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Abstract

In this work, we study the task of sketch-guided image in-
painting. Unlike the well-explored natural language-guided
image inpainting, which excels in capturing semantic de-
tails, the relatively less-studied sketch-guided inpainting of-
fers greater user control in specifying the object’s shape
and pose to be inpainted. As one of the early solutions to
this task, we introduce a novel partial discrete diffusion pro-
cess (PDDP). The forward pass of the PDDP corrupts the
masked regions of the image and the backward pass recon-
structs these masked regions conditioned on hand-drawn
sketches using our proposed sketch-guided bi-directional
transformer. The proposed novel transformer module ac-
cepts two inputs – the image containing the masked region
to be inpainted and the query sketch to model the reverse
diffusion process. This strategy effectively addresses the do-
main gap between sketches and natural images, thereby, en-
hancing the quality of inpainting results. In the absence of
a large-scale dataset specific to this task, we synthesize a
dataset from the MS-COCO to train and extensively eval-
uate our proposed framework against various competent
approaches in the literature. The qualitative and quanti-
tative results and user studies establish that the proposed
method inpaints realistic objects that fit the context in terms
of the visual appearance of the provided sketch. To aid
further research, we have made our code publicly avail-
able here: https://github.com/vl2g/Sketch-
Inpainting.

1. Introduction
Image inpainting is a well-established task in computer vi-
sion with diverse applications, including natural photo edit-
ing [31, 46, 56] and filling missing data in medical im-
ages [1, 2, 47]. Significant progress has been made in image
painting in recent years, partly thanks to large neural mod-
els [7, 25, 30]. Despite remarkable progress, most current
image inpainting methods rely solely on available image re-
gions as context for inpainting. Consequently, these “un-
conditioned image inpainting methods” lack precise control

Figure 1. Sketch-guided Image Inpainting has been an under-
explored task in the literature and is often restricted to partial
sketch-based image manipulation [21, 56, 56]. We fill this gap
in the literature by proposing a novel partial discrete diffusion
process for sketch-guided object-level inpainting. Our proposed
approach significantly outperforms other plausible approaches on
Sketch-guided Image Inpainting.

over semantic object categories or visual attributes such as
object shape and pose within the targeted inpainting region.
Imagine a scenario where a user intends to inpaint a spe-
cific object with precise characteristics like it’s size, pose,
and shape in the masked image region. While one intu-
itive approach is to use natural language descriptions for
text-guided image inpainting akin to [59], guiding image
inpainting using sketch emerges as a promising alternative,
especially for users with stronger artistic abilities than lin-
guistic skills. Further, as noted in fine-grained Sketch-based
Image Retrieval literature [6, 26], an important characteris-
tic of sketches lies in their ability to capture object appear-
ance and structure intrinsically. This motivates us to pro-
pose and study the sketch-guided image inpainting as an in-
dependent problem. While certain prior studies [22, 28, 56]
incorporate partial sketch information for image manipu-
lation akin to inpainting, our task distinctively focuses on
object-level inpainting utilizing complete object sketches
instead of partial sketch strokes. Our goal and a selected
result of our approach are illustrated in Figure 1.

Sketch-guided image inpainting requires precise utiliza-
tion of object-level shape and pose information conveyed by
the query sketch while dealing with the large domain gap
between hand-drawn sketches and images. We approach
this problem by proposing a novel method based on the dis-
crete diffusion process [3] to inpaint the missing regions
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conditioned on the hand-drawn query sketch. Our approach
involves two main stages: In the first stage, we learn a vi-
sual codebook to describe a discrete latent space of images.
This codebook enables us to represent images compactly.
In the second stage, we model the sketch-guided image in-
painting problem in this discrete latent space. Here, we in-
troduce a novel Partial Discrete Diffusion process or PDDP
tailored for sketch-guided inpainting, which allows for con-
trolled corruption of the image region and subsequent re-
construction guided by the query sketch. Specifically, we
propose a sketch-guided bi-directional transformer model
to reverse the diffusion process, thereby effectively inpaint-
ing the missing regions based on the provided sketch. Dur-
ing inference, the inpainting process reduces to reversing
the partial discrete diffusion process for the masked area of
the image, guided by the user-provided sketch. This en-
ables our method to generate high-quality inpainted images
that faithfully capture the intended object shapes and poses
specified by the input sketches.

