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Abstract

Over the past decade, neural network-based super-
resolution techniques have been developed on a large scale
with impressive achievements. Many novel solutions have
been proposed, among which lightweight solutions based
on convolutional neural networks have been designed for
applications in edge devices. To better realize this ap-
plication, we propose a more lightweight attention guid-
ance distillation network (AGDN). We design the atten-
tion guidance distillation block (AGDB) with more efficient
space, channel and self-attention as the infrastructure of
AGDN. Specifically, multi-level variance-aware spatial at-
tention (MVSA) is designed to better capture structurally
information-rich regions with new multi-scale convolution
and local variance alignment. Reallocated contrast-aware
channel attention (RCCA) is designed to enhance the pro-
cessing of common information in all channels while re-
distributing weights across channels. Sparse global self-
attention (SGSA) is introduced for selecting the most useful
similarity values for image reconstruction. Extensive exper-
iments demonstrate that AGDN strikes a better balance be-
tween performance and complexity compared to other mod-
els, achieving SOTA performance on several benchmark
tests. In addition, our AGDN-S ranks first in the FLOPs
track and second in the Parameters track of the NTIRE
2024 Efficient SR Challenge. The code is available at
https://github.com/daydreamer2024/AGDN .

1. Introduction

Single-image super-resolution (SISR) is a fundamental
task in the field of computer vision that aims to generate
high-resolution (HR) images from low-resolution (LR) im-
ages. As a critical component of low-level vision tasks, SR
techniques find widespread use in various real-world ap-
plications, such as remote-sensing imaging, medical imag-
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Figure 1. Comparison of model performance and complexity on
B100 dataset for upsampling factor ×4.

ing, and security surveillance. In recent years, propelled
by advancements in deep learning technology, SR tech-
niques have made remarkable strides, leading to the emer-
gence of numerous innovative network architectures. Be-
ginning from the early convolutional neural networks [7]
and progressing through residual networks [13], to trans-
former models [4] and diffusion models [26], the field of
SR has witnessed a flourishing development. Nevertheless,
with the continuous evolution of technology, SR networks
have grown increasingly complex, and their network struc-
tures have expanded in size. While these sophisticated SR
networks enhance the quality of image reconstruction, their
deployment on edge devices with limited computational re-
sources presents challenges due to the escalating model ca-
pacity and intensive computational demands.

To alleviate this situation, efficient SR networks based
on convolutional neural networks have gradually gained at-
tention. From early CARN [2] to IMDN [12], RFDN [19],
BSRN [17], and then MDRN [22], efficient SR networks
have improved greatly in terms of model structure and atten-
tion mechanisms, while the number of network parameters
has been significantly reduced. In this research process, the
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information distillation mechanism was proposed and con-
sidered a highly effective method, widely used as one of the
efficient architectures to significantly boost the overall effi-
ciency of the model. Therefore, based on the foundation of
the information distillation mechanism, we summarize the
factors that constrain the further development of efficient
SR networks, among which precise attention guidance is a
key issue. Building upon this insight, we adopt more ef-
fective attention modules to construct superior efficient SR
networks.

In this paper, we propose a more lightweight attention
guidance distillation network (AGDN), which leverages
multiple attention mechanisms, including spatial attention,
channel attention, and self-attention. These robust attention
mechanisms play a pivotal role in steering the network to-
wards more efficient selection of crucial information, result-
ing in superior reconstruction results. As depicted in Fig. 1,
our AGDN not only achieves a reduction in model com-
plexity but also surpasses other efficient methods in terms
of performance metrics.

