in order to enhance the comprehen-
sive ability of the model. They set the batch size as 64 in
the training process with total of 500 epochs. The model is
trained by minimizing L2 loss with Adam optimizer. The
initial learning rate is set to 2e-5 and the learning rate is
decayed by half at 100 epochs.

4.12. ECNU MViC

Method. As shown in Fig. 21, they propose an intermittent
feature aggregation network named IFADNet. The archi-
tecture comprises of three parts: the shallow feature extrac-
tion, the deep feature extraction based on alternating BFEB
blocks and RFMB blocks, and the reconstruction stage.
They employ a single 3× 3 convolution to extract the shal-
low feature Fs ∈ RC×H×W in the first stage HF :

Fs = HF (Ii), (16)

where Ii, C, H , W are the input image, the embedding
channel dimension, height and width of the input, respec-
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Figure 20. Team AdvancedSR: The overall architecture of AdvancedSR.

tively.
During the second stage, six intermittent blocks are used

to extract the deep feature Fd ∈ RC×H×W :

Fd = HD(Fs). (17)

Specifically, HD consists of an alternating blueprint feature
extraction block (BFEB) and a parameterized feature modu-
lation block (RFMB). The details of BFEB and RFMB will
be introduced in the next paragraph. By using Fs and Fd as
inputs, the high-quality image Ir is generated in the recon-
struction stage denoted by HR as:

Ir = HR(Fs + Fd), (18)

where HR involves a single 3×3 convolution followed by a
pixel shuffle operation [69].

Inspired by the blueprint shallow residual block [48],
they designed a blueprint feature extraction block to reduce
the computation time, which did not significantly reduce
model performance. As shown in Fig. 21 (a), the BFEB
contains three blueprint shallow blocks (BSB) which con-
tain a 1×1 point-wise convolution with a 3 × 3 depth-wise
convolution followed by GELU activation. The reparama-
terized feature modulation block (RFMB) consists of three
reparameterized convolution blocks (CB) and an enhanced
spatial attention block [36] is employed to extract and mod-
ulate the deep feature fully. The detailed structure is illus-
trated in Fig. 22. They further observe that the intermit-
tent setting of blocks significantly reduces model complex-
ity while not largely impairing model effectiveness. At the
end of the second stage, the extracted features of each block
are concatenated and aggregated using two convolutions.
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Reparameterization has shown a strong ability to im-
prove the feature presentation. Different from the reparame-
terization module design of high-level tasks, they design an
isotropic edge-oriented convolutional block in their model.
As shown in Fig. 22(a), the Sobel-Dx and Sobel-Dy employ
isotropic Sobel functions to enhance the network’s repre-
sentation capabilities. For inference, the output is computed
in a simplified 3 × 3 convolution, which significantly re-
duces computation cost.

Training Details. They use DIV2K [1] and the first 10K
images of LSDIR [46] to train their model. The training
dataset is augmented with horizontal flips and 90-degree
rotations. Knowledge distillation is applied to improve
the model performance. They use the large version of
pre-trained SAFMN[70] as their teacher model.The student
model IFADNet has 6 blocks(3 BFEB and 3 RFMB). The
channel of their network is 36. The training details are as
follows:

• Training from scratch. The HR patch size is 256. The
mini-batch size is set to 64. The model is trained by min-
imizing L1 loss and distillation loss (also L1 loss) with

Adam optimizer [35]. The initial learning rate is set to
2×10−3 and halved at {100k, 500k, 800k, 900k, 950k}-
iteration. The total number of iterations is 1000k.

• Finetuning with larger patches. The HR patch size is set
to 640. The model is finetuned with MSE loss. Other
settings are the same as in the previous step.

4.13. HiSR

Method. They propose the SlimRLFN for the efficient
super-resolution task. The network architecture is inspired
by the design of RLFN[36], while fully exploring the capac-
ity of reparameterizable convolution, light distillation, and
iterative model pruning. The whole architecture is shown in
Fig.23, which mainly consists of six SRLFB modules and
a pixel shuffle module. Reparameterizable convolutions are
utilized in the SRLFB module, aiming to improve the super-
resolution capability without introducing any additional pa-
rameter overhead during the inference stage. Meanwhile,
the network is optimized by the pixel-wise loss such as char-
bonnier loss or L2 loss, along with the distillation loss pro-
vided by a light but efficient teacher model. Last but not
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least, they use iterative pruning to shrink the model size
while maintaining the promising performance at the last
training stage.
Training Details. They choose DIV2K, Flickr2K, and LS-
DIR datasets as their training datasets, and they augment
them with horizontal/vertical flips and rotations during the
training stage. They set the batch size as 64 for all train-
ing stages and other hyperparameters such as patch size or
learning rate are determined by the specific training stage.
The whole training process is summarised as follows.

1) Training the teacher model. They choose the large RLFN
as their teacher model. They set the patch size as
256×256, and use charbonnier loss and Adam optimizer
for optimization. They train the teacher model for 100
epochs and set the initial learning rate as 1e-3. The learn-
ing rate decay follows cosine annealing with Tmax as 100
and etamin as 1e-5.

2) Training the SlimRLFN with light distillation. They set
the patch size as 256×256, and use two loss functions
for training. The first one is the regular charbonnier
loss with ground truth HR image, and the second one is
the charbonnier loss between SlimRLFN’s output and the
teacher’s output. They also choose the Adam optimizer
for optimization. They train the SlimRLFN model for 100
epochs, and set the initial learning rate as 1e-3. The learn-
ing rate decay follows cosine annealing with Tmax as 100
and etamin as 1e-5. Then they repeat this stage two more
times without distillation loss, and the pretrained model
is adopted from the last stage.

