
Towards Online Real-Time Memory-based Video Inpainting Transformers

Guillaume Thiry1 Hao Tang1,2† Radu Timofte1,3 Luc Van Gool1,4,5
1CVL, ETH Zurich 2Carnegie Mellon University

3University of Wurzburg 4ESAT-PSI, KU Leuven 5INSAIT, Sofia Un. St. Kliment Ohridski

Abstract

Video inpainting tasks have seen significant improve-
ments in recent years with the rise of deep neural networks
and, in particular, vision transformers. Although these
models show promising reconstruction quality and tempo-
ral consistency, they are still unsuitable for live videos, one
of the last steps to make them completely convincing and
usable. The main limitations are that these state-of-the-
art models inpaint using the whole video (offline process-
ing) and show an insufficient frame rate. In our approach,
we propose a framework to adapt existing inpainting trans-
formers to these constraints by memorizing and refining re-
dundant computations while maintaining a decent inpaint-
ing quality. Using this framework with some of the most
recent inpainting models, we show great online results with
a consistent throughput above 20 frames per second.

1. Introduction

Video inpainting is the task of filling missing regions in a
video with plausible and coherent content. It can be seen
as an extension of the more known image inpainting but
with an extra temporal dimension, bringing new challenges.
A good video inpainting can be used for various applica-
tions, such as object removal [8], video restoration [25] or
video completion [5]. To be convincing, a video inpaint-
ing must be spatially coherent, that is, the content filled in
each frame fits with the rest of the image. It must also be
temporally coherent, meaning that the video is smooth and
without artifacts when being played. Models leveraging a
deep learning approach [4, 22, 33] have made significant
progress recently, especially on the temporal consistency
that was lacking from more traditional methods [13, 32, 44].
Among them, the transformers [28, 48] showed the best per-
formance both in terms of quality and speed.

With more and more live content today (e.g., cultural and
sport events, social media streaming), online and real-time
video inpainting is necessary to deal with these new types

†Corresponding author.

of broadcast. Such techniques could also prove to be use-
ful in the augmented perception field. These models should
be able to inpaint an ongoing video, with sufficient frame
rate to be “live”. While a few previous works investigated
this [16, 20], none of the current state-of-the-art approaches
meet the criteria to be called either online or real-time, lim-
iting the potential real-life use cases of this technology. In
this work, we propose a framework to adapt the most recent
transformer-based techniques of video inpainting to both
online and real-time standards, with as little loss of qual-
ity as possible.

I. Online. We explore the natural modifications to make
any inpainting model work online. By doing that, we derive
an online baseline trading off inpainting quality. The main
drawback of this approach is the frame rate, which is still
too low for real time.

II. Memory. We then add a memory and keep the suc-
cessive results of these transformers, to reduce the number
of calculations to do for the next frames. With that, we in-
crease the number of frames per second by a factor of 3,
passing the real-time threshold at the cost of yet another
quality drop.

III. Refined. Finally, we refine the memory-based
framework to temper the loss of inpainting quality while
maintaining a real-time throughput. To do that, two mod-
els run side by side and communicate together as the live
video goes on. The first one inpaints the frames in real-time
as they come, using as much previous knowledge as it can
have. Simultaneously, the second model reinpaints already
gone frames with more time and more care. It then com-
municates its results to the first model, giving it valuable
information to use.

We demonstrate the proposed techniques (Online, Mem-
ory, Refined) on three of the most recent transformer-based
models and achieve online real-time operating points when
testing on the usual video inpainting tasks and datasets. The
remainder of the paper is structured as follows. In Section 2,
we give an overview of the former and current research on
video inpainting. Then, we detail our online video inpaint-
ing models in Section 3. Finally, we report all our results
and discuss them in Section 4.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6035

2. Related Work
Image Inpainting. The first works on image inpainting
were proposed decades ago and were relying on the use of
known textures to fill the missing content [2, 9, 10]. These
textures were sampled from other areas of the image thanks
to patches that were matched with the corrupted area with
a similarity score. Variations around this approach have
then been proposed [14] including PatchMatch [1], using
an approximation of the patch matching to obtain a tool fast
enough for commercial uses.