Given the absence of a suitable dataset that can be used to
study sketch-guided image inpainting, we curated a dataset
specifically for this task by leveraging the rich annotations
available in the MS-COCO dataset [27]. Specifically, we
segment out objects from the images and sketchify them
using an off-the-shelf model [24]. We perform extensive
experiments on our curated dataset and compare existing
image inpainting approaches adapted for our task with ours.

In summary, our contributions are as follows: (i) We
study the task of sketch-guided image inpainting, which
involves completing the missing region in an image while
considering the shape and pose details of the object pro-
vided in the accompanying hand-drawn sketch. This work
can be seen as a first attempt at studying sketch guidance in
image painting at the object level. (ii) To tackle this chal-
lenging problem, we first learn the latent representation of
the natural images and model the forward diffusion process
only on the masked image regions. We propose the Partial
Discrete Diffusion Model to learn the sketch conditional re-
verse diffusion process to complete the image by incorpo-
rating the visual information from the provided hand-drawn
sketch. (iii) We compare the performance of our model
with suitable baselines and establish a new state-of-the-
art for our proposed sketch-guided image inpainting task.
We have made our code publicly available here: https:
//github.com/vl2g/Sketch-Inpainting.

2. Related Work
In recent years, we have seen rapid progress in the deep
learning applications for the sketch domain; these include
sketch-based image retrieval [6, 26], object localization [48,
49], sketch generation [51], scene-level sketch-based image
retrieval [15], etc. In this work, we shall focus on inpainting
and sketch-to-image generation literature.

Image Inpainting: Traditional approaches of image in-
painting rely on propagating low-level features from sur-
rounding image content to reconstruct the missing re-
gions [5, 10]. More recently, deep learning-based methods
have significantly progressed by leveraging semantic image
representations learned by convolutional neural networks.
Context encoders [37] introduced an encoder-decoder ar-
chitecture to generate the contents of an irregularly shaped
hole based on the surrounding image context. Subsequent
works have expanded on this approach with attention mech-
anisms [55], adversarial training [56], and improved net-
work architectures [32]. Another paradigm leverages diffu-
sion models, which can synthesize high-quality images by
learned reverse diffusion processes [18, 44]. RePaint [31]
exploits pre-trained unconditional DDPMs [18] to improve
the inpainting process by diffusion models.

Guided image inpainting began with Zhang et al.’s
work [59] via TDANet, employing a dual attention mech-
anism to utilize textual cues for inpainting by comparing
text with the corrupted and original images. Diffusion-
based text-to-image generation models like [12, 16, 34, 40–
42] can be used directly for text-guided image inpainting;
however, these methods can produce sub-optimal results
as they are trained on image-level captions instead of ob-
ject instance-specific descriptions. Recently, [33] pro-
poses a text-guided image inpainting framework leverag-
ing a defect-free VQ-GAN version for improved inpaint-
ing results. Zeng et al. [57] proposed shape-guided object
inpainting in images and subsequently, [35, 54] proposed
frameworks to guide the inpainting process using the shape
of the mask region along with the text. Our problem setup
involves providing a user sketch of an object which should
be inpainted. This gives the user better control over speci-
fying the object’s shape, pose, and size.
Sketch-to-Image Generation: Sketch2Photo [8] and Pho-
toSketching [24] synthesized whole images by composit-
ing the retrieved foreground and background images using a
given sketch. Gao et al. [14] introduced a two-stage method
using EdgeGAN to generate realistic images from scene-
level sketches. Initial works on object-level image gener-
ation from sketches include [9, 29]. More recent works
AODA [53] and [23] propose methods for open-set object-
level image generation from sketches. With the rise of text-
to-image diffusion models, interest has been in controlling
the generation using sketches. Voynov et al. [50] trains a
latent-guided predictor module that maps latent features of
noisy images to spatial maps for providing sketch-guidance
to text-to-image diffusion models. ControlNet [60] utilizes
pre-trained StableDiffusion [42] by learning parallel archi-
tectures for different modalities (edge, scribble, depth maps,
pose, etc.) and uses it along with modality-specific guid-
ance to control the image generation process.ControlNet
can guide the StableDiffusion model using scribbles for
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scene-level image synthesis. Since diffusion models are ca-
pable of doing inpainting inherently [18, 34, 44], we can
utilize ControlNet for our task as a plausible approach by
providing sketch input of only the region that needs to be
inpainted. We experimentally compare against such a base-
line in Section 4.
Sketch-based Image Manipulation: Previous research on
sketch-based image manipulation is primarily based on a
conditional image inpainting framework. For instance,
DeepFill-v2 [56] enables the manipulation of both gen-
eral and facial images via partial sketches. Meanwhile,
FaceShop [38] permits localized shape and color adjust-
ments in facial images through sketch-based manipula-
tion accomplished via conditional image completion. SC-
FEGAN [21] delves into facial manipulation via sketches
and color strokes by integrating free-form masks and style
loss into the image completion model. Yang et al. [20] adapt
a face manipulation model trained on sketches generated
by edge detection to human-drawn sketches, and propose
a refinement strategy that dilates and refines user-drawn
sketches to resemble edge detection results. These meth-
ods combine an input image and these low-level controls
for CNN inputs. However, the corresponding feature repre-
sentations are not sufficient to convey user intentions. De-
FLOCNet [28] deals with this problem by proposing a new
architecture capable of preserving these control features in
the deep feature representations. SketchEdit [58] introduces
a mask-free image manipulation framework using partial
strokes. While our work draws inspiration from these meth-
ods, we focus on object-level inpainting.