3) Training the SlimRLFN with a larger patch size progres-
sively. They set the patch size as {384×384, 512×512},
and set the initial learning rate as {5e-4, 2.5e-4} respec-
tively. Each stage’s pretrained model is adopted from the
last stage, and they train the model under the same patch
size three times in total. The other details are the same as
before.

4) Training the SlimRLFN with the patch size of 640×640.
They use the L2 loss in this stage and set the initial learn-
ing rate as 1e-4. They also adopt cosine annealing with
Tmax as 100 and etamin as 1e-6 for learning rate decay.

5) [Optional] SlimRLFN pruning stage. After training from
the above several epochs, they adopt the iterative pruning
for the SlimRLFN which has obtained promising perfor-
mance.

4.14. MViC SR

Method. As shown in Figure 24, this team propose a net-
work with lightweight spaced attention (LSANet). The ar-
chitecture of LSANet consists of the following parts: the
shallow feature extraction, the deep feature extraction based
on spaced local feature extraction module (LFEM) and
reparamaterized spaced attention Block (RSAB), and the re-
construction.

Given the LR input ILR, a single 3×3 convolution is ap-
plied to extract the shallow feature F0 ∈ RC×H×W in the
first part:

F0 = Conv (ILR) , (19)

where ILR, C, H , W are the input LR image, channel di-
mension, height and width of the input, respectively.

In the second part, they use six alternate blocks to extract
the deep feature Fd ∈ RC×H×W :

Fd = HD(F0). (20)

Specifically, HD is comprised of local feature extrac-
tion module (LFEM) and reparamaterized spaced attention
Block (RSAB). By taking Fs and Fd as inputs, the HR im-
age IHR is reconstructed with an upsampler as:

IHR = HRC(F0 + Fd), (21)

where HRC is the reconstruction module involves a single
3×3 convolution followed by a pixel shuffle operation [69].

Previous methods mostly use several plain convolutions
to extract features, which is inefficient with soaring compu-
tational complexity. Inspired by the blueprint shallow resid-
ual block [48], they design an efficient yet effective local
feature extraction module (LFEM) to alleviate computing
burden while largely maintaining model performance. As
illustrated in Figure 24(a), the LFEM contains three effi-
cient shallow blocks (ESB) which include a 1×1 point-wise
convolution with a 3×3 depth-wise convolution followed by
GELU activation [32].

Consequently, they propose a reparamaterized spaced at-
tention Block (RSAB) to preserve the representation abil-
ity to the adjacent blocks, which is composed of an effi-
cient shallow block and two reparameterized convolution
blocks (RCB) followed by an enhanced spatial attention
block (ESA)[36] and a convolution. The spaced ESA blocks
only used in RSAB are employed for comprehensive extrac-
tion and modulation of deep features. They use a 1×1 con-
volution after the ESA block to further refine the weighted
feature and capture local patterns. The detailed structure is
shown in Figure 25. Intermittently configurating attention
blocks substantially lower model complexity without a no-
ticeable performance drop. At the end of this part, features
extracted from all blocks are concatenated and aggregated
using two convolutions.

Reparameterization [24, 88] has proven effective in en-
hancing feature representation without introducing addi-
tional computational overhead. Different from the repa-
rameterization module design of high-level tasks, they de-
sign an isotropic edge-oriented convolutional block in their
model. As shown in Figure 25(a), the Sobel-Dx and Sobel-
Dy employ the isotropic Sobel function to improve the rep-
resentation capabilities of their model. During the inference
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Figure 23. Team HiSR: Network architecture of SlimRLFN.
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phase, all branches are combined to a simplified 3×3 con-
volution, which significantly reduces computation cost.

Training Details. They apply two stages to train their net-
work on DIV2K and the first 10K data of LSDIR. They ran-
domly augment the input with a flip and 90-degree rota-
tion to enhance the robustness of the network. They design

a teacher-student distillation strategy for training, which
makes the large version of SAFMN [70] as a teacher and
the proposed network as a student. Three LFEM and RSAB
blocks are stacked alternately in their student network, and
the feature channel is 36. The mini-batch size is fixed to 64
in all stages. The details of the two training stages are as
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follows:
• Stage 1. They minimize the L1 loss (student prediction

and ground-truth) and distillation loss (student prediction
and teacher preditction) to optimize the student network
by Adam optimizer [35] for 1000k iterations. The initial
learning rate is set to 2×10−3, which will be halved at
100k, 500k, 800k, 900k, 950k. The HR patch size is 256
during this stage.

• Stage 2. They initialize the weight of the student network
with the pre-trained student in Stage 1. They enlarge the
HR patch size to 640 and minimize MSE loss instead of
L1 loss.