Specifically, we propose the attention guidance distilla-
tion block (AGDB) that utilizes multiple attention mech-
anisms as the foundational block of AGDN. We employ
multi-level variance-aware spatial attention (MVSA) and
reallocated contrast-aware channel attention (RCCA) as al-
ternatives to enhanced spatial attention (ESA) [20] and
contrast-aware channel attention (CCA) [12], respectively.
Additionally, we introduce sparse global self-attention
(SGSA) [14] to further enhance features. MVSA is adept
at capturing structurally information-rich regions, RCCA
can redistribute channel weights and handle common in-
formation, and SGSA selects the most relevant similarity
values for image reconstruction. AGDN demonstrates su-
perior performance while maintaining a leaner and more ef-
ficient model architecture. We developed AGDN-S based
on AGDN for participation in the NTIRE 2024 Efficient SR
Challenge [25], achieving first place in the FLOPs track and
second place in the Parameters track.

Overall, our primary contributions can be succinctly
summarized as follows:

1. We propose a more lightweight efficient super-
resolution network named AGDN, which reconstructs
higher-quality images with fewer parameters and multi-
adds compared to other state-of-the-art methods on com-
monly available datasets.

2. Through the review and summary of existing distil-
lation block designs, we have developed the AGDB, which
improves and effectively utilizes attention modules to en-
hance the model’s capabilities within limited computational
resources.

3. We introduce SGSA as a novel addition, enhancing
the utilization of critical global features for more effective
image reconstruction.

2. Related work
2.1. Single image SR

The development of SISR has been remarkable. Dong et
al. [7] first performed the nonlinear mapping of features by
three-layer convolution, which achieved good reconstruc-
tion results compared to traditional mathematical methods.
To enhance feature representation and reuse capabilities,
VDSR [13] employed a very deep network structure to learn
complex and abstract feature representations, while also ac-
celerating training convergence. Huang et al. [9], by in-
troducing dense connections, addressed gradient vanishing
and feature sparsity issues in traditional networks, thereby
enhancing model representation. For further advancements
in image reconstruction, novel network structures have been
introduced, such as Zhou et al. [37] introduced graph neural
networks into SR, and Latticenet [21] utilized lattice filter-
ing with varying fast fourier transforms.

In recent years, SR networks based on transformer or dif-
fusion models have also started to drive further performance
improvements. Network such as [4] achieved SOTA perfor-
mance with the transformer model, while network like [26]
excelled in visual generation using the diffusion model.

2.2. Efficient image SR

Researchers have begun to develop networks with lower
computational requirements while aiming to maintain per-
formance levels. CARN [2] replaced ordinary convolution
in the residual block with group convolution, enhancing
the network’s expressive power while keeping the model
lightweight. IDN [11] performed a splitting process on the
feature map to better utilize layered features. IMDN [12]
introduced a residual structure that extracted useful features
in stages, with the remaining features processed downward
through convolution layers, resulting in notable reconstruc-
tion results. RFDN [19] modified channel segmentation op-
eration with two parallel 3 × 3 convolutions and used resid-
ual blocks with constant connectivity as feature extractors.

Several new networks have provided researchers with a
new level of inspiration. BSRN [17] proposed by Kong et
al. used BSConv instead of ordinary convolution. Choi et
al. [5] introduced N-Gram context into the image SR task
to expand the observed region and recover degraded pixels.

2.3. Attention model in SR

Attentional mechanisms can help models better focus on
important parts. The channel attention (CA) mechanism
was initially introduced to image SR by Zhang et al. [36],
marking a advancement in the field. Hui et al. [12] replaced
global average merging in the CA mechanism with the sum
of standard deviation and average, enhancing the model’s
ability to capture long-term dependencies in sequences and
improve modeling accuracy. However, CA mechanism still
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Figure 2. The overall architecture of attention guidance distillation network (AGDN).

extracts features globally, resulting in a lack of attention to
other perspective features. Liu et al. [20] designed efficient
spatial attention for SR aimed at generating more represen-
tative features. ELAN [35] utilized group multi-scale self-
attention to better construct long-distance dependencies in
images. Chen et al. [4] proposed a novel HAT that com-
bines CA and self-attention, achieving good performance.

The excellent model structure and innovative attention
module in AGDN enable a better balance between perfor-
mance and model complexity. A manageable number of
parameters and computational requirements are maintained
while effectively increasing modeling capabilities. Mak-
ing AGDN the ideal solution for high-efficiency and high-
quality image SR tasks.