3. Methodology
Given an image I with missing regions defined by a mask
M and a hand-drawn sketch S containing high-level de-
tails of an object’s appearance, our objective is to gener-
ate a completed image I

0 that contains the generated object
that precisely follows the visual, e.g., shape, pose informa-
tion provided in the hand-drawn sketch. To achieve this,
a two-stage methodology is proposed in this work. In the
first stage, images are represented as a sequence of code-
book indices following [13]. In the second stage, the code-
book representation of images is utilized to inpaint using a
partial discrete diffusion approach conditioned on the hand-
drawn sketches. In the next section, we formally introduce
the problem statement of sketch-guided image inpainting
(Section 3.1), briefly explain the discrete diffusion model
(Section 3.2), and finally describe our approach (Refer to
Section 3.3) to address the problem.

3.1. Problem Setup
Let I 2 RH⇥W⇥3 be a three-color channel input image,
where H and W are the height and width of the image, re-
spectively. Further, let M 2 RH⇥W⇥1 be a binary mask

that indicates the missing regions of the input image. Each
element Mij 2 {0, 1} on the binary mask M represents
whether the pixel at the location (i, j) on the image I is
missing. Let S 2 RHs⇥Ws⇥1 be a free-hand sketch that
provides high-level visual guidance for the appearance and
pose of an object in the missing regions. In the proposed
sketch-guided image inpainting task, we aim to learn a gen-
erative model G that takes an image I with the missing re-
gion represented by the mask M and a hand-drawn sketch
S as input and outputs a completed image I

0 2 RH⇥W⇥3

such that the object inpainted in the missing region is visu-
ally consistent with other regions of the image and is visu-
ally coherent with the provided hand-drawn sketch.

3.2. Preliminary: Discrete Diffusion
D3PM [3] introduced a general diffusion framework in dis-
crete space for categorical variables. We will first describe
the forward diffusion process for a discrete diffusion model
with total time-steps T 2 N. For a discrete random variable
at time t 2 [1, T ], zt 2 {1, 2, 3, . . . , C � 1, C}, the transi-
tion matrix Qt 2 [0, 1]C⇥C defines transition probabilities
associated with each state that zt can take. More formally,
it defines the probabilities that zt�1 transits to zt, [Qt]mn =
q(zt = m|zt�1 = n) in a single time step. It is mathemat-
ically described as q(zt|zt�1) = v(zt)>Qtv(zt�1), where
v(.) denotes a function that encodes a nominal value to one-
hot vector over C categories, i.e., v(z) 2 {0, 1}C . As-
suming the Markov property, the t step transition probabil-
ities can be obtained as q(zt|z0) = v(zt)>Q̄tv(z0), where
Q̄t =