4.15. LVTeam

Method. Accurately inferring and reconstructing the fine
details missing in the LR images based on the learned mod-
els of image textures and structures, while maintaining the
efficiency of the inference process, poses a challenging
task. Since the provided baseline RLFN [36] is already
lightweight, they wanted to further explore the limits of the
RLFN model while keeping the performance (26.99 dB).
For this purpose, they made two improvements based on the
RLFN and formed a novel architecture LightRLFN. Firstly,
a shortcut connection between the inputs and the model out-
puts. To achieve this, they perform 4× bilinear interpolation
on the input image to match the resolution of the output.
Secondly, they reduced the width of the model (46 channels
to 36 channels). As a result, the designed LightRLFN model
is lightweight and efficient enough, as shown in fig.26.
Training Details. The proposed architecture is based on
PyTorch 2.2.1 and an NVIDIA 2080Ti with 11G memory.
They set 400 epochs for training with batch size 32, us-
ing AdamW with β1 = 0.9 and β2 = 0.999 for optimiza-
tion. The initial learning rate was set to 0.001, and cosine
annealing was used for learning rate adjustment. Regard-
ing the use of the DIV2K [1] and LSDIR [46] datasets,
they first copied the DIV2K dataset to 85 times its original
number (i.e., 800×85), and then merged it with the LSDIR
dataset to form the final training set, which contains a total
of 152,991 images. For data augment, they first randomly
crop the LR image to 96×96 (the corresponding HR res-

Figure 26. LvTeam: The architecture of LightRLFN.

olution is 384×384) and then perform horizontal flip with
probability 0.5. Regarding the loss function, they use the
L1 loss and the frequency domain reconstruction loss with
0.1 weights.

4.16. Fresh

Method. To further reduce the network’s parameter count
and enhance its efficiency, they propose Depth residual local
feature network for super-resolution (DepthRLFN), which
is modified from the RLFN [36] As illustrated in Figure 27,
they employ depth-wise separable convolutions to replace
the conventional convolutions in the RLFB structure of the
baseline, and they add the low-resolution (LR) image sub-
jected to bilinear interpolation before the network’s output.
This approach not only better preserves the details of the
original image but also reduces the model’s parameter count
and enhances the final image quality. Moreover, to mitigate
the discrepancies observed between global operation behav-
iors during training and testing phases, which adversely af-
fect super-resolution performance, their approach integrates
the Test-time Local Converter (TCL) architecture as intro-
duced in [36].

Training Details. They trained DepthRLFN using a to-
tal of 85,791 image pairs from the DIV2K and LSDIR
[46] datasets on PyTorch 2.2.1 and an NVIDIA A40 with
40G memory. The training process was divided into two
stages, with DepthRLFN comprising 4 DRLFBs and having
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Figure 27. Team Fresh: The architecture of DepthRLFN.

a channel count of 64. For data augment, they first randomly
crop the image to 192×192 and then perform a horizontal
flip with probability 0.5. They set 500,000 iterations for
training, using AdamW with β1 = 0.9 and β2 = 0.999 for
optimization. They set the initial learning rate to 1 × 10−4

and decay the learning rate by 0.5 every 150, 000 iterations.
Additionally, they use L1 loss and Frequency loss for the
training phase. The cropped HR image size is 256×256
and the mini-batch size is set to 64 for the finetuning stage.
The DepthRLFN is trained by L2 loss for a total of 800,000
iterations. They set the initial learning rate to 1× 10−5 and
decay the learning rate by 0.5 every 250,000 iterations.

4.17. Lanzhi

Method. In order to facilitate more stable model training,
they employ an expedited convergence rate and simultane-
ously enhance the generalization capability of the model.
As shown in Figure 28, they introduce a batch normal-
ization layer after the first CONV3+RELU layer in the
residual local feature blocks (RLFBs) within the Residual
Local Feature Network (RLFN) architecture [36]. By
incorporating BN before each convolution, every convolu-
tional layer can benefit from the normalized input features.
Additionally, the final convolutional layer can make certain
adjustments to pixel biases before incorporating them
into the next branch, thereby enhancing performance to
a certain extent [54]. Ensemble learning is a powerful

Figure 28. Team Lanzhi: RLFB BN: Residual local feature block
with embedded batch normalization layer.

technique to improve model performance and robustness.
In the inference stage, they utilize model fusion as a means
of its implementation. Specifically, they employ a weighted
averaging strategy to fuse the prediction results of the
models. By adjusting the weight values, they can flexibly

Figure 29. Team Supersr:The overall network architecture of our
RLFF.

control the influence of each model. Through experiments,
they find that this methodology can significantly improve
the effect of image super-resolution. They conducted a
series of experiments and comparisons between RLFN BN
and the original RLFN model. Through modifications to
the RLFN architecture, they find that the runtime, FLOPs,
and number of parameters remained comparable. On top
of that, with the application of ensemble learning strategy,
their approach achieved a certain improvement in the peak
signal-to-noise ratio (PSNR) while maintaining comparable
structural similarity (SSIM) scores, further demonstrating
the feasibility and effectiveness of their approach for
efficient image super-resolution.

Training Details. During the training phase, they utilize the
training data from the DIV2K dataset, comprising 800 pairs
of low-resolution and high-resolution images, as well as a
subset of the LSDIR dataset [46], consisting of randomly
selected 8,500 pairs of low-resolution and high-resolution
images. Before training, they pre-process the images by de-
coding all PNG files and saving them as binary files. The
training process employs the Adam optimizer. On the other
hand, they employ a learning rate decay strategy to optimize
training stability and adapt to changes in the data distribu-
tion. The initial learning rate is set to 2 × 10−4. The total
number of epochs is 1000. The other training configura-
tions, such as the batch size is set as 16 and the RGB range
is set as 255. Additionally, they utilize the L1 loss function
as it tends to generate sharper images compared to the L2
loss. The implementation of their approach is carried out
using the PyTorch framework.