3. Method
3.1. Network Architecture

We propose a more lightweight attention guidance dis-
tillation network (AGDN) for efficient image SR, which
is influenced by existing studies such as IMDN, RFDN,
BSRN, and MDRN, and further improved based on these
studies. As illustrated in Fig. 2, our network integrates four
closely interconnected components: shallow feature extrac-
tion, deep feature extraction, feature fusion, and reconstruc-
tion. The effectiveness of this overall architecture has been
extensively validated in previous studies.

Assuming the input and output of AGDN are represented
as ILR ∈ R3×H×W and ISR ∈ R3×sH×sW , where H ×W
denoted as the spatial size and s denoted as the upsampling
factor. Images are fed into the network at the shallow fea-
ture extraction phase as

F0 = Hfe (ILR) , (1)

where Hfe(·) represents the shallow feature extraction phase
consisting of a 3 × 3 convolutional layer. After extract-
ing the obtained shallow features, deep feature extraction is
carried out using AGDBs, so that the features are gradually
refined and perfected. This process can be expressed as

Fk = Hk (Fk−1) , k = 1, . . . , n, (2)

where Hk(·) denotes the k-th AGDB. Fk−1 and Fk repre-
sent the input feature and output feature of the k-th AGDB,

respectively. Following the deep feature extraction phase,
feature fusion is performed to merge the multilevel features.
Specifically, a 1 × 1 convolutional layer and the GELU acti-
vation function are utilized for feature mapping. Addition-
ally, the features are refined using a BSConv. This entire
process can be represented as

Fd = Hfusion (Concat (F1, . . . , Fk)) , (3)

where Hfusion(·) represents the feature fusion phase and Fd

is the fused feature. This is followed by a reconstruction
phase via a long skip connection, given by the formula as

ISR = Hs
re (Fd + F0) . (4)

where Hre(·) denotes the reconstruction phase, which con-
sists of a 3 × 3 convolution and a pixelshuffle operation.

We train the above network by using the L1 loss func-
tion. Given a training set with N pairs of LR images and
HR counterparts, denoted by

{
IiLR, I

i
HR

}N

i=1
, the loss can

be obtained as

L1(θ) =
1

N

N∑
i=1

∥∥IiSR − IiHR

∥∥
1

(5)

where θ denotes the parameter sets of our proposed AGDN.

3.2. Rethinking the deep feature extraction phase

By compiling and analyzing previous studies, our study
found that the deep feature extraction phase is still a key
limiting factor for model performance, and this phase con-
sists of a series of feature distillation blocks. By analyzing
the structure in IMDN and LKDN, each block can be di-
vided into two main parts: distillation in the pre-phase and
enhancement in the post-phase. In the distillation part, it has
been a developmental process from channel splitting opera-
tions to feature distillation connections to blueprint separa-
ble convolutions instead of traditional convolutions; in the
enhancement part, it has evolved from channel attention to
spatial attention to spatial channel attention fusion. Based
on the above analysis, we believe that improving both dis-
tillation and enhancement can significantly boost network
performance. Therefore, we center our work on improving
the feature distillation blocks of other networks to further
promote the model towards lightweight and efficiency.
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Figure 3. The details of each component. (a) AGDB: Attention Guidance Distillation Block; (b) BSRB: Blueprint Shallow Residual
Block; (c) BSConv: Blueprint Separable Convolution; (d) MVSA: Multi-level Variance-aware Spatial Attention; (e) RCCA: Reallocated
Contrast-aware Channel Attention; (f) SGSA: Sparse Global Self-attention.

3.3. Attention Guidance Distillation Block

The information distillation mechanism is widely used in
lightweight SR network design and has been proven effec-
tive. Therefore, we adopt the information distillation mech-
anism to propose a novel AGDB, as shown in Fig. 3(a).