Q1
i=t

Qi. This analysis can be extended to the N-
dimensional random variables zt 2 {1, 2, 3, . . . , C}N , and
the transition matrix is used for each variable in the random
vector zt independently. From here onwards, we consider
zt as an N-dimensional random variable representing N dis-
crete tokens. D3PM, inspired by the masked language mod-
eling task in NLP, proposes absorbing state formulation of
this transition matrix and introduces a [MASK] token and
argues that this special token helps identify corrupted and
non-corrupted regions. VQ-Diffusion [16] advances this
formulation of matrix Qt with their mask-and-diffuse strat-
egy for image generation by introducing three probabilities
�t of replacing the current token with the [MASK] token,
�t of replacing the current token with another token, and ↵t

describing the probability of token to retain its state. The
transition matrix Qt 2 [0, 1](C+1)⇥(C+1) is then given by:

Qt =

0

BBBBB@

↵t + �t �t . . . �t 0
�t ↵t + �t . . . �t 0
...

...
. . .

...
...

�t �t . . . ↵t + �t 0
�t �t . . . �t 1

1

CCCCCA
. (1)

The reverse process is parameterized by a neural network
that models the zt�1 distribution given zt. Specifically, zt�1
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Figure 2. Our method involves obtaining a discrete latent space representation of the original image and its masked counterpart using a
pretrained VQ-VAE. The image is first converted to noise by iteratively adding noise to the masked region in the forward process of the
proposed Partial Discrete Diffusion Process (Section 3.2). In the reverse process, sketch-guided inpainting is performed iteratively using
a sketch-guided bi-directional transformer model that takes the masked image tokens and the query sketch. It predicts the tokens of the
missing regions (Section 3.3.2). By iteratively refining the inpainted image using the sketch and the available information from the original
image, the proposed method can generate high-quality inpainted images with correct visual and pose details. (Best viewed in color).

is sampled from p✓(zt�1|zt) 2 [0, 1](C+1)⇥(C+1). During
inference, image synthesis tasks initialize all tokens of zT as
[MASK], and then iteratively sample denoised latents from
p✓(zt�1|zt) to obtain z0 [3, 16].

3.3. Sketch-guided Image Inpainting using Partial
Discrete Diffusion Process

This section describes the two-stage model we have de-
signed for the sketch-guided image inpainting task. In the
first stage, we train an encoder E, a codebook Z, and a
decoder D to learn a perceptually compressed discrete la-
tent space of images using the method described by Esser
et al. [13]. Any image can then be represented as a se-
quence of indices of latent vectors from the codebook as
z0 2 {1, 2, . . . , C}K , where K denotes the number of vi-
sual tokens representing the image in the discrete space.
Our novelty lies in the second stage where we first project
the ground truth image and the masked image in the dis-
crete latent space using the learned encoder and the code-
book and then use these discrete representations in the dis-
crete diffusion process. For each ground truth image IGT 2
RH⇥W⇥3, we randomly mask an object in the image using
mask M 2 {0, 1}H⇥W⇥1 where M(i, j) = 1 means that
the image regions IGT (i, j) is masked. Let S 2 RH⇥W⇥1

be the hand-drawn sketch corresponding to the masked ob-
ject containing visual details of the object to be inpainted.
Since the image encoder E(.) is a CNN model, the latent

code related to any patch in an image is affected by the
pixel values of its neighbors. Hence, directly masking the
input image in the pixel space IM = M � IGT is erro-
neous for obtaining latent representation (where � repre-
sents element-wise multiplication). A better way to obtain
the masked image IM is to firstly encode IGT to a sequence
of latent codebook entries, z0, and then to replace tokens
corresponding to masked regions with a special [MASK]
token. The original image mask M is transformed to ob-
tain the mask for the discrete latent image representation
ML 2 {0, 1}K that represents masked tokens in the la-
tent space. It is important to note here that an embedding
corresponding to the [MASK] token does not exist in the
codebook Z, but since we aim to represent the image as a
sequence of indices, we assign the index (C+1) to this spe-
cial token. To sum up, we encode the image IM in discrete
latent space as zm = (C + 1)ML + (1�ML)� z0.