4.18. Supersr

Method. It is designed based on the baseline approach
RLFN [36]. As depicted in Fig. 29, they replace the orig-
inal RLFB block with their Residual Local Feed Forward
(RLFF) block, which is efficient for super-resolution tasks.
The detailed information will be introduced in the next sec-
tion. The residual Local Feed Forward (RLFF) block is the
core block in our framework. Firstly, they use the GeLU
as the activation function. As presented in Restormer [87],
the Gated Dconv Feed-Forward Network, by managing the
flow of information across the hierarchical levels within the
pipeline, empowers each level to concentrate on intricate
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Figure 30. Team Supersr: (a) The original RLFB module. (b) Our
RLFF module.

details that complement those addressed by other levels. In-
spired by this, they put it into the basic module as a subse-
quent processing of features to improve the feature learning
capability of the network further.
Training Details. Two datasets provided are used for train-
ing: DIV2K [1] and LSDIR [46]. They use the augmenta-
tion strategy of vertical/horizontal flips and 90-degree rota-
tion. They adopt the Adam optimizer algorithm, β1 = 0.9,
and β2 = 0.99. The batch size and patch size are set
to 64 and 256. All experiments are conducted on a sin-
gle NVIDIA RTX 3090 GPU. Only the L1 is used during
the training process. It consists of three phases: 1. patch
size/learning rate: 256/2e-3 for 100, 000 iterations; 2. patch
size/learning rate: 384/1e-3 for 50, 000 iterations; 3. patch
size/learning rate: 512/5e-4 for 50, 000 iterations.

4.19. MeowMeowMeow

Method. Their model is designed based on the baseline
approach RLFN [36], as depicted in Figure 31. They re-
place the RLFB block with a modified version, which they
call Reparameterized Convolutional Block (RCB), incor-
porate two extra Layer Norm layers, and replace ReLU
with GELU. Inspired by ECBSR [88], they employ Edge-
oriented Convolutional Block (ECB) as their reparameter-
ization module to replace the original 3×3 convolution
layer. In the training phase, the ECB module adds five extra
branches to the original 3×3 convolution layer as shown in
Figure 31. In the inference phase, the ECB module can be
converted into a 3×3 convolution layer without any compu-
tational overhead.
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Figure 31. Team MeowMeowMeow: Reparameterized Convolu-
tional Network (RCN).
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(ECB).

Table 2. Team MeowMeowMeow: Hyperparameters for different
training stages.

Stage 1 Stage 2 Stage 3 Stage 4
PS 196 256 384 512
LR 2e− 3 2e− 3 1e− 3 2e− 4
Sche None (fixed LR) CosineAnnealingRestartLR CosineAnnealingRestartLR CosineAnnealingRestartLR
Iter 200,000 50,000 50,000 20,000
Loss 1*L1 1*L1 + 0.001*PSNR 1*L2 + 0.001*PSNR 1*L2 + 0.001*PSNR

Training Details. They use DIV2K [1] and LSDIR [46]
datasets for training, as well as vertical/horizontal flips and
90-degree rotation as data augmentation. AdamW is lever-
aged as the optimizer with a weight decay of 0.01, β1 = 0.9,
and β2 = 0.99. EMA decay is set to 0.999, and batch size is
set to 128. They use a warmup iteration of 2000. All train-
ing was conducted on RTX A6000 GPU. They used three
functions, including standard L1 and L2 loss, and our pro-
posed PSNR loss. The whole training procedure contains
four stages. Inspired by PEFT techniques [30, 31], they em-
ploy LoRA with rank r = 4 to the last stage. Tunable hy-
perparameters include patch size (PS), learning rate (LR),
scheduler (Sche), training iterations (Iter), and loss, across
the four stages. They summarize these hyperparameters in
Table 2 and Table 3.

Table 3. Team MeowMeowMeow: Hyperparameters of CosineAn-
nealingRestartLR scheduler for stage 2, stage 3 and stage 4.

Parameter Stage 2 Stage 3 Stage 4
Periods [12500, 12500, 12500, 12500] [12500, 12500, 12500, 12500] [20000]
Restart weights [1, 0.9, 0.8, 0.7] [1, 0.9, 0.8, 0.7] [1]
Eta min 1e− 7 1e− 7 1e− 7
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Figure 33. Team Just Try: Overall structure of ERRN

4.20. Just Try

Method. Inspired by RLFN[36], FMEN[24], and DBB[19],
they designed a Enhanced Reparameterize Residual Net-
work(ERRN) as shown in the Fig.33. The reparameterize
block (RepB) consists of ERB[24], multi-branch reparam-
eterize block (MBRB), and simple spatial attention(SSA).
The ERB and MBRB are both reparameterization blocks,
which use a complex RepConv structure during the train-
ing phase and convert to a 3×3 convolutional during infer-
ence. Every RepB uses SSA to enhance the output feature.
In ERRN, they use six RepBs, and the number of feature
channel C is set to 40.
Training Details. They use DIV2K, LSDIR, and Flickr2K
datasets as training datasets. For each mini-batch, they ran-
domly crop 16 patches from the LR images with the size
of 64×64. They use a cosine annealing learning scheme,
the learning rate is initialized as 2×10−4 and the minimum
learning rate is 1×10−7, a total of 1000k iterations, the
period of cosine is 250k iterations. They use Adam opti-
mizer withβ1= 0.9,β2=0.99. The loss function is L1 loss.
Then fine-tuning on the same datasets, the LR size is set to
128×128, the initialized learning rate is 1×10−4, a total of
400k iterations, and the period of cosine is 100k iterations.
Other settings are the same as above. Final L2 loss is used
for fine-tuning on the same datasets. Other settings are the
same as above.