With the development of more complex models such as
convolutional neural networks (CNN) [23], recurrent neu-
ral networks (RNN) [15] or generative adversarial networks
(GAN) [12], recent image inpainting works have focused
on the use of deep neural networks (e.g. encoders) trained
with adversarial losses, with great results [18, 31, 35, 47].
Traditional Video Inpainting. As for image inpainting, the
first models proposed were handcrafted, relying on more
traditional image manipulation techniques. Most models
adopted a similar patch-based approach in which the video
was cut into spatial-temporal patches. A score was also
computed between the patches to fill the missing content
with information from similar patches [32, 36, 43, 44]. To
later deal with videos having more complex movements, re-
finements have been proposed, for example, introducing the
use of flows to help the patch-based inpainting [17]. Other
techniques not using patches were also proposed, using, for
instance, image transformations to align the frames together
[13].
Deep Video Inpainting. Deep learning brought significant
improvement in the quality of video inpainting in the same
way it did with image inpainting. Deep neural networks
have been leveraged in various ways to inpaint a video
[21, 25, 34], with most of them belonging to three main
categories, as described by [49].

One way to video inpaint is by employing an encoder-
decoder model with a mix of 2D and 3D convolutions [40].
VINet [22] was one of the first deep neural models capable
of competing with state-of-the-art models using traditional
techniques [17]. Improvements were later made by adding
gated convolutions [4] and designing a video-specific GAN
loss called T-PatchGAN [5] used in many works since then
[29, 48]. This strategy is, however, impeded by the heavy
calculations that 3D convolutions bring.

Other models perform video inpainting by utilizing the
optical flows of the videos [11, 46]. Forward and backward
flows are first computed for the known part of the video with
traditional techniques such as FlowNet [6, 19] before being
completed by the models. Missing content is then filled by
propagating known pixels through the obtained flows. This
approach shows great results, especially at the border of the
missing area, which is completed really smoothly. The main
drawback of these models is the speed, with a throughput far

from real-time because of the flow estimation and comple-
tion.

A final category encompasses the so-called attention-
based models. While the earliest ones still leverage atten-
tion mechanisms in a traditional manner [26, 33], the most
recent and powerful ones all rely on transformers [7, 30, 39]
with different ways of splitting the frames into patches.
While STTN [48] uses patches of different sizes, one for
each head of the attention mechanism, DSTT [29] divides
the transformers into two categories (spatial transformers
and temporal transformers) to mix the patches differently.
With FuseFormer [28], the idea of having the patches over-
lapping to add more consistency gives even better results.

Finally, some works try to be more transverse and merge
together different approaches. This is the case of TSAM
[49] which combines 3D convolutions with flows. The cur-
rent state-of-the-art work, E2FGVI [27], is also following
this approach by leveraging both FuseFormer-like filling
with flows propagation.
Online Video Inpainting. To our best knowledge, only two
works seriously tried to tackle the challenge of online video
inpainting. They both focus on object removal as part of
an entire end-to-end framework also including object seg-
mentation and tracking. The first one, PixMix [16], is more
traditional and relies on pixel-wise homography mapping,
which can only be used for specific movements of the cam-
era and the object. The second one, TransforMR [20], is
more recent and it adapts two of the early deep inpainting
models VINet [22] and LGTSM [4] without being able to
get both quality and throughput simultaneously: one is fast
but gives a quite poor result, the other is slow but inpaints
better. Unfortunately, none of these two works actually pro-
vide quantitative results to compare with.

3. The Proposed Models

3.1. Problem Formulation and Existing Approach

A video inpainting task is given by a set of consecutive
corrupted frames X := {X1, . . . , XN} and correspond-
ing masks M := {M1, . . . ,MN} with N the length of the
video. Each pixel of a mask Mi has either the value “0” if
the true pixel is known or “1” if the value is missing. The
goal of video inpainting is to use X and M to reconstruct
the ground truth Y := {Y1, . . . , YN}. For the training, as X
and Y are rarely known together (e.g., in object removal), X
is usually obtained in practice by corrupting a perfectly nor-
mal video Y using an arbitrary mask M : X = Y ⊙(1−M)
with ⊙ being an element-wise multiplication.

Recent attention-based techniques aim at completing a
given frame by using the information in both short-term
context (neighboring frames) and long-term context (refer-
ence frames). This enables a good temporal consistency
while being able to find information further away in the

6036

15 16 17 18 19 20 21 22 23 24 25 0 10 30 40 50 60

Neighboring frames

Inpainted window

Model

15 16 17 18 19 20 21 22 23 24 25

Reference frames ,

13 14 15 16 17 18 0 10

,

Model

13 14 15 16 17 18

(a) Offline model (b) Online model
Figure 1. Original inpainting model and its natural online adaptation. (a) The model inpaints a window centered around f = 20 with a
radius k = 5. Reference frames sampled at a rate r = 10 are added as input of the model. (b) In online inpainting, we can only see the
past frames. To inpaint the frame 18, we use a window and sampled frames from the past. The whole window is still predicted but only the
last frame is effectively used.

video, which is for example useful when the mask is moving
too slowly for the neighboring frames to be helpful. More
specifically, all frames in a temporal window of radius k
centered around frame f are completed simultaneously us-
ing all the frames of the window, on top of reference frames
sampled in the whole video at a sampling rate r:

Ŷ f+k

f−k = M
(
Xf+k

f−k ∪XN

1,r

)
, (1)

where Ŷ f+k
f−k and Xf+k

f−k are the reconstructed and original
frames in a window from frame f − k to frame f + k, XN

1,r

is the set of frames from the whole video sampled at rate r,
and M is the inpainting model. An illustrated example is
given in Figure 1 (a).

