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Abstract

Low-light image enhancement (LLIE) has a signifi-
cant role in edge vision applications (EVA). Despite its
widespread practicability, the existing LLIE methods are
impractical due to their high computational costs. This
study proposed a framework to learn optimized low-light
image enhancement to tackle the limitations of existing en-
hancement methods for accelerating EVA. The proposed
framework incorporates a lightweight and mobile-friendly
deep network. We optimized our proposed model with INT8
precision with a post-training quantization strategy and de-
ployed it on an edge device. The LLIE model has achieved
over 199 frames per second (FPS) on a low-power edge
board. Additionally, we evaluated the practicability of an
optimized model for accelerating the vision application of
an edge environment. The experimental results illustrate
that our optimized method can significantly accelerate the
performance of SOTA vision algorithms in challenging low-
light conditions for numerous everyday vision tasks, includ-
ing object detection and image registration.

1. Introduction

LLIE refers to enhancing the quality of images captured
under challenging low-light conditions. Enhancing poorly
lightened images is typically considered among the most
complex image restoration tasks due to the lack of visi-
ble details and aggressive sensor noise [1, 38]. Therefore,
enhancing low-light images requires comprehensive recon-
struction techniques such as contrast enhancement, noise
reduction, and detail restoration. Apart from its aesthetic
importance, LLIE has numerous real-world applications,
including accelerating generic vision tasks on low-power
edge devices.

LLIE on-edge devices incorporate widespread applica-
tions, ranging from surveillance and security systems to
autonomous vehicles and industrial monitoring, often op-
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erating in real time and relying heavily on visual informa-
tion for decision-making. Regrettably, the performance of
edge applications such as object detection (OD), segmenta-
tion, stereo vision, etc., when camera sensors suffer from
quantum inefficiency and produce darker images [38]. Im-
proving the quality of such low-quality images can enhance
their ability to detect and recognize objects accurately, even
in challenging lighting conditions. Overall, strengthening
the low-quality images can improve safety and efficiency in
real-world scenarios.

Recent literature has seen a surge in efforts to tackle
LLIE challenges through innovative learning-based ap-
proaches [18]. These approaches primarily fall into two
categories. The first category intends to learn LLIE as
an image-to-image translation task [3, 8, 9, 17, 23, 28,
40, 44, 44, 52]. Typically, these methods leverage con-
volutional neural networks (CNN) for end-to-end learn-
ing. Also, a few recent methods from the same category
[6, 51] combined their CNN architectures with transform-
ers [42], similar to the recent image restoration methods
[48, 55, 56]. The second category of LLIE incorporates
the Retinex theory [21] into CNN architecture for enhanc-
ing low-light images[4, 41, 47, 49, 50, 54, 57, 59, 60].
However, most existing LLIE methods are developed with-
out considering the feasibility of deploying their novel net-
works on edge devices. Retinex-based and attention-based
methods’ complex nature incorporates high computational
cost edge unfriendly convolution maneuvers. Consequently,
these SOTA LLIE solutions could be more practical for de-
ploying on-edge devices.

To address the limitation and take LLIE research in a
realistic direction, we propose a novel edge-friendly LLIE
learning and deployment framework. Our proposed frame-
work incorporates a lightweight U-shape deep model [35]
and optimization strategy. We optimized our model by
leveraging Post-training quantization (PTQ)[25] and down-
graded precision from the floating weight into INT8 for
faster inference in an edge environment. Later, we deployed
our method to real-edge devices and perceived an FPS of
199. The practicability of such a low-precision LLIE model
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Figure 1. Real-world OD enhancement leveraging proposed optimization framework. (a) Low-light image with Yolo-V3. (b) Our model
(INT8) with Yolo-V3. (c) Our model (full precision) with Yolo-V3. (d) Ground-truth (for detection).

is extensively evaluated by incorporating it into generic vi-
sion tasks (e.g., OD and image registration) [50]. The ex-
perimental results illustrate that our optimized model can
significantly improve the performance of such vision appli-
cations even in stochastic lighting conditions. To the best of
concern, this is the first open literature exploring quantized
models’ practicability in edge vision tasks. Our framework
can help with everyday vision tasks like OD, even in very
dark scenarios, as shown in Fig. 1. Our contributions are as
follows:
• We propose a LLIE learning framework for edge devices.