4.21. VPEG E

Method. The VPEG E team introduces an enhanced gated
feature modulation network (EGFMN) for efficient SR,
which is modified from the SAFMN [70]. To make the
EGFMN more lightweight, the VPEG E team replaced the
used convolutional channel mixer (CCM) with the gated-
dconv feed-forward network [87] (GDFN). Figure 34 shows
that EGFMN first uses a convolution layer maps the input
image to feature space and employs 7 feature mixing mod-
ules (FMMs) for learning discriminative feature representa-
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Figure 34. Team VPEG E: The overall network architecture of our
proposed EGFMN.

tion, where each FMM block has a spatially-adaptive fea-
ture modulation (SAFM) layer and a GDFN module. To
recover the HR target image, the VPEG E team introduced
a global residual connection to learn high-frequency de-
tails and employ a lightweight upsampling layer for fast re-
construction, which only contains a 3×3 convolution and a
pixel-shuffle [69] layer.
Training Details. The VPEG E team trains the proposed
EGFMN on the LSDIR dataset. The cropped LR image
size is 640 × 640 and the mini-batch size is set to 64. The
EGFMN is trained by minimizing L1 loss and the frequency
loss [13] with Adam optimizer for total of 600, of 000 iter-
ations. The VPEG E team set the initial learning rate to
2 × 10−3 and the minimum one to 1 × 10−6, which is up-
dated by the Cosine Annealing scheme [60].

4.22. BU-ESR

Method. Inspired by [26], this team employs a knowledge
distillation method, as shown in Fig.35. Initially, the team
utilizes a substantial teacher network equipped with a Hy-
brid Attention Transformer backbone [10]. This teacher
network is specifically designed to learn and distill high-
quality features. Its augmented parameter capacity is cru-
cial for capturing nuanced feature information, thereby pro-
viding a robust foundation for supervising the student net-
work. In the second stage, this team further trains the stu-
dent network under the supervision of the pretrained fea-
tures from the teacher network to enhance its performance.
Considering that architectures based on self-attention sig-
nificantly increase the model’s parameter count [27, 28],
their work is meticulously designed around the Residual
Feature Distillation Network (RFDN) model, which serves
as the backbone for the student network. The RFDN frame-
work is notable for its lightweight structure, consisting
of four pivotal components: an initial feature extraction
convolution, multiple Residual Feature Distillation Blocks
(RFDBs) stacked sequentially, a feature fusion layer, and
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a final reconstruction block. The process begins with a
3× 3 convolutional layer that extracts coarse features from
the input low-resolution (LR) image. Then, the core of the
RFDN, comprising four RFDBs, is sequentially employed
by the team to progressively refine these features. The re-
fined features from each RFDB are amalgamated using a
1 × 1 convolution layer, followed by an additional 3 × 3
convolutional layer to enhance the smoothness of the ag-
gregated features. Finally, the high-resolution image is pro-
duced through a pixel shuffle operation by the team.

Figure 35. Team BU-ESR: Their teacher network is designed
based on a Hybrid Attention Transformer backbone, while their
student network is implemented using an RFDN network. The di-
lation loss provides latent space feature supervision to enhance the
lightweight RFDN’s image super-resolution results.

Training Details. This team utilized two datasets, DIV2K
and LSDIR, for their experiments. They augmented the
training dataset with geometric transformations, including
vertical and horizontal flips and 90-degree rotations, to en-
hance the model’s comprehensive abilities. During the
Teacher Model Training Phases, the model was initially
trained from scratch. High-resolution (HR) patches of size
192 × 192 were randomly cropped from HR images, with
a mini-batch size of 16. The training employed the smooth
L1 loss function and the Adam optimizer. Considering the
impact of the choice of learning rate on the results [25], the
team made multiple adjustments to the initial learning rate
and finally set it at an initial learning rate of 2× 10−4. The
training spanned 40,000 epochs. Subsequently, the student
model was fine-tuned using pre-trained weights, with the
initial learning rate reduced to 1×10−4, and the training ran
for an additional 100 epochs. This stage retained the same
settings as the initial phase but incorporated a loss function
that includes smooth L1, MS-SSIM loss, perceptual loss,
and teacher-student dilation loss.

4.23. Lasagna

Method. This team propose an efficient enhanced residual
network (EERN) for efficient image super-resolution, the
primary architecture of which is illustrated in the Fig.36.
Although the EDSR[51] network achieves high perfor-
mance in the field of single-image super-resolution, its net-
work structure is relatively bulky. Therefore, they have
adopted a strategy of reducing the number of blocks to