3.3.1 PDDP: Partial Discrete Diffusion Process

In order to obtain the denoised latent image representa-
tion z0 from the noisy representation zm, iterative denois-
ing of zm is performed until we have a visually plausible
z0 [16]. Yet, it does not allow explicit training for the in-
painting problems as it does not align with the inference
where we have to diffuse from an intermediate state with
the desired masked region to obtain z0. In this work, we
introduce a novel inpainting model called Partial Discrete

6027



Diffusion (PDD), which can be used to train general in-
painting models in the discrete latent space. With PDD,
we aim to align the forward and backward processes of dis-
crete diffusion for image inpainting. Specifically, we pro-
pose a forward process that gradually corrupts z0 to zm in
T 2 N timesteps, i.e., in our formulation, zT = zm. Dur-
ing inference for inpainting, this means denoising our cor-
rupted latent representation zm to z0 in T timesteps. The
fact that the single-step transition probability for each to-
ken at each timestep is independent of each other allows us
to incorporate the position of masked regions into the tran-
sition distribution q(zt|zt�1) by augmenting it as follows:
ML�v(zt)>Qtv(zt�1)+(1�ML)�v(zt�1). Furthermore,
the t step transition probability q(zt|z0) can be obtained as
follows: ML � v(zt)T Q̄tv(z0) + (1�ML)� v(z0).

3.3.2 Modelling the Reverse Process

We learn to reverse the partial discrete diffusion process to
obtain z0 from zm iteratively. Typical parameterization of
the reverse process comprises of predicting un-normalized
log probabilities log p✓(zt�1|zt). But the recent works
[3, 19] have found that directly predicting the noiseless tar-
get variable q(z0) results in a better quality of generated im-
ages. This formulation is achieved by using the following
reparameterization trick, which results from the Markovian
nature of the forward discrete diffusion process:

q(zt�1|zt, z0) =
q(zt|zt�1, z0)q(zt�1, z0)

q(zt|z0)
. (2)

Building on this, we design our neural network p✓(.)
to predict the distribution of noiseless target variable z̃0,
estimated at each reverse step conditioned on sketch em-
beddings s. Using this p✓(z̃0|zt, s), we can compute the
one-step reverse transition [16] using the following equa-
tion which combines it with the posterior q(zt�1|zt, z0):

p✓(zt�1|zt, z0, s) =
X

z̃0

q(zt�1|zt, z0)p✓(z̃0|zt, s). (3)

We train the network to minimize the Variational Lower
Bound (VLB) objective [45] for one-step reverse predic-
tion of q(zt�1|zt, z0) and a denoising objective following
[3, 16], which encourages the model to predict a better
noiseless z̃0. The total loss is given by: L0 = LV LB+�Lz0 ,
where � is a hyper-parameter used to balance the contribu-
tions from the two losses, VLB loss is defined as:

LV LB =� log p✓(z0|z1, s)

+
X

T

DKL(q✓(zt�1|zt, s)||p✓(zt�1|zt, s)) (4)

where DKL(x||y) denotes the KL-Divergence between the
random variables x and y. Lz0 is the denoising objective
defined as: Lz0 = � log p✓(z0|zt, s).

3.3.3 Conditioning the Reverse Process on Sketches

We use a sketch of the object to be inpainted as a condi-
tioning signal to guide the image inpainting process. The
sketch image S 2 R224⇥224⇥1 represents a rough outline
of the input image’s missing content, indicating the object’s
overall shape and pose needs to be inpainted. Recent stud-
ies have utilized AdaLN [4] and AdaGN [11] parameters
for conditioning the generation process. Yet, considering
the intricate nature of the sketches with varying spatial in-
formation (i.e., shape and pose), conditioning using AdaLN
is inadequate. Thus, we propose incorporating the sketch’s
visual information into our inpainting model through a sim-
ple yet effective method. We first pass the hand-drawn
sketch through a sketch encoder Es, which we realize as
a ResnNet50 [17]. The ResNet50 extracts features from
the sketch and produces a feature map fs 2 R7⇥7⇥2048.
We add 2D-learnable positional embeddings to the feature
map fs to further incorporate the positional information into
the sketch features and obtain a final flattened feature map
s 2 R49⇥2048 for representing the sketch information for
further inpainting by reversing the diffusion process. We
linearly project these representations before feeding them
to our bi-directional transformer.