Our proposed framework incorporates a lightweight deep
model and deployment strategy in an edge environment.

• We optimized our model and achieved an FPS of 299 on
real-edge hardware by sacrificing minor fidelity scores.

• We incorporate our optimized model for accelerating the
performance of generic vision tasks.

2. Related Work
This section briefly describes the related works, including
methods for LLIE and Quantization methods on image en-
hancement.

2.1. Low-light Image Enhancement

Researchers have developed various algorithms for low-
light image enhancement to improve the quality of im-
ages captured in low, insufficient-light environments. The
most straightforward approach used for this task is a His-
togram equalization-based approach[15, 27]. These meth-
ods are computationally effective and only sometimes pro-
duce well-defined results. Meanwhile, Retinex-based [21]
enhancement algorithms work much better due to leverag-
ing the human visual system’s ability to perceive colors and
brightness relative to surrounding regions, resulting in visu-
ally pleasing enhancements. With the development of deep
learning methods, current deep learning methods were in-
spired by Retinex theory, such as Retinex-Net [49], which
shows promising results for image enhancement. Besides
CNN models, transformer architecture was used to learn or
adjust the parameters of Retinex and produce promising re-
sults. One such model is RetinexFormer[4], where a one-

stage transformer was used to learn illumination informa-
tion from low-light images. Moreover, several diffusion-
based approaches, such as Diff-Retinex[54], were made,
where generative diffusion models were used to learn low-
light image features. Although all these methods show ex-
cellent results on low-light image enhancement tasks, they
need more interpretability. Notably, the complex nature of
this SOTA method makes them edge unfriendly and imprac-
tical for edge deployment.

2.2. Quantization on Enhancement

Model quantization is a crucial step for deploying networks
on mobile devices. Unfortunately, only a few recent meth-
ods from the image enhancement domain leverage the capa-
bility of quantization for edge optimization. Among them is
a recent method, Fully Quantized Image Super-Resolution
Framework (FQSR)[46], which aims at obtaining end-to-
end quantized models for all layers, mainly including skip
connections. PAMS [22] applied layer-wise symmetric
quantization to extract high-level features. A channel-wise
distribution-aware quantization scheme for image enhance-
ment was introduced by DAQ[12]. In contrast, DDTB[61]
introduced the design of an asymmetric activation quantizer,
which compresses to 2-4 bit by introducing dynamic dual
trainable clip values. Apart from that, a recent method ap-
plied PTQ for Image Super Resolution[45], authors intro-
duce the density-based dual clipping to cut off the outliers
by analyzing the asymmetric bounds of activations.

It is worth noting that the existing quantitative enhance-
ment methods have yet to explore the challenges and prac-
ticability of quantization on LLIE. However, a few novel
quantized methods [2, 7, 29] are introduced for image
restoration, like super-resolution. In contrast, such restora-
tion tasks have different characteristics from those of the
LLIE. Image enhancement techniques like super-resolution
focus on improving the details, whereas LLIE incorporates
more challenging tasks due to low visibility and missing de-
tails in the darker regions. In addition to that, these methods
mainly conclude their study without exploiting real-world
edge hardware. Thus, the practicability of quantization on
image enhancement, particularly for LLIE, is still undis-
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closed. This study explored the practicability of quantized
LLIE on EVA utilizing actual edge hardware.

3. Method

This section describes the proposed LLIE edge optimiza-
tion framework and its learning strategies. Fig. 2 illustrates
the overview of the proposed framework. We develop a
lightweight deep model with hardware-friendly vanilla con-
volution operation. We quantized our trained network into
INT8 precision for faster inference. Later, we deployed our
network on a real-edge device to evaluate its practicability
on real-world edge vision applications (EVA).

3.1. Network

We consider LLIE for EVA to be an image-to-image trans-
lation task. Thus, it aims to map a low-light image (IL) to
a perceptually enhanced image (IH ) using a mapping func-
tion M : IL → IH . Here, IL is constrained to the range
[0, 1]H×W×3, where H and W denote the height and width
of both input and output images, respectively. Fig. 2 pro-
vides an overview of the proposed deep model architecture.