These frames are then encoded and cut into patches in
different ways, depending on the model chosen [28, 29, 48].
They are then completed using a self-attention framework
composed of 8 consecutive transformer blocks. The trans-
formers follow the same general pipeline as the original
vision transformer [7] with slight modifications for each
model. For instance, the final feed-forward layer is replaced
by a custom Fusion-feed-forward layer in FuseFormer [28].
One model is also using an additional flow-based module
[27] to help the transformers completion.

3.2. Challenges of Online Inpainting

Inpainting a video in real-time raises three main issues re-
garding the current state-of-the-art models:

1. A frame must be inpainted using only information from
the frames before because we cannot “see” in the future.

2. A new frame must be inpainted as soon as possible when
received by the model, therefore we cannot wait for sev-
eral frames to inpaint them together.

3. A sufficient throughput is required to be able to call that

“real time”. We fix the value of 20 frames per second
(FPS) as our goal here.

3.3. Online Video Inpainting Transformers

Given these new constraints, a drop in the quality of video
inpainting is expected and partly inevitable. For that reason,
it is important to define a proper baseline for online inpaint-
ing so that we can fairly assess our approach. Comparing
an online model with a regular all-seeing one would be un-
fair as they do not process the same information and are not
meant for the same usage.

Taking into account the first two constraints, a straight-
forward baseline can be derived from any of the existing in-
painting models. Frames are inpainted one by one, not any-
more by blocks, and a given frame is inpainted only with
information from the past. Using the same notations, this
model is described in Equation (2) and Figure 1 (b).

Ŷf = M
(
Xf

f−k ∪Xf

1,r

)
. (2)

While a drop in inpainting quality is expected, this model
also shows a very poor frame rate (see Tables 1 and 2).
This is explained by the fact that the model still inpaints
a whole window of frames as in classical video inpainting,
but only the prediction for the last frame is used here given
constraints 1 and 2 (Figure 1). Starting from this baseline,
we propose two models significantly increasing the frame
rate while staying as close as possible to this one in terms
of inpainting quality.

3.4. Memory-based Online Video Inpainting Trans-
formers

This model addresses the frame rate problem by narrow-
ing the prediction pipeline to only one frame, the last one

6037

0

10

13

14

15

16

17

18

Transformer
1

0

10

13

14

15

16

17

18

Transformer
2

n x n complexity n x n complexity

8 transformers
in total

0

10

13

14

15

16

17

Transformer
1

0

10

13

14

15

16

17

Transformer
2

1 x n complexity 1 x n complexity

18

Inpaintings memory

18

8 transformers
in total

loading values
of level 1

loading values
of level 2

saving new
value at level 2

(a) Without memory (b) With memory

Figure 2. Transformers in the baseline and memory-based models. (a) Without memory, the baseline model processes all the frames in
each transformer, making it quadratically complex. (b) When the memory of the previous inpaintings is kept, only the new frame (18)
needs to be computed, while the transformers can still use the other frames (0 to 17) as context. After each transformer, the new result is
saved for later. Each frame is saved in the memory as much times as there are transformers, each value being different. Following Equation
(3), we have here f = 18, s = 5 and r = 10.

available at a given time. The query vector in the atten-
tion mechanism is changed to only contain patches from this
last frame, avoiding any unnecessary prediction of the other
frames. Meanwhile, the key and value vectors must still rep-
resent all the frames selected for the prediction (neighbor-
ing and reference frames) to keep a good inpainting. This
raises a problem as the original inpainting model is com-
posed of several chained transformers (e.g., 8 transformers
in Fuseformer or STTN), in which the results from the first
one serve as input for the second one to construct the query,
key and value vectors, and so on with the next ones (Figure
2 (a)).

To deal with that, we propose to save in memory the
successive outputs of these transformers for each predicted
frame and reuse them later for the next prediction. This ap-
proach effectively transforms a quadratic attention compu-
tation (n frames predict n frames) into a linear one (n frames
predict 1 frame) as shown in Figure 2 (b). Moreover, the rest
of the prediction pipeline now forwards one frame only as
the other frames are only used by the transformers. This
enables a gain of time on other operations such as convo-
lutional encoding or patch splitting, which is not negligible
in a model like Fuseformer using overlapping patches. The
resulting equation is:

Ŷf = M′ (Xf ,M
f−1

f−s ∪M f−1

1,r

)
, (3)

with M′ the new model, M the transformers memory. s
and r are the memory span and sampling rate: frames from
index f − s to f − 1, as well as previous frames sampled at
rate r will be used to inpaint frame f . A visual example can
be found in Figures 2 (b) and 3 (a).