lighten the model. However, merely decreasing the number
of blocks are not able to meet the performance standards set
by the competition. Therefore, they have made certain ad-
justments to its structure by incorporating an ESA[52] after
each block, and to reduce the parameters, they have elim-
inated several convolutional layers. Additionally, they ap-
pended a convolutional layer at the end of the ERB block
for the purpose of fine-tuning. This convolutional layer was
not included at the onset of the training process but was
incorporated during the final fine-tuning phase to partici-
pate in the computation. Simultaneously, to increase in-
ference speed and reduce GPU memory usage, this team
have removed the residual connections in the RB modules
of EDSR. Experiments show that removing residual con-
nections has minimal impact on the module’s performance.
Moreover, considering that excessive changes in the num-
ber of feature channels are detrimental to performance in
lightweight networks, they opted to replace two successive
shuffle2 operations with a single shuffle4 operation to avoid
the final convolutional reduction of channels from 256 to
3. Lastly, they trained the network using a knowledge dis-
tillation approach. Due to the mismatch in the number of
feature channels between the teacher model and the student
model, they did not utilize the loss of feature maps. Instead,
the loss was calculated based on the outputs of both models.
Training Details. The number of ERB modules and the
number of its feature channels were set to 4 and 84, re-
spectively. They trained a total of 1700 epochs to bring the
model to convergence. The process was divided into three
stages. In the first stage, they initiated the learning rate at
1e-4, employing a cosine annealing strategy to decrease the
learning rate to 5e-7 by the 400th epoch. During this cycle,
they utilized L1 loss, with the dataset limited to DIV2K. In
the second stage, the starting learning rate was set to 1e-5,
again using a cosine annealing method to reduce the learn-
ing rate to 5e-7 by the 300th epoch. Moreover, in this cycle,
PSNR loss was employed for fine-tuning, and the dataset
was expanded to include both DIV2K and folders named
0001000 to 0010000 from the LSDIR dataset. In the final
stage, the convolutional layer was introduced and initial-
ized to zero. This stage comprised a total of 1000 epochs,
with all other settings being identical to those of the second
stage.

4.24. BlingBling

Method. In this work, the BlingBling team propose Dis-
tillated Vision Mamba SR (DVMSR), a novel lightweight
Image SR network that incorporates Vision Mamba and a
distillation strategy. The framework of their DVMSR is il-
lustrated in Fig.37. It consists of three main modules: fea-
ture extraction convolution, multiple stacked Residual State
Space Blocks (RSSBs), and a reconstruction module. The
feature extraction convolution employs a 3 × 3 convolu-
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Figure 36. Team Lasagna: The structure of the proposed EERN.

Figure 37. Team BlingBling:The overall network architecture of our DVMSR, as well as Vision Mamba Module (ViMM).

tional layer to extract shallow features. Subsequently, deep
features are extracted by several stacked Vision Mamba
Modules (ViMMs) [29, 90], which leverage the long-range
modeling capability of Mamba to effectively reduce com-
putational complexity. A 3 × 3 convolutional layer refines
the features extracted from the ViMMs at the end of each
RSSB. The final stage involves the aggregation of shallow
and deep features using a long skip connection, followed
by the use of a sub-pixel convolution layer to upsample the
feature and reconstruct the high-quality image. The teacher
and student models have similar network structures, with
variations in the number of RSSBs, ViMMs, and channels.

Training Details. They employ DIV2K [71] and LS-
DIR [46] to construct the training dataset. The High-
Resolution (HR) images are cropped to 256 × 256 patches
for the training procedure. They use L1 loss with the Adam
optimizer for the network optimization. The initial learning
rate is set to 2 × 10−4. The total number of iterations is
500k. They adopt a multi-step learning rate strategy, where
the learning rate will be halved when the iteration reaches
250,000, 400,000, 450,000, and 475000, respectively. In the
teacher learning phase, they utilize the DIV2K dataset with
2K resolution to train the teacher network, which comprises
6 RSSB and 2 ViMM blocks with 180 channels. The teacher
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network can learn the rich representation knowledge for the
distillation stage. During the distillation training phase, they
merge the DIV2K and LSDIR datasets for the student net-
work, which contains 4 RSSB and 2 ViMM blocks with 60
channels. The teacher network remains fixed during this
process. They employ L1 loss to align the student network
feature with the teacher network feature. This process can
transfer the knowledge of the teacher network to the student
network. Formally,

Lout = λdisLdis + λ1L1,

Ldis = ∥T (ILR)− S(ILR)∥1 ,
L1 = ∥IHR − S(ILR)∥1 ,

(22)

where λdis and λ1 represents the coefficient of the Ldis loss
function and the coefficient of the L1 loss function, respec-
tively. They are set 1. T represents the function of our
teacher network and S denotes the function of our proposed
network. ILR and IHR are the input LR images and the
corresponding ground-truth HR images, respectively. More
information of Ldis can be seen from Fig.37.

4.25. Minimalist

Method. Given the inherently lightweight nature of the
baseline Residual Local Feature Network (RLFN), the Min-
imalist aims to enhance its capabilities by introducing
strategic modifications to its layers and incorporating ad-
ditional methods aimed at enhancing its capacity to capture
wider spatial and more semantically rich information. A
pivotal contribution to their architectural advancements lies
in the integration of a novel module termed Efficient Multi-
head Spatial Attention (MHSA), alongside a refined itera-
tion of the Residual Local Feature Block (RLFB), drawing
inspiration from the foundational work presented in RLFN
[36]. The comprehensive layout of their team proposed
methodology is depicted in Figure 38. The proposed Effi-
cient Multi-head Spatial Attention (MHSA) mechanism in-
troduces a novel approach by partitioning feature maps into
multiple heads. Each head is dedicated to capturing spatial
dependencies within distinct groups, thereby facilitating a
more thorough and efficient representation of features. This
concept of spatial attention draws inspiration from prior
work such as [36], while the integration of multi-head con-
volution mixture-normalization is similarly influenced by
the findings in [74]. The incorporation of spatial attention
across various groupings within different heads enables the
model to discern diverse features at different group levels.
Subsequently, they leverage the distilled knowledge from
multi-head learning and employ layer normalization to fa-
cilitate effective learning with enhanced gradient smooth-
ness. Additionally, their Efficient Residual Local Feature
Block (ERLFB) iteratively enhances feature representations