3.1.1 Architecture

The proposed deep network is structured as a fully convolu-
tional encoder-decoder architecture [5, 10], featuring con-
volutional skip connections. The initial layer of the genera-
tor transforms the input image (IL) into a 64-depth feature
map. This input convolutional layer employs a kernel size
of 3×3, padding of 1, and stride of 1. Following this, an en-
coder consists of four consecutive feature levels, with alter-
nating feature depths of d = 64, 96, 128, 196. Each feature
level integrates a residual block, which processes an input
feature X using the equation:

F ′ = C(X) +X (1)

Here, C(·) comprises two convolution layers, each with
a kernel size of 3 × 3, padding of 1, and stride of 1, with
the first layer activated using PReLU activation. The output
feature dimension of a residual block remains unchanged
from its input (i.e., 64 in the initial feature level). Notably,
the residual blocks are well-known for achieving better de-
noising performance. Such architectural choices help us in
handling sensor noise in low-light conditions.

Following each residual block in the encoder, a convolu-
tional downsampling layer is applied as follows:

F↓ = C↓(X0) (2)

Here, C↓ represents a 3× 3 convolution operation with a
stride of 2.

The decoder section of the network mirrors the encoder
in terms of the number of feature levels, with an upsam-
pling layer following each residual block. The upsampling
operation is implemented as follows:

F↑ = C↑(X0) (3)

Here, F↑ involves a transpose convolution operation
[38]. The transpose convolution helps us make our model
fully convolutional with effective restoration performance.

In addition to the basic indoor-decoder design, we incor-
porated a gated skip connection to propagate refined low-
level features. It is worth noting that the U-shaped encoder
encodes the noise along with salient information of low-
light images. We found that propagating such sensor noises
in the decoder pushes the deep model to achieve desired en-
hanced images [39]. Therefore, we leverage a convolution
residual-gating mechanism as follows:

FG = C1×1(XR) (4)

Here, C1×1 represents point-wise convolution that re-
fines the spatial information of a given tensor XR.

Finally, the decoder portion culminates in a final convo-
lutional layer, which produces the three-channel enhanced
image using a convolutional kernel size of 3×3, padding of
1, and a stride of 1. This final output layer is activated with
a tanh function to yield the final images within the range of
[0, 1].

3.1.2 Learning Objective

We leverage a pixel-wise reconstruction loss to guide our
deep model as a coarse-to-refine reconstruction process. An
L1 or L2 distance typically serves as the pixel-wise loss
function. While both options are standard, the L2-loss is
directly related to the Peak Signal-to-Noise Ratio (PSNR)
metric and tends to yield smoother images [20, 38]. No-
tably, low-light images comprise a substantial sensor noise.
Thus, we utilized an L1 objective function as the recon-
struction loss. Our reconstruction loss can be represented
as follows:

LR =∥ IG − IH ∥1 (5)

Here, IH represents the output obtained through M,
while IG denotes the reference high-light image. This loss
function quantifies the absolute differences between corre-
sponding pixels in the output and reference images, thereby
driving the network to minimize these differences during
training.

3.2. Post-training quantization (PTQ)

PTQ is a technique used to reduce the memory foot-
print and improve the inference speed of deep neural
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Figure 2. Overview of the proposed LLIE edge optimization framework. Our framework incorporates a lightweight deep model, a PTQ,
and a real-hardware deployment strategy for faster inference speed in an edge environment. We deployed our model on actual low-power
hardware to find its practicability in the later phase.

networks after training [25, 45]. It involves converting
the network’s weights and activations from high-precision
floating-point representations (e.g., 32-bit floating point) to
lower-precision fixed-point representations (e.g., 8-bit in-
tegers). This process significantly reduces the network’s
memory requirements and computational complexity, mak-
ing it more efficient to deploy on resource-constrained de-
vices such as edge devices. It is worth noting that PTQ can
achieve even lower bit rates for faster optimization. How-
ever, we found that most edge boards available for real-
world use (e.g., autonomous driving and security) support
8-bit inference [62]. Therefore, considering the actual us-
age, we quantized our model into INT8 precision for real-
edge deployment.

3.2.1 Calibration.

Model calibration is crucial for determining appropriate
scaling factors for lower bit precision when performing
PTQ on deep networks. The calibration process is typi-
cally perceived using numerous techniques (e.g., histogram
and max calibration) [14]. We found the histogram calibra-
tion process fits our application well. Notably, the low-light
images often have a compressed histogram towards darker
values. Thus, such a calibration process helps us expand
the distribution, revealing details obscured in the shadows
by brightening them proportionally.