As detailed in Tables 1 and 2, this approach greatly im-
proves the frame rate, leading to values admissible as “real
time”, i.e. above 20 FPS. The main drawback of this model
is the significant reduction in video quality, as measured on
all 4 metrics.

3.5. Refined Memory-based Online Video Inpaint-
ing Transformers

Investigations made on the previous model show that if a
frame is poorly inpainted, the results will still be saved in
memory, never recomputed, and reused later for the follow-
ing frames, maintaining a poor inpainting through the whole
video. This is even worsened by the fact that the inpaint-
ing results are created independently, as only one frame is
predicted at a time. Such a problem doesn’t happen in the
baseline model because a) frames are inpainted together in
windows and not independently and b) a poor inpainting
result for a given frame will not be used for the following
inpaintings.

This improved model addresses the issue by combining
both worlds of high FPS and good quality with two inpaint-
ing modules working side by side (Figure 3 (b)). The first
one, called the Online Inpainter, is very similar to the first
model as it inpaints one frame at a time reusing results from
previous inpaintings. As it computes attention linearly and
not quadratically in the transformers, this inpainter displays
real-time performances. The second module is called the
Refining Inpainter and it works on already gone frames.
Like the original approach, it inpaints frames with small
windows to get the best inpainting quality allowed by the
model. However, these inpainted frames are not meant to
be displayed as a result have been already shown, and the

6038

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Online Inpainter

Online memory ∪ ,

+ frame 0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Online Inpainter

Refining Inpainter

Online memory

Refined memory
∪ ,

+ frame 0

(a) With memory (b) With refined memory
Figure 3. Memory-based and refined models. (a) Thanks to inpainting memory of the last seen frames, the new frame is the only one to be
computed but the inpainting still benefits from this previous context. Following Equation (3), we have here f = 18, s = 5, and r = 10.
(b) In this model, the online inpainter still uses memory of the last frames it inpainted, but it also receives information from the inpaintings
of the second model. This refining inpainter performs a slower but better inpainting as it can work directly on windows. If tuned correctly,
both models process the video at the same speed, so that the refined memory is always relevant to the online inpainter. Following Equation
(4), we have here f = 18, t = 14 (for this example), s = s′ = 3, and r′ = 10 (tunable parameters).

live video is now further away. Instead, these inpaintings
are only created to be used by the Online Inpainter, whose
quality will increase as a result. The underlying idea is that
if fine-tuned properly, both models will progress approxi-
mately at the same speed, making the refined inpaintings
relevant for the Online Inpainter. It will therefore keep its
real-time inpainting speed, but will be provided with much
better previous inpaintings, increasing its own inpainting
quality. For maximum speed, we implement this model us-
ing two GPUs, each of them carrying one of the inpainting
modules. As detailed in Equation (4), we found the best in-
put to be composed of neighboring frames from the Online
Inpainter’s memory as well as neighboring and reference
frames from the Refined Inpainter’s one.

Ŷf = M′′ (Xf ,M
f−1

f−s ∪ M̄ t

t−s′ ∪ M̄ t

1,r′

)
. (4)

The new model M′′ uses the same memory M with span
s and now also the refined memory M̄ , with span s′ and
sampling rate r′. t is the index of the last inpainted frame
available in this memory.

4. Experiments
4.1. Experimental Settings

Backbones. The models that we have implemented are on-
line adaptations of state-of-the-art video inpainting trans-
formers. There are three in total, and we will refer to them
as “backbones”. The first one is the Decoupled Spatial-
Temporal Transformer (DSTT) [29] which interweaves
temporally-decoupled and spatially-decoupled transform-
ers. The first ones focus on finding information in the same
frame while the others try to find relevant content in other
frames but at the same spot in the frame. The second model
adapted in our work is the FuseFormer [28], which uses tra-
ditional vision transformers on overlapping patches of the

video. These patches are then blended together to enable a
better reconstruction of the missing area. The last backbone
is the End-to-End Framework for Flow-Guided Video In-
painting (E2FGVI) [27], and it combines focal vision trans-
formers with a flow-based approach. Bidirectional flows are
computed to propagate content to the border of the missing
region while the remaining part is completed by the trans-
formers.
Datasets. We compare the different approaches on two
widely used datasets for video inpainting. They are com-
posed of small videos with rather simple motions, more
complex videos still being out of the scope of current state-
of-the-art models. YouTube-VOS [45] is composed of 4519
videos of about 150 frames, while DAVIS [37, 38] contains
150 videos of about 120 frames. As we aim to adapt al-
ready existing models with our framework, we do not con-
duct supplementary training and reuse the weights of the
pre-trained models. Therefore, we only use the test sets
of these datasets. Following previous works [28, 29], we
first quantitatively evaluate these videos on a reconstruction
task using the same stationary masks as FuseFormer [28].
We then visualize some object removal inpaintings, on the
DAVIS dataset. The lack of ground truth for this last task
makes a quantitative analysis impossible.