3.3.4 Model Architecture

We propose to realize p✓(.) as a bidirectional encoder-only
transformer to estimate the distribution p✓(z̃0|zt, s). As
shown in Figure 2, our model consists of a sketch encoder
Es, and the diffusion decoder p✓(.). We use a ResNet50
[17] as a sketch encoder Es and it takes in a hand-drawn
sketch S 2 RWs⇥Hs⇥1 and maps it to a set of latent fea-
tures s after adding positional embeddings. At any timestep
t 2 {1, 2, . . . , T}, the goal of our network p✓ is to take in zt

and s and predict the distribution q(zt�1|z0). To condition
the denoising step on the sketch embeddings s, we concate-
nate a linear projection of latent representation s with the
vector representation of zt, i.e., vzt and then we feed the
concatenated representation [s; vzt ] through a series of bi-
directional transformer blocks to finally predict p✓(z̃0|zt, s).

4. Experiments and Results
4.1. Dataset and Performance Metrics
We curate a dataset from the widely used MS-COCO
dataset [27]. We begin by isolating objects of interest and
then removing any irrelevant background information by
segmenting all objects from the MS-COCO images using

6028



Figure 3. An example of our dataset. We randomly mask a bound-
ing box shown using red color and provide the masked image
along with the corresponding sketch as input to the image inpaint-
ing method. Please refer to Section 4.1 for more details.

available annotations. To improve the resolution of the seg-
mented objects, we employed a pretrained super-resolution
method, namely ESR-GAN model [52]. Finally, we ap-
ply PhotoSketching [24] to produce sketchy versions of the
high-quality segmented objects and generate a dataset of
images and corresponding object sketches. The resulting
dataset contains 860K object sketches in the training set and
36K object-level sketches in the validation set. Please refer
to Figure 3 for a sample image of this dataset.

Traditional image inpainting metrics like mean squared
error, peak signal-to-noise ratio (PSNR), or structural sim-
ilarity index (SSIM) are not well-suited for sketch-guided
image inpainting as the input sketches only provide a rough
outline of the missing regions and do not specify the ex-
act content or color palette to be inpainted, resulting in
different valid inpainting outputs. Thus, we use the FID
score [36] to measure the quality of the inpainted images
and the inpainted region, respectively. We also adopt the
LPIPS metric [61], commonly used in recent inpainting
works [30, 31, 44], to measure the similarity between the in-
painted image and ground truth. However, given that these
metrics take the entire image into account rather than solely
the inpainted region, we additionally present Local-LPIPS
and Local-FID score, which measures the LPIPS similarity
and FID score between the inpainted region and its corre-
sponding region in the ground truth image. Please note that
local metrics are more effective at capturing performance
than global metrics when the masked region is small. We
evaluate inpainting methods by randomly masking an ob-
ject using bounding box annotations in 5K images from the
MS-COCO validation set, and further conduct user studies
to measure the photorealism of the output images and their
consistency with the sketch query.

4.2. Competing Approaches
To assess our model’s performance, we adapted closely re-
lated methods by training them on the trainset of our dataset.
A brief overview of these approaches is provided below
(i) Sketch-Colorization GAN: We implement a simple DC-
GAN [39], which takes a corrupted image I with a sketch
S pasted into the missing region through channel-wise con-
catenation and generates a completed image. The model is
then trained to synthesize an image to match the ground-
truth image. (ii) DeFLOCNet [28] demonstrated state-of-
the-art performance on facial attribute editing tasks using
partial sketches while generating realistic results. We train
the SC-FEGAN baseline with object sketches instead of
partial sketches to generate inpainted images. (iii) Deep-
Fillv2 [56] is an image inpainting method aimed at filling
in missing regions of images with free-form masks. We
train this model from scratch by adapting it to our problem
setup, where the inpainting is produced by concatenating
the sketch with the binary mask and the corrupted image.
(iv) Palette [44] is based on Denoising Diffusion Proba-
bilistic Models. We adapt this model to our proposed setup
by training it for the inpainting task by conditioning the in-
painting process on the latent representation of the sketch
obtained through a ResNet-50 encoder, using the AdaLN
layer [4]. (v) ControlNet [60] introduces conditional con-
trol to the Stable Diffusion [42] model. In our early exper-
iments, the pre-trained models demonstrated poor perfor-
mance for our task because these models are designed for
text-to-image generation and not image inpainting. There-
fore, we train ControlNet on our dataset by providing a
scene image containing masked region, sketch query, and
a default caption, “A photo-realistic image”.