Qh =
Mh

Mq
(6)

Here, we obtained histogram calibration Qh with max-
imum histogram values (Mh) and maximum quantization
value (Qh). We tailor the quantization process to the spe-
cific distribution of activation values encountered during
inference. This meticulous calibration technique ensures
that the quantized model maintains accuracy and perfor-
mance levels commensurate with the original floating-point

model, thus facilitating seamless deployment on resource-
constrained devices.

3.2.2 INT8 Quantization

INT8 quantization for neural networks involves scaling and
rounding the original floating-point values (like weights) to
a lower precision integer format (typically 8 bits for INT8).
This is achieved by considering the minimum and maxi-
mum values of the original data and then rescaling the data
to a range suitable for the 8-bit integer representation. We
perceive INT8 quantization as follows:

INT8Q = R

(
P

S

)
(7)

Here, R presents The round function that ensures the
rounded to the nearest integer. P is presents the original
value to be quantized, and S is the scaling factor determined
during calibration.

3.3. Learning Details

We leverage three low-light enhancement datasets for learn-
ing real-world LLIE, including a dataset from the New
Trends in Image Restoration and Enhancement’24 (NTIRE)
low-light enhancement challenge [24], LOL-v1 [49], and
LOL-v2 (real data) [53]. NTIRE challenge provides 230
large-dimension images for training purposes. We extracted
4,500 non-overlapping patches from the dataset and com-
bined them with LOL-v1 (485 training samples) and LOL-
v2 (689 training samples). In the testing phase, we lever-
age LOL-V1 and LOL-v2 for quantatitive evaluation and
the NTIRE dataset of qualitative assessment.

The proposed u-shape lightweight model has been im-
plemented with the PyTorch framework [33] and optimized
with the Pytorch Quantization library [31]. We optimized
our method in the learning phase with an Adam optimizer
[19]. We tuned its hyperparameters as β1 = 0.9, β2 =
0.99. Initially, we set the learning rate for the model as
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lr = 1e− 4. We trained our LLIE method for 50,000 steps
with a batch size 64. For the training phase, we utilized
image patches of dimension 128 × 128 × 3. The machine
learning phase took around 6 hours, comprising an NVIDIA
A6000 GPU with 32GB RAM and a 16-core CPU. Later, we
deployed our model on the NVIDIA Jetson Orin edge board
for real-world evaluation.

4. Experiments

This section compares the proposed deep models with
SOTA lightweight deep models, real-world quantized per-
formance, and performance on the acceleration of edge vi-
sion tasks.

4.1. Comparison with SOTA method

We compared the performance of lightweight mobile-
friendly deep image enhancement networks, including Unet
[35], Mobile Unet [13], and DnCNN [16]. In addition to
image enhancement methods, we also compared our model
with the LLIE methods like [11] and Retinexnet [49]. We
trained and tested all comparing methods under the same
data samples for a fair comparison. We summarised the
performance of deep methods with a peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) [37]
and perceptual image patch similarity (LPIPS) [58]

4.1.1 Quantitative evaluation

Table. 1 illustrates the performance of the deep models on
LOL-v1 and LOL-v2 testing sets. The proposed method
can outperform the existing methods despite its dedicated
nature for the edge device. Particularly in a diverse dataset
like LOL-v2, the proposed method illustrates notable dom-
ination over its counterparts. In contrast, Retinexnet [49]
can achieve a higher fidelity score in LOL-v1 despite illus-
trating significant perceptual degradation. It is worth noting
that Retinexnet has been developed to perform well, partic-
ularly on the LOL-v1 dataset [49].

4.1.2 Qualitative Evaluation

Fig. 3 further confirms the practicability of the proposed
method in real-world LLIE. The proposed method can han-
dle complex real-world low-light scenes compared to its
counterparts. The typical mobile-friendly deep architecture
like mobile Unet illustrates significant deficiencies in ad-
dressing real-world low-light scenes. Such architectures’
limitations confirm the practicability of an efficient and ef-
fective lightweight LLIE method for real-world applica-
tions.