The feature distillation phase involves a series of BSRBs
and convolutional layers designed to iteratively enhance the
initial input features Fin. The entire process can be repre-
sented as

Fd1 , Fr1 = D1 (Fin) , R1 (Fin) ,

Fd2 , Fr2 = D2 (Fr1) , R2 (Fr1) ,

Fd3 , Fr3 = D3 (Fr2) , R3 (Fr2) ,

Fd4 = D4 (Fr3) ,

(6)

where Di, Ri denote the ith distillation and ith refinement
layer, respectively. Fdi

, Fri represents the ith distilled fea-
tures and ith refined features, respectively. In the feature
fusion phase, all the distilled features fused by a 1 × 1 con-
volutional layer as

Ffusion = Hfusion (Concat (Fd1
, Fd2

, Fd3
, Fd4

)) , (7)

where Hfusion denotes the 1 × 1 convolutional layer, and
Ffusion is the fused feature. For the feature enhancement
phase, we use more efficient spatial attention, channeled at-
tention and self-attention for cascading enhancements as

Fmvsa = Hmvsa (Ffusion) ,

Frcca = Hrcca (Fmvsa) ,

Fenhance = Hsgsa (Frcca) ,

(8)

where Hmvsa denotes the multi-level variance-aware spatial
attention, Hrcca denotes the reallocated contrast-aware chan-
nel attention, Hsgsa denotes the sparse global self-attention,
and Fenhance is the enhanced feature. Finally, a long skip
connection is used to strengthen the residual learning ability
of the model as

Fout = Fenhance + Fin. (9)

We utilize the designed AGDB, which incorporates more
efficient spatial, channel, and self-attention, as the founda-
tional module of AGDN. This block enables us to achieve
enhanced reconstruction results.
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Table 1. The ablation analysis for MVSA, RCCA and SGSA in the AGDN on benchmark test datasets for ×4 SR.

Method MVSA RCCA SGSA Params M-Adds Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

1 × × × 127K 7.2G 32.00/0.8928 28.52/0.7801 27.53/0.7344 25.81/0.7770 30.24/0.9053
2 ✓ × × 145K 7.8G 32.20/0.8949 28.65/0.7824 27.58/0.7365 26.06/0.7850 30.53/0.9086
3 × ✓ × 132K 7.4G 32.09/0.8938 28.54/0.7802 27.53/0.7347 25.91/0.7799 30.35/0.9067
4 ✓ ✓ × 151K 7.9G 32.20/0.8948 28.64/0.7824 27.60/0.7367 26.10/0.7864 30.56/0.9097
5 ✓ ✓ ✓ 293K 16.1G 32.43/0.8980 28.80/0.7861 27.72/0.7412 26.50/0.7992 31.13/0.9148

Table 2. The ablation analysis for different components of attentional mechanisms on benchmark test datasets for ×4 SR.

Method Params M-Adds Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

ESA+CCA 286K 16.0G 32.42/0.8977 28.76/0.7850 27.71/0.7405 26.41/0.7970 31.04/0.9143
MVSA+RCCA 293K 16.1G 32.43/0.8980 28.80/0.7861 27.72/0.7412 26.50/0.7992 31.13/0.9148

Table 3. The ablation analysis for the TLC approach on benchmark test datasets for ×4 SR.

Method Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

AGDN-woTLC 32.42/0.8977 28.77/0.7852 27.69/0.7399 26.33/0.7932 31.02/0.9131
AGDN 32.43/0.8980 28.80/0.7861 27.72/0.7412 26.50/0.7992 31.13/0.9148

Table 4. Performance results with varying number of AGDBs on benchmark test datasets for ×4 SR.