through the utilization of local spatial attention and channel-
wise attention mechanisms, dynamically assigning prior-
ity to specific spatial and channel dimensions. To man-
age the potential increase in parameters resulting from the
introduction of new layers, they integrated group convolu-
tion, effectively balancing the trade-off between parameter
efficiency and performance, thereby maintaining inference
speed comparable to that of the RLFB block.
Training Details. The Low-Resolution (LR) images are
cropped to 48×48 patches for the training procedure. They
use MSE loss with the Adam optimizer for the network op-
timization. The initial learning rate is set to 0.001. The total
number of epochs is 500 and the batch size is 64. To pre-
vent the explosion of gradients they apply the threshold 10
for the clip gradient norm. They adopt a multi-step learning
rate strategy, where the learning rate will decrease to 60%
of the current learning rate after each 50 epoch. Data aug-
mentation strategies included horizontal flips, and random
rotations of 90, 180, and 270 degrees.

4.26. MagicSR

Method. MagicSR team adopts the structure of the
Swin Transformer with window self-attention (WSA) for
single image super-resolution (SR). However, the plain
WSA ignores the broad regions when reconstructing high-
resolution images due to a limited receptive field, and re-
quires intensive computations due to the nature of its struc-
ture. To overcome these problems, they propose context-
aware neighbor local windows, inspired by N-Gram [14],
to produce neighboring embeddings and interact with each
other by sliding WSA to produce the context-aware fea-
tures before window partitioning. As illustrated in Fig. 39,
the proposed MagicSR-Light consists of five components: a
shallow module (a 3 × 3 convolution), three hierarchical en-
coder stages (with patch-merging) that contain CST blocks
(context-aware Swin transformer modules), PCD bottle-
neck (pixel-shuffle, concatenation, depth-wise convolution,
point-wise projection), a small decoder stage with CSTs,
and an image reconstruction module. They employ CSTs
by using the context-aware neighbor local windows and the
scaled-cosine attention proposed by Swin V2 [59]. PCD
bottleneck, which takes multi-scale outputs of the encoder,
is a variant of bottleneck from U-Net. They adopt a decoder
module composed of a CST block and a reconstruction layer
to produce the final RGB output. They train their model in
an adversarial way [61] to improve the robustness. Given a
low-resolution (LR) image I , a shallow module (comprising
a 3 × 3 convolution) is employed to extract pertinent fea-
tures. These features subsequently traverse three encoder
stages, each comprising ni CST Blocks, and undergo a 2
× 2 patch-merging process, with the exception of the final
stage. Notably, the patch-merging mechanism mirrors that
of the Swin Transformer [59], albeit with a dimensional re-

6621



Figure 38. Team Minimalist: The overall EMaxGMan architecture is shown on the left side, with a) EResB and b) ERLFB on the right
side.
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Figure 39. Team MagicSR: Overall architecture of MagicSR-
Light and CST. In the CST module, they adopt an asymmetric
U-Net decoder architecture consisting of pixel-shuffle, concatena-
tion, depth-wise convolution, and point-wise (linear) projection.
This variant efficiently integrates multi-scale outputs from the en-
coder part, encompassing the shallow module.

duction from 4D to D instead of 2D. This reduction in net-
work dimensionality via patch merging results in a notable
decrease in attention computation requirements for the CST.
In their model, they set n1, n2, n3 = 6, 4, 4.

As illustrated in the bottom of Fig. 39, their Context-
aware Swin Transformer (CST) adopts scaled-cosine at-
tention and post-normalization proposed in SwinV2 [59].
The window size of the WSA module is set to 8 by de-
fault. In window partitioning, they implement the context-
aware neighbor local windows by following [14]. This algo-
rithm is also identically applied to other Swin Transformer
models (SwinIR-light [49]), focusing only on better per-
formances. The window shifts are operated in the even-
numbered blocks, the same as in the Swin Transformer. The

decoder module comprises n4 CST blocks along with a re-
construction layer, where they set n4 to 6. The reconstruc-
tion module is structured with a convolution layer, followed
by a pixel-shuffler, and another convolution layer for output
conversion. The input to this module incorporates a global
skip connection originating from the shallow module of the
encoder.

4.27. DIRN

Method. Despite the rapid development of neural network
architecture, convolution remains the mainstay of deep neu-
ral networks. In recent years, depth-wise separable convolu-
tion [33] has been proposed to speed up deep models. Duo
Li.[40] introduced the involution operation to match visual
patterns concerning the location and reduce inter-channel
redundancy. The reverse function of involution enhances
efficiency and reduces parameters. A visual and efficient
involution kernel belonging to a specific location can be
generated by only considering the feature vector of the cor-
responding location, as shown in Figure. 40(c). By shar-
ing the involution kernel along the channel dimension, the
redundancy of the kernels is reduced. Considering the fo-
cus of involution on visual performance and self-attention,
in the remaining blocks, they use involution along with
depth convolution to extract deep features. They propose
that the structure of network blocks varies according to the
depth. Therefore depth convolution is used more in the ini-
tial blocks. As shown in Figure.40(a), the Depthwise con-
volution and Involution Residual Block (DIRB) block uses
three layers of Invo/DConv 3×3 + LeakyReLU to extract
deep features. Feature maps are then connected along the
channel dimension. Inspired by IMDN, they modified the
Contrast-Aware Channel Attention Block (CCA) [34] and
used it to evaluate the contrast degree of feature maps and