4.2. Performance on Edge Device

We selected our best pre-trained weight for quantization
and deployment. Infer efficiently on edge devices. Apart
from our quantization strategy, we converted our quantized
weight with TensorRT optimization library [30] to directly
deploy in the edge board. We leverage an NVIDIA Jetson
Orin board to deploy and test our proposed LLIE method.
We leveraged Docker to enable the utilization of CUDA
cores for GPU acceleration of the target edge board. We
deployed the optimized weight on our Docker environment
and operated the hardware in its efficient mode (30 watts)
[32] to ensure the practicability of our proposed method on
edge platforms.

Table. 2 illustrates the performance of the proposed op-
timization framework on different hardware platforms. The
proposed framework allowed us to infer speed 8x compared
to the full precision model. It achieved over 199 FPS on
Jetson Orin with an image dimension of 256 × 256 × 3.
Notably, image dimension on inferencing edge devices can
affect the perceptual quality. Overall, it makes a trade-off
between FPS and fidelity score for LLIE on edge devices.

Apart from the quantatitive evaluation, we also perform a
subjective comparison between the full-precision and quan-
tized models. In our assessment, the PTQ can produce
similar visual results in most cases compared to the full-
precision variants, as shown in Fig. 4.

4.3. Real-world Edge Applications

EVA typically refers to computer vision tasks performed
directly on edge devices, such as smartphones, IoT de-
vices, or embedded systems, without relying heavily on
cloud computing or external servers. Such vision comput-
ing approaches are becoming popular due to their ability to
perform real-time visual data processing directly on edge
devices, mitigating privacy concerns and reducing latency.
Despite countless possibilities, developing efficient and ac-
curate vision solutions for low-power devices is among the
most complicated tasks. In this study, we aim to improve
the performance of such vision tasks by incorporating our
proposed LLIE.

4.3.1 Object Detection

Among existing EVA, OD is among the most widely used
applications of edge vision. It allows real-time identifi-
cation and localization of objects within images or video
streams directly on the device. This technology has count-
less real-world uses, such as autonomous vehicles for iden-
tifying pedestrians and obstacles and intelligent retail sys-
tems for tracking inventory and customer behavior. Unfor-
tunately, this widely used application also suffers in low-
light conditions due to missing visible information.

6377



Method LOL-v1 LOLv-2 Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Unet [35] 15.37 0.6326 0.4007 17.22 0.6516 0.3718 16.30 0.6421 0.3863
Retinexnet [49] 17.63 0.7185 0.4051 17.71 0.6049 0.4403 17.67 0.6617 0.4227

LIME [11] 16.28 0.6278 0.4315 17.52 0.5674 0.4115 16.90 0.5976 0.4215
MobileUnet [13] 15.80 0.6508 0.4047 18.54 0.6994 0.3668 17.17 0.6751 0.3857

DnCNN [16] 16.18 0.6839 0.4209 18.91 0.7063 0.3909 17.54 0.6951 0.4059

Ours 16.44 0.7006 0.3499 19.04 0.7558 0.3190 17.74 0.7282 0.3344

Table 1. Qunatatitive comparison between deep methods for LLIE. Overall, the proposed network outperforms its counterpart in all
evaluation metrics.

Figure 3. Real-world complex low-light scene enhancement with deep enhancement methods. The proposed method outperforms the
existing method in visual comparison. Despite being lightweight and mobile-friendly, the proposed method can generate plausible highlight
images without producing artifacts. From left to right: input image, Retinexnet [49], LIME [11], Unet [35], DnCNN [16], Mobile Unet[13],
Ours (full-precision)

Figure 4. Visual comparison between full-precision LLIE model and its quantized version. In most cases, the quantized version can
produce perceptually plausible images similar to its counterparts with a significant acceleration in inference speed.

To make OD efficient on edge devices, we incorporate
our optimized LLIE method and SOTA OD to improve its
performance on edge devices. We chose YOLOv3 [34] for
its simplicity and compatibility with edge devices, enabling
efficient object detection without compromising accuracy.
Its streamlined architecture and optimization options make
it ideal for real-time applications where resource constraints
are a concern. Table. 3 illustrates the detection improve-
ment achieved on the SOTA detector in the ExDark [26]
dataset. Full-precision and quantized versions can improve
the detector’s performance by adding a small overhead com-

putation.