4.3. Results and Discussion
We conducted experiments to evaluate the models’ perfor-
mance for sketch-guided image inpainting and present the
results in Table 1. It is evident from the Table that the
Sketch-colorization GAN method performs inferior to all
other methods. This is because Sketch-colorization GAN is
a naı̈ve approach that generates an inpainted image from
a corrupted image with a sketch pasted into the missing
region. DeFLOCNet and DeepFillv2 also fail to encap-
sulate the information from crude, object-level sketches.
The Palette uses AdaLN [4] to condition the inpainted re-
gion on the sketch, which produces poor results since the
conditioning mechanism cannot encapsulate accurate infor-
mation about the shape and pose of the object from the
hand-drawn sketch. The pre-trained ControlNet performs
poorly at our proposed task, achieving an FID score of
29.52, which is attributed to the fact that it utilizes a pre-
trained text-to-image StableDiffusion model, which makes
its output heavily dependent on the text prompt. There-
fore, we train a ControlNet from scratch on our curated
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Reference 
Image

Corrupted 
Image

Sketch DeepFillv2 OursPaletteDeFLOCNet ControlNet 
(scribble)

Figure 4. Qualitative comparison of the proposed sketch-guided inpainting method with the competitive baselines. The results show that
the proposed model effectively utilizes visual information in the sketch query, producing inpainting results with high visual fidelity and
query faithfulness. Refer to Section 4.3 for more details.

data, achieving an FID score of 10.77. This is our closest-
performing model that produces better visual results than
the other approaches. However, in many cases, as seen in
Figure 4, the faithfulness of the inpainted region with the
provided hand-drawn sketch remains an unresolved issue
with this model, too. In contrast, our proposed technique
achieves state-of-the-art performance in sketch-guided im-
age inpainting, as demonstrated by a lower (i.e., better) FID
score in Table 1. It is worth noting that the Palette, Con-
trolNet, and our framework are based on diffusion models.
Palette performs diffusion in latent space, and inpainting is
conditioned only through a single sketch embedding. On
the other hand, ControlNet uses diffusion in the continuous
space and StableDiffusion’s U-Net encoder [43] to guide
the pre-trained StableDiffusion model in generating the in-
painted images. Our proposed solution exploits discrete dif-
fusion and benefits from a more robust sketch-conditioning
mechanism where the features are first extracted from a
ResNet50 model and then combined with image features in
the self-attention blocks of the transformer.

The qualitative results of our model in comparison to

Method FID (#) LPIPS (#) LLPIPS (#) LFID (#)

Sketch-coloring GAN 37.23 0.79 0.98 152.64
DeFLOCNet [28] 30.68 0.17 0.57 76.16
DeepFillv2 [56] 27.19 0.16 0.55 105.49
Palette [44] 25.87 0.14 0.53 98.56
ControlNet [60] 10.77 0.11 0.49 21.98

Ours 7.72 0.11 0.42 21.91

Table 1. Performance comparison of the proposed model on the
curated MS-COCO dataset. Lower is better (see Section 4.3).
LLPIPS and LFID denote “Local LPIPS” and “Local FID”, re-
spectively. Bold and underlined numbers refer to the best and
second-best performances for their respective metrics.

competitive approaches for the proposed task are shown in
Figure 4. Our proposed model outperforms all the com-
petent approaches and successfully utilizes the visual shape
and pose information from the query sketch to generate high
visual fidelity, semantic consistency, and faithfulness to the
provided sketch when inpainting the missing region. We
omit the results of sketch-colorization GAN because of poor
quantitative performance.
Ablation study: Recent studies [3, 16, 42] have shown
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Timesteps (T) 1 2 10 25 50

FID 12.55 10.40 8.17 7.89 7.72
LPIPS 0.124 0.110 0.109 0.109 0.107
LLPIPS 0.498 0.480 0.438 0.429 0.414

Table 2. The analysis of the effect of the number of inference steps
on the quality of the inpainted images (refer to Section 4.3).