6622



Figure 40. Team DIRN: (a) Depthwise convolution and Involu-
tion Residual Block(DIRB). (b) Contrast-Aware Channel Atten-
tion Block (CCA). (c) Involution[40].

improve performance. They also used a 1×1 convolution to
reduce the number of channels and connections left at the
end of the block.
Training Details. They are using DIV2K[71] and
LSDIR[46] images as the dataset. HR image patches of
size 96×96 are randomly cropped from HR images, and the
small batch size is set to 16. They adopt the Adam optimizer
and for the loss function, they use the L1 loss to measure the
difference between the SR images and the ground truth. In
DIRN, they set the number of DIRBs to 6. To investigate
the Combination of Involution and Depthwise convolution
at different depths, four different models were considered.
In each of the models, as the network deepens, involution is
used more than Depthwise convolution in the DIRB block,
and in none of the models, the structure of the blocks is
the same. Experiments with 100 epochs and evaluation re-
sults with validation dataset DIV2K LSDIR valid are pre-
sented. According to the results, it is appropriate to use
Depthwise convolution in the initial blocks where feature
maps have fewer changes and are similar to pixel values.
As the network gets deeper, feature maps have undergone
many changes along the network, and by ensuring corre-
lation using Depthwise convolution, using involution as a
visual operator can yield better results. According to the
results of the fourth model, it performed better than other
models and they chose it as the main model. The DIRN
model is lightweight with 97K parameters and 6.48G for
flops.

4.28. ACVLAB

Method. The method of ACVLAB is based on [39], which
maintains performance with a smaller number of parame-
ters by incorporating high-frequency prior information. It

includes three key components: high-frequency enhanced
residual block (HFERB), shifted rectangular window atten-
tion block (SRWAB) for capturing high-frequency informa-
tion to capture global information, and hybrid fusion Blocks
(HFB) are designed to enhance the global representation.
They reduce the network depth and adapt the small convolu-
tional kernels in the deep feature extraction stage to further
reduce the number of parameters.
Training Details. They use LSDIR [46] and DIV2K [71]
dataset for training. Their training stage can be divided into
two stages. Throughout the entire training process, they
adapt the Adam optimizer with β1 = 0.9, and β2 = 0.999
and train for 500000 iterations in each stage. The learning
rate is set to 2e-4, the multi-step learning scheduler is also
used. The learning rate is halved at the [250000, 400000,
450000, 475000] iterations respectively. Weight decay is
not applied. For the training stage, HR patches of size 256
× 256 are randomly cropped from HR images. The random
horizontal flips and the random rotation are used for aug-
mentation. In the first stage, they use the L1-loss for the
model optimization with a batch size of 16. In the second
stage, they use the MSE-loss for enhancement. The model
was implemented using Pytorch 1.13.1 and trained on a sin-
gle NVIDIA-GeForce-RTX-3090.

4.29. KLETech-CEVI Lowlight Hypnotise

Method. In this work, the team proposes an architecture
named Efficient SRGAN for image super-resolution, aimed
at achieving improved performance in terms of both re-
construction accuracy and computational efficiency. Image
super-resolution techniques like [65], [67], [11], [2] aim at
improving the resolution of images. Real-ESRGAN, an ex-
tension of the Enhanced Super-Resolution Generative Ad-
versarial Network (ESRGAN), presents a powerful archi-
tecture for image super-resolution tasks. The architecture
incorporates a high-order degradation model, to simulate
complex real-world degradations accurately. Additionally,
Real-ESRGAN addresses artifacts such as ringing and over-
shooting during synthesis, leading to improved visual qual-
ity in the output images. To further enhance performance,
Real-ESRGAN utilizes a U-Net discriminator with spectral
normalization, increasing discriminator capability and sta-
bilizing training dynamics. Real-ESRGAN is trained on
synthetic data, for improved generalization on real-world
image restoration challenges. They extend their work by
training Real-ESRGAN [77] on custom weighted combi-
national loss function as shown in Equation 23. However,
Real-ESRGAN suffers from substantial texture information
loss in the reconstructed image. To overcome this, they
propose to use VGG-19 Perceptual loss inspired from [18],
combined with L1 loss.

LSR = α ∗ LV GG + β ∗ L1 (23)
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Figure 41. Team ACVLAB: The overall architecture.

Figure 42. Team KLETech-CEVI Lowlight Hypnotise: Overview
architecture diagram of Efficient SRGAN, illustrating the network
structure and flow of information during the super-resolution pro-
cess. (Figure reproduced from [77])

where, LV GG is VGG-19 perceptual loss [38], and is given
as,

LV GG =
1

WH

∑
i = 1W

∑
j = 1H(ϕ(ŷ)i, j−ϕ(x)i, j)

(24)
where, ϕ(.) is the activation of jth layer of network ϕ when
processing on image x. W and H are width and height of
image. α and β are weights to the losses, and are set to 0.7
and 0.5 heuristically.

Training Details: They train the proposed methodology us-
ing the dataset provided by NTIRE 2024 Efficient Super-
Resolution Challenge. They train the model using Python
and PyTorch frameworks, on a patch resolution of 339*510,
with a batch size of 8. They use Adam optimizer with β1
set to 0.9 and β2 set to 0.999. They train the model for
1000 epochs at a learning rate of 0.0002. During testing,
they use full-resolution images (339*510), on a single RTX
3090 GPU. The average testing time for a single image on
the full resolution is 0.9s on RTX 3090 GPU.
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