Fig. 5 further confirms the effectiveness of our proposed
method on OD acceleration in edge devices. Our models,
including the INT8 version, substantially enhance the vis-
ibility of the images captured in extreme and tricky sce-
narios. Such perceptual improvement helps the detector
extract salient details from the given scenes and improves
performance. Such visibility enhancement can accelerate
the safety of security and autonomous applications in real-
world scenarios.
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Figure 5. Accelerating OD performance on edge devices by leveraging proposed optimization framework. (a) Low-light image with
YOLOv3 [34] . (b) Our model (INT8) with YOLOv3 [34] . (c) Our model (full precision) with YOLOv3 [34]. (d) Ground-truth (for
detection)

Device GPU ARM64 ARM64 GPU ARM64 ARM64

Dimension 512× 512× 3 256× 256× 3
Precesion Full INT8 Full INT8

PSNR 17.738 16.34 17.31 15.92
SSIM 0.7282 0.6325 0.6719 0.5457
LPIPS 0.3344 0.3506 0.2169 0.2403

Param. (M) 4.46
Time (ms) 9.33 140.87 18.37 4.4 39.39 5.01

FPS 164.50 7.09 54.42 227.14 25.39 199.67

Table 2. Performance of the proposed LLIE method numerous
hardware platforms. The proposed method achieved 199 FPS on
edge devices by utilizing PTQ.

4.3.2 Image registration

Image registration is a fundamental process in computer
vision that involves aligning multiple images of the same
scene or object from different viewpoints, angles, or times.
This alignment facilitates various applications across di-
verse domains, including autonomous vehicles, augmented
reality, industrial inspection, healthcare, and environmen-
tal monitoring. However, image registration can face chal-
lenges in low-light conditions, where images may suffer
from reduced visibility, noise, or distortion. In this sec-
tion, we explore the concept of image registration, its wide-
ranging applications, and the specific challenges encoun-
tered when performing registration in low-light environ-
ments, focusing on its feasibility in autonomous driving sce-
narios.

We incorporated our proposed method for improving im-
age registration in an edge environment. Therefore, we used
the SOTA Superglue network [36] on real-world low-light
stereo image datasets to perform registration and matching
in the edge platform. Due to the lack of visibility, Superglue
illustrates a significant deficiency in finding perfect matches
on the image pairs. However, our proposed method can im-
prove its performance by significantly enhancing the darker
images. Table. 4 illustrates the performance of Superglue
on matching-in-the-dark (MID) dataset [43]. Our proposed
method significantly improves the performance of the Su-
perglue network. Without LLIE, the Superglue network

struggles to identify the key features and perfect match on
the stereo images. Our proposed method helps it by improv-
ing visibility to achieve more accurate findings while miti-
gating false matches. On average, our model improves the
key point detection on both left and right images. The pro-
posed method helps the Superglue improve its performance
by over 90 matches per pair.

Fig. 6 visually confirms the impact of the proposed
LLIE on image matching. Our models substantially im-
prove the performance of the SUperglue network. These
help the image-matching algorithm minimize false match-
ing and find perfect matches among stereo images.

It is important to note that most algorithms used for
matching images are designed to work with grayscale im-
ages to simplify the computational complexity of the match-
ing process. Our INT8 model has been optimized for image
matching with quantized weights and can perform with the
same efficiency level as its full-precision counterpart. The
high-performance levels achieved by our model in image
matching with quantized weights indicate that it is well-
suited for EVA. Using a quantized model for image match-
ing in EVA applications can significantly reduce compu-
tational and memory requirements while maintaining the
matching process’s accuracy and reliability. Hence, our
INT8 model emerges as an optimal (EVA) solution, offering
efficient and precise image-matching capabilities.