Method User Preference (%)

DeFLOCNet [28] 2.72
DeepFillv2 [56] 2.72
Palette [44] 0.01
ControlNet [60] 25.45

Ours 68.54

Table 3. The study involved 50 masked images randomly selected
from the validation split of our dataset. A group of 22 human
participants were presented with the inpainted images generated
by our method and competing approaches. They were then asked
to express their preferences, focusing on photorealism.

that the quality of images generated by diffusion models is
affected by the number of diffusion timesteps (T 2 N). To
study this, we conducted a study to measure the effect of the
number of inference timesteps on the quality of inpainted
images. The results in Table 2 demonstrate that the quality
of the generated inpainted images increases as the number
of inference steps increases with the highest FID of 7.72 for
50 steps. Even the images generated in two timesteps have
a better quality than the closest baseline model (FID score
of 10.77 for ControlNet v.s. 10.40 FID for our method).
User Study: In addition to quantitative evaluations, we also
conducted a subjective assessment of the proposed inpaint-
ing method using a human preference metric. To carry out
the assessment, we randomly selected 50 masked images
and inpainted them using four top-performing competitive
approaches and our proposed framework. We recruited 22
human users to participate in the evaluation. Each user was
presented with all sets of masked images and correspond-
ing inpainted versions. The subjects were then instructed
to carefully examine each set and choose the inpainted im-
age they perceived as the most natural-looking. The human
preference evaluation results, indicating the participants’
choices, are reported in Table 3. As shown, 68.54% of the
time, the users preferred the inpainted results generated by
our method. This analysis indicates the naturalness and vi-
sual fidelity of the generation. Additionally, we performed
another user study to quantitatively evaluate how well the
inpainted region of our and the baseline models align with
the provided user sketch. We randomly select 20 images
from the validation split and show 22 human subjects the
inpainting results produced by competing baselines and our
method along with the query sketch, and ask them to rate the

Method Consistency Score (mean±std)

DeFLOCNet [28] 1.40 ± 0.65
DeepFillv2 [56] 2.24 ± 1.07
Palette [44] 1.09 ± 0.33
ControlNet [60] 3.75 ± 1.20

Ours 4.34 ± 0.77

Table 4. The study involved 20 masked images and corresponding
sketch queries randomly selected from the validation split of our
dataset. A group of 22 human participants were presented with
the inpainted images generated by our method and competing ap-
proaches. They were to score the consistency of the inpainted re-
gion with the sketch on a scale of 1 (poor) to 5 (best).

consistency and alignment of the inpainted region with the
given sketch from 1 (poor alignment and consistency) and
5 (best alignment and consistency). The results in Table 4
indicate the superior performance of our proposed method.

Limitations: Our method achieves state-of-the-art perfor-
mance in sketch-guided image inpainting. However, there
is significant room for improving the visual quality of the
inpainted images. Our work represents a small step to-
wards object-level sketch-guided image inpainting. One
area to enhance is our sketch information embedding, which
currently uses a straightforward ResNet50 encoder for ex-
tracting embeddings from rasterized sketches. Future re-
search could explore more sophisticated sketch embeddings
capturing stroke-level details. Another area of exploration
involves refining the conditioning mechanisms that merge
sketch embeddings with image representations to synthe-
size the inpainted image. Furthermore, we aim to develop
diffusion models for their generative capabilities and lever-
age transformer models for their robust modeling capabili-
ties, building upon the discrete diffusion process.

5. Conclusion

In this work, we investigated sketch-guided image inpaint-
ing, where a query sketch and non-missing regions of the
image provide cues for filling in the missing regions. The
proposed approach alleviates the problem of limited control
over inpainted objects in traditional image inpainting and
text-to-image inpainting, thereby making it more practical
for image manipulation applications. Despite challenges
such as the significant domain gap between hand-drawn
sketches and images, our proposed approach achieved state-
of-the-art results and generated photo-realistic objects that
fit the context in terms of the shape and pose of the object
in the provided sketch. Both quantitative and qualitative
analyses demonstrate that our approach significantly out-
performs other relevant approaches.
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