4.2. Experimental Results

Quantitative Results. To assess quantitatively our mod-
els, we use 4 metrics frequently used in previous works
[48]: PSNR, SSIM [42], VFID [41] and Ewarp [24]. More
specifically, PSNR (Peak Signal to Noise Ratio) and SSIM
(Structural Similarity) are widely used techniques for as-
sessing the quality of reconstruction of an image compared
to its original version. VFID (Video-based Fréchet Incep-
tion Distance) assesses the visual quality of the whole video
by calculating its closeness with natural videos using a pre-

6039

Table 1. Results on the video reconstruction task for the DAVIS dataset.
Backbone Model PSNR ↑ SSIM ↑ VFID ↓ Ewarp (×10−2) ↓ FPS ↑

Offline 31.25 0.959 0.137 0.152 19.2
DSTT + Online 30.63 0.954 0.144 0.153 12.4

+ Memory 30.20 0.951 0.142 0.154 39.5
+ Refined 30.43 0.953 0.142 0.154 27.1

Offline 31.74 0.962 0.126 0.152 10.8
FuseFormer + Online 31.11 0.958 0.135 0.153 7.1

+ Memory 30.49 0.953 0.142 0.153 31.0
+ Refined 30.75 0.956 0.139 0.153 21.3

Offline 32.08 0.964 0.117 0.148 8.8
E2FGVI + Online 31.20 0.959 0.128 0.150 5.6

+ Memory 30.54 0.954 0.129 0.151 11.4
+ Refined 30.92 0.957 0.129 0.153 9.4

Table 2. Results on the video reconstruction task for the YouTube-VOS dataset.
Backbone Model PSNR ↑ SSIM ↑ VFID ↓ Ewarp (×10−2) ↓ FPS ↑

Offline 31.98 0.960 0.054 0.099 17.9
DSTT + Online 31.63 0.958 0.059 0.099 11.7

+ Memory 31.28 0.955 0.058 0.100 34.9
+ Refined 31.54 0.957 0.058 0.099 21.2

Offline 32.34 0.962 0.053 0.098 10.3
FuseFormer + Online 32.01 0.960 0.057 0.099 6.6

+ Memory 31.56 0.957 0.057 0.099 26.6
+ Refined 31.87 0.959 0.057 0.099 16.9

Offline 32.65 0.963 0.049 0.096 8.5
E2FGVI + Online 32.15 0.961 0.053 0.097 5.1

+ Memory 31.61 0.958 0.052 0.097 10.2
+ Refined 31.98 0.960 0.052 0.099 8.3

trained I3D model [3]. Ewarp (Flow warping error) is a
more recently used metric of temporal consistency and can
vary from a publication to another as it depends on the flow
model used. The frame rate is measured on RTX 2080 Ti
GPUs. Except for the refined memory-based model, which
runs on two GPUs (one for each inpainter), all models run
on one GPU only.

As the ground truth video is required for all these met-
rics, only the reconstruction task is possible here: stationary
masks are applied to normal videos, and the model tries to
reconstruct the original video as close as possible. We com-
pare our three online models, as well as the original offline
model, using inputs of similar sizes (same number of neigh-
boring and reference frames). The results for this task are
reported in Table 1 for DAVIS and Table 2 for YouTube-
VOS.

The first thing we can observe in both tables is the lead
of the offline model, able to use information further away in
the video to inpaint a given frame. This shows the need
to establish a proper baseline as online video inpainting
proves to be substantially harder than regular video inpaint-
ing. Then, we observe recurrent trends among the online
models, regardless of the backbone. First, the basic online

model is the best in terms of quality but also the slower. This
is because every frame is inpainted by processing a whole
window of previous frames. This gives a great inpainting,
however only the inpainting of the last frame can really be
used, making it too slow.

Then, using our memory-based technique, we observe
a significant gain in the frame rate, with a factor of 2 for
E2FGVI and even a factor of 3 for DSTT and FuseFormer.
This is because after each transformer, the inpainting results
are saved in memory so that it is not necessary to recompute
them later for a future frame. This causes, however, a loss in
quality as the frames are not really inpainted together any-
more: one frame is inpainted at a time, and even if it uses
information from past frames, it is not the same as inpaint-
ing them all together at once.