4.4. Discussion

This study reveals a new dimension of LLIE on EVA. Our
optimization framework can significantly improve the per-
formance of EVA by adding minor computational overhead.
The low computational cost of our proposed network with
post-training quantization helps our model achieve an ef-
ficient inference speed on edge devices with a decent fer-
tility score. We tested our model on the NTIRE’24 low-
light challenge. Despite being significantly lightweight, our
model can be on par with the SOTA image restoration mod-
els like Uformer, MIRNet, etc. However, the SOTA LLIE
method can achieve a better fidelity score than the proposed
method. However, complex blocks like transformers make
that model impractical for edge devices due to their high
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Class Name Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Bike People Table All

ExDark 0.3930 0.1890 0.2570 0.6520 0.4210 0.4140 0.3150 0.2720 0.3960 0.3730 0.3960 0.0152 0.3410
INT8 0.4230 0.2050 0.2300 0.6520 0.4300 0.4180 0.3180 0.2790 0.3960 0.4210 0.4120 0.0150 0.3500
Full Precision 0.4240 0.2030 0.2350 0.6590 0.4330 0.4280 0.3270 0.2800 0.4050 0.4320 0.4150 0.0149 0.3550

Table 3. Our proposed method accelerates the SOTA object detector in low-light conditions. Despite being significantly faster, our
quantized LLIE can also improve the performance of OD in challenging lighting conditions.

Method Pair 1 2 3 4 5 6 7 8 9 Average

MID [43]
Keypoints 536 : 321 459 : 371 742 : 664 519 : 433 335 : 311 609 : 494 531 : 477 574 : 461 646 : 653 550:465
Matches 123 204 297 164 191 212 242 195 333 217.89

Matches / Total 0.1435 0.2458 0.2112 0.1723 0.2957 0.1922 0.2401 0.1884 0.2564 0.2162

INT8
Keypoints 655 : 488 599 : 666 910 : 966 764 : 823 434 : 397 705 : 741 744 : 643 587 : 563 985 : 1024 709:701
Matches 166 297 407 317 231 302 305 213 506 304.89

Matches / Total 0.1452 0.2348 0.2170 0.1997 0.2780 0.2089 0.2199 0.1852 0.2519 0.2156

Full
Keypoints 655 : 488 599 : 666 910 : 966 764 : 823 434 : 397 705 : 741 744 : 643 587 : 568 985 : 1024 709:702
Matches 166 297 407 317 231 302 305 213 506 304.89

Matches / Total 0.1452 0.2348 0.2170 0.1997 0.2780 0.2089 0.2199 0.1844 0.2519 0.2155

Table 4. Image registration with Superglue on MID dataset. Our proposed LLIE method significantly improves its performance by
enhancing visibility.

Figure 6. Real-world image registration with Superglue network on MID dataset. Our model(s) significantly improve the performance of
the image-matching algorithms. (a) Superglue + Low-light. (b) Superglue + Ours (INT8). (c) Superglue + Ours (full-precision)

complexity and unsupported learning mechanisms.
Our model can show visual artifacts caused by aggres-

sive sensor noise in extremely low-light situations. How-
ever, it’s important to note that the number of real-world
training samples we could access was limited. Despite com-
bining three different single-shot low-light image datasets,
our total number of training samples was insufficient for
handling real-world extreme low-light scenarios. Addition-
ally, the images used in our study were taken with profes-
sional cameras, which have imaging characteristics differ-
ent from those of compact camera sensors used in edge
environments like autonomous driving. Thus, it would be
beneficial to create a new LLIE dataset captured with edge
camera sensors to improve the performance of future edge
LLIE methods.

Besides the data limitation, our quantized model tends
to clip color and contrast due to INT8 conversion. Con-
sequently, the model can illustrate on-par performance
(e.g., for image matching) with a full-precision model in
grayscale images. However, due to the range clipping in
RGB space, the quantized model can illustrate performance

downgrade (e.g., object detection) in such instances. No-
tably, the clipping range issues are a very classical problem
of PTQ. Therefore, we planned to study the effectiveness of
perceptual quantization-aware training for enhancing LLIE
in a future study.

5. Conclusion
This study proposes a novel framework for learning
optimized LLIE for EVA. Our method incorporates a
lightweight deep model, an optimization strategy (e.g.,
PTQ), and deployment on edge hardware. We compared
our proposed method with SOTA LLIE and outperformed
them in quantatitive and qualitative comparison. Later, we
deployed our method edge device to achieve an FPS of 199.
We also illustrated the practicability of such optimized on
generic vision tasks. The experimental results demonstrate
that the proposed method can significantly improve the per-
formance of SOTA vision algorithms like YOLOv3 and Su-
perglue networks. We planned to collect a real-world LLIE
dataset for edge environment and study the quantization-
aware training in the foreseeable future.
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