The last model, using the memory approach with re-
finement, tries to combine the best of both worlds. It still
uses an inpainting memory to skip extra calculations, so the
frame rate is still greatly improved compared to the base-
line model (with a factor of 2 on DSTT and FuseFormer).
And because it also reinpaints frames together on the side
to reuse these results, it can also reduce most of the loss ob-
served with memory only. We should point out that it is not

6040

30.00 30.25 30.50 30.75 31.00 31.25 31.50
PSNR

10

20

30

40

FP
S

(a) DSTT

30.00 30.25 30.50 30.75 31.00 31.25 31.50
PSNR

10

20

30

40

FP
S

(b) FuseFormer

30.00 30.25 30.50 30.75 31.00 31.25 31.50
PSNR

10

20

30

40

FP
S

(c) E2FGVI
Online Online + Memory Online + Memory + Refined

Figure 4. PSNR/FPS operating points on each backbone, using different input sizes.

Table 3. Memory usage of the FuseFormer-based models on both
datasets (in GB).

Model DAVIS YouTube-VOS
Online 0.53 0.73

+ Memory 1.28 2.26
+ Refined 1.43 2.57

unfair to use two GPUs here, because the Online Inpainter
alone is fast enough to inpaint the frames in real time, some-
thing a slower model cannot do, even with more GPUs (only
one can inpaint a given frame).

While the quality gains and losses are similar compared
to other backbones, our models coupled with E2FGVI show
less pronounced results on the frame rate. The reason is that
our memory approach saves a lot of time only on the atten-
tion calculations inside the transformers, as shown in Figure
2. For DSTT and FuseFormer, these operations represent an
overwhelming part of the time spent, while this is less true
for E2FGVI: the calculation of flows takes time, as well as
the calculation of the windows for the focal attention. These
parts may surely be optimized as well, but this lies outside
the scope of our framework at the moment.
Models Comparison. It can be difficult to fairly com-
pare two models if we include the frame rate as a crite-
rion as there is a manifest trade-off between speed and qual-
ity when changing the size of the input window: the more
frames provided as context, the better the inpainting but also
slower. To take that into account, we evaluated them us-
ing different input sizes and reported the results in a qual-
ity/speed plot, shown in Figure 4. The PSNR is chosen as a
measure of the inpainting quality here.

With that plot, we can observe that the different models
belong to different domains regardless of the input size: the
baseline online model will never be as fast as the memory-
based one, even with really small inputs, and vice-versa for
the quality. One model will then be preferable to another,
depending on the need of the user. As expected, the base-
line model is the best for quality, the memory-based gives
the best frame rate, and the refined memory-based fits in
the middle. We can nevertheless note that for similar PSNR
values, the refined model always shows higher frame rates
compared to the baseline model, and is consistently above

10 20 30 40 50 60 70 80
Frames

31.0

31.2

31.4

31.6

31.8

32.0

32.2

PS
NR

 7 FPS

27 FPS

17 FPS

(a) Mean PSNR for each frame

10 20 30 40 50 60 70 80
Frames

0.0

0.2

0.4

0.6

0.8

1.0

PS
NR

(b) Difference of mean PSNR with Offline for each frame

10 20 30 40 50 60 70 80
Frames

0.952

0.954

0.956

0.958

0.960

0.962

0.964
SS

IM

 7 FPS

27 FPS

17 FPS

(c) Mean SSIM for each frame

10 20 30 40 50 60 70 80
Frames

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

SS
IM

(d) Difference of mean SSIM with Offline for each frame

Offline Online Online + Memory Online + Memory + Refined

Figure 5. Mean PSNR and SSIM at each frame on YouTube-
VOS (500+ videos). Models use FuseFormer backbone, values
are smoothed with a moving average of 10 frames. On the right,
we show the values differences with the offline model. The two
most performing models are able to partly close the quality gap
with the offline one as they discover more frames to use.

20 FPS for both DSTT and FuseFormer backbones. As al-
ready mentioned, the results for E2FGVI are less outstand-
ing and fail to meet the real-time speed.
Memory Usage. Storing intermediate results in memory
saves a lot of time but it requires more memory in return.
To evaluate our work from this perspective, we measured
the GPUs memory usage for our three online models on the
FuseFormer, on both DAVIS and YouTube-VOS datasets.
The results are given in Table 3. This includes the mem-
ory used to have the inpainting model loaded on the GPU,
but this part is minority. The biggest part of the memory is
taken by the tensors (original masks and frames or inpaint-
ing memory) used as input by the model. For the refined
model, the value given corresponds to the sum of memory
usage on the two GPUs.

We can observe a clear increase in the memory usage
for the models storing inpainting for the later frames. Even
thought the difference is less significant for both memory-
based models, more memory is required for the refined
model as it stores more information and requires a second

6041

Figure 6. Visualization of some object removals performed at 20 FPS.

Table 4. Ablation study on the input of our proposed model.
Neighboring Refined Neighboring Online Reference Refined PSNR SSIM FPS

✓ 29.94 0.948 29.5
✓ ✓ 30.40 0.952 23.3
✓ ✓ 30.58 0.954 23.0
✓ ✓ ✓ 30.87 0.956 19.7

model. The difference of GPU usage between both datasets
can be explained by the average length of the correspond-
ing videos. YouTube-VOS videos tend to be longer than the
DAVIS ones, creating bigger memory tensors. This was not
a problem in this project as our GPUs had an higher mem-
ory limit (12 GB), but this would raise memory issues when
dealing with longer videos as we would hit that limit. In
that case, it would become necessary to dynamically main-
tain the inpainting memory by removing information from
ancient frames to store the new ones. It is reasonable to
affirm that this wouldn’t affect the general quality of the re-
sults as we never use too old frames to inpaint the new ones
anyway. However, we cannot discard the possibility that
this could slow down the process a bit.
Temporal Analysis. Because online models can also use
information from the past, one can expect them to perform
poorly at the beginning of a video and then to improve with
more and more information available. In Figure 5, we cal-
culated the mean PSNR and SSIM at each frame for the
videos of the YouTube-VOS dataset. The models here use
the FuseFormer backbone and are compared to the offline
approach that can use information from everywhere in the
videos. For both the online and the refined memory-based
models, we can clearly note the gap of quality decreasing as
we progress in the video, up to a certain point. This shows
that these inpainters can leverage the new information made
available as the video continues.
Qualitative Visualization. As one of the most promising
in our study, we pick the refined memory-based model cou-
pled with FuseFormer, having both good quality and frame
rate. We perform an object removal task on the DAVIS
dataset and report visual results for some of the videos in
Figure 6. We also provide the video results in the Supple-
mentary Material. In particular, these videos show concrete

results on the object removal task, that is, using moving
masks that are more complex than the other task.

4.3. Ablation Study

In Table 4 we propose an ablation study of the previously
chosen model to see the importance of each component in
the input. As recalled by Equation (4), the refined memory-
based model takes as input a) neighboring frames from
the online memory, b) neighboring frames from the refined
memory, and c) reference frames from the refined memory.
As confirmed by the ablation, all components are helpful
to inpaint the video. Reference frames seem especially im-
portant and cannot be simply replaced by more neighbor-
ing frames. Moreover, neighboring frames from the online
memory are also really useful, certainly because they are
really close to the current frame.

5. Discussion and Conclusion

In this work, we presented a reliable method to adapt ex-
isting inpainting transformers to online and real-time stan-
dards while tempering quality loss. Some issues still re-
main, such as cases when little to no information is available
to predict content. Moreover, our framework does not work
yet with non-transformer models, limiting the adaptation of
future techniques. Nonetheless, we hope that by proving
that both quality and speed could be met at the same time
in video inpainting, we paved the way for more research in
that direction. Eventually, stronger models will make online
video inpainting accessible to the public, changing the way
we produce live content.

6042

References
[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans.
Graph., 2009. 2

[2] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and
Coloma Ballester. Image inpainting. In Proceedings of the
27th annual conference on Computer graphics and interac-
tive techniques, 2000. 2

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 6

[4] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Learnable gated temporal shift module for deep video
inpainting. arXiv preprint arXiv:1907.01131, 2019. 1, 2

[5] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Free-form video inpainting with 3d gated convolution
and temporal patchgan. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019. 1, 2

[6] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, 2015. 2

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 2, 3

[8] Mounira Ebdelli, Olivier Le Meur, and Christine Guillemot.
Video inpainting with short-term windows: application to
object removal and error concealment. IEEE Transactions
on Image Processing, 2015. 1

[9] Alexei A Efros and William T Freeman. Image quilting for
texture synthesis and transfer. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, 2001. 2

[10] Alexei A Efros and Thomas K Leung. Texture synthesis
by non-parametric sampling. In Proceedings of the seventh
IEEE international conference on computer vision, 1999. 2

[11] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf.
Flow-edge guided video completion. In European Confer-
ence on Computer Vision. Springer, 2020. 2

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 2014. 2

[13] Miguel Granados, Kwang In Kim, James Tompkin, Jan
Kautz, and Christian Theobalt. Background inpainting for
videos with dynamic objects and a free-moving camera. In
European Conference on Computer Vision. Springer, 2012.
1, 2

[14] James Hays and Alexei A Efros. Scene completion using

millions of photographs. ACM Transactions on Graphics
(ToG), 2007. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016. 2

[16] Jan Herling and Wolfgang Broll. High-quality real-time
video inpainting with pixmix. IEEE Transactions on Visu-
alization and Computer Graphics, 2014. 1, 2

[17] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-
hannes Kopf. Temporally coherent completion of dynamic
video. ACM Transactions on Graphics (TOG), 2016. 2

[18] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and locally consistent image completion. ACM
Transactions on Graphics (ToG), 2017. 2

[19] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 2017. 2

[20] Mohamed Kari, Tobias Grosse-Puppendahl, Luis Falconeri
Coelho, Andreas Rene Fender, David Bethge, Reinhard
Schütte, and Christian Holz. Transformr: Pose-aware object
substitution for composing alternate mixed realities. In 2021
IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), 2021. 1, 2

[21] Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Occlusion-aware
video object inpainting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021. 2

[22] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Deep video inpainting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5792–5801, 2019. 1, 2

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
2012. 2

[24] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman,
Ersin Yumer, and Ming-Hsuan Yang. Learning blind video
temporal consistency. In Proceedings of the European con-
ference on computer vision (ECCV), 2018. 5

[25] Sungho Lee, Seoung Wug Oh, DaeYeun Won, and Seon Joo
Kim. Copy-and-paste networks for deep video inpainting. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019. 1, 2

[26] Ang Li, Shanshan Zhao, Xingjun Ma, Mingming Gong,
Jianzhong Qi, Rui Zhang, Dacheng Tao, and Ramamoha-
narao Kotagiri. Short-term and long-term context aggrega-
tion network for video inpainting. In European Conference
on Computer Vision. Springer, 2020. 2

[27] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and
Ming-Ming Cheng. Towards an end-to-end framework for
flow-guided video inpainting. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 2, 3,
5

[28] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei
Lu, Wenxiu Sun, Xiaogang Wang, Jifeng Dai, and Hong-
sheng Li. Fuseformer: Fusing fine-grained information in

6043

transformers for video inpainting. In International Confer-
ence on Computer Vision (ICCV), 2021. 1, 2, 3, 5

[29] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei
Lu, Wenxiu Sun, Xiaogang Wang, and Li Hongsheng. De-
coupled spatial-temporal transformer for video inpainting.
arXiv preprint arXiv:2104.06637, 2021. 2, 3, 5

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021. 2

[31] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Z Qureshi,
and Mehran Ebrahimi. Edgeconnect: Generative image
inpainting with adversarial edge learning. arXiv preprint
arXiv:1901.00212, 2019. 2

[32] Alasdair Newson, Andrés Almansa, Matthieu Fradet, Yann
Gousseau, and Patrick Pérez. Video inpainting of complex
scenes. Siam journal on imaging sciences, 2014. 1, 2

[33] Seoung Wug Oh, Sungho Lee, Joon-Young Lee, and
Seon Joo Kim. Onion-peel networks for deep video com-
pletion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019. 1, 2

[34] Hao Ouyang, Tengfei Wang, and Qifeng Chen. Internal
video inpainting by implicit long-range propagation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021. 2

[35] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016. 2

[36] Kedar A Patwardhan, Guillermo Sapiro, and Marcelo
Bertalmio. Video inpainting of occluding and occluded ob-
jects. In IEEE International Conference on Image Process-
ing 2005, 2005. 2

[37] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016. 5

[38] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alexander Sorkine-Hornung, and Luc Van Gool.
The 2017 davis challenge on video object segmentation.
arXiv:1704.00675, 2017. 5

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 2017. 2

[40] Chuan Wang, Haibin Huang, Xiaoguang Han, and Jue Wang.
Video inpainting by jointly learning temporal structure and
spatial details. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019. 2

[41] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018. 5

[42] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
2004. 5

[43] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-
time video completion. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2004. 2

[44] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-
time completion of video. IEEE Transactions on pattern
analysis and machine intelligence, 2007. 1, 2

[45] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen
Liang, Jianchao Yang, and Thomas Huang. Youtube-vos:
A large-scale video object segmentation benchmark. arXiv
preprint arXiv:1809.03327, 2018. 5

[46] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy.
Deep flow-guided video inpainting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019. 2

[47] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018. 2

[48] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learning
joint spatial-temporal transformations for video inpainting.
In The Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 1, 2, 3, 5

[49] Xueyan Zou, Linjie Yang, Ding Liu, and Yong Jae Lee. Pro-
gressive temporal feature alignment network for video in-
painting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021. 2

6044