Number Params M-Adds Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

5 215K 11.9G 32.35/0.8969 28.75/0.7845 27.68/0.7399 26.36/0.7948 30.92/0.9132
6 254K 14.0G 32.42/0.8975 28.79/0.7856 27.71/0.7408 26.45/0.7974 31.01/0.9135
7 293K 16.1G 32.43/0.8980 28.80/0.7861 27.72/0.7412 26.50/0.7992 31.13/0.9148

Multi-level Variance-aware Spatial Attention. As
shown in Fig. 3(d), we draw on research on multi-
level dispersion spatial attention (MDSA) [22] and im-
prove upon it. In MVSA, we consider the impact of multi-
level branching and local variance on performance. Multi-
level branches with small windows cannot cover a sufficient
range of information, while using local variance in a sin-
gle branch can lead to large differences in weights between
branches. Therefore, we designed D5 and D7 branches
that contain both local variance to better capture structurally
information-rich regions while balancing performance and
model complexity.

Specifically, on the one hand, we compute the local vari-
ance with the same kernel size and step size as the max-
pooling layer while computing the max-pooling layer. We
then perform element-wise summation on the outputs be-
fore continuing with the same operations as in ESA. On the
other hand, we added a multi-level branch, which provides
multi-level weight information. With this multi-level and
local variance steering, we improve the reconstruction ac-
curacy with a small increase in model complexity.

Reallocated Contrast-aware Channel Attention. As
shown in Fig. 3(e), we design the reallocated contrast-aware
channel attention (RCCA). In RCCA, we not only consider
the reallocation of weights across channels by traditional
channel attention but also enhance the treatment of common
information across all channels. We added complementary
branches with 1 × 1 convolution and GELU activation rep-

resentations to reallocate complementary channel informa-
tion, promoting the uniqueness of each channel.

Specifically, we first deepen each channel of the input
individually by using the DWConv and GELU activation
functions to enhance the uniqueness of each channel. Next,
all channels of the input are augmented in two branches, re-
distributing the weights of each channel in the CCA branch,
and redistributing the information of the complementary
channels in the complementary branch. Finally, the results
of the two branches are summed to ensure that each channel
has a more unique importance.

Sparse Global Self-Attention. As shown in Fig. 3(f),
we introduce SGSA to estimate the features in the channel
direction and generate the scaled attention matrix. By in-
troducing SGSA, the most important global features can be
better utilized for image reconstruction. Here, we follow the
original computational approach of SGSA, where global at-
tention in image restoration usually has a gap between the
training and testing phases. Therefore, we use the test-time
localizer converter (TLC) [6] during the testing phase.

4. Experiments
4.1. Datasets and Metrics

We trained our model using a dataset consisting of 800
images from DIV2K [1] and 2650 images from Flickr2K
[18]. For testing, we selected SR benchmark datasets such
as Set5 [3], Set14 [34], B100 [23], Urban100 [10], and
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Table 5. The quantitative results for super-resolution on five benchmark datasets are presented, highlighting the best result in red and the
second-best result in blue. The Multi-Adds is calculated corresponding to a 1280 × 720 HR image.

Method Scale Venue Params M-Adds Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CARN [2]

×2

ECCV 18’ 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [12] ACM MM 19’ 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
RFDN [19] ECCVW 20’ 534K 123.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
SMSR [30] CVPR 21’ 985K 131.6G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
ELAN [35] ECCV 22’ 582K 168.4G 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782

FDIWN-M [8] AAAI 22’ 433K 73.6G 38.03/0.9606 33.60/0.9179 32.17/0.8995 32.19/0.9284 -/-
ShuffleMixer [28] NeurIPS 22’ 394K 91.0G 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774

BSRN [17] CVPRW 22’ 332K 73.0G 38.10/0.9610 33.74/0.9193 32.24/0.9006 32.34/0.9303 39.14/0.9782
NGswin [5] CVPR 23’ 998K 140.4G 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777

SAFMN [29] ICCV 23’ 228K 52.0G 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771
HPUN-M [27] AAAI 23’ 492K 106.2G 38.04/0.9605 33.67/0.9190 32.22/0.9001 32.17/0.9290 38.89/0.9776
DFAnet [15] ICASSP 23’ 500K 137.8G 38.09/0.9609 33.80/0.9199 32.26/0.9009 32.55/0.9328 38.86/0.9778
LKDN [33] CVPRW 23’ 304K 69.1G 38.12/0.9611 33.90/0.9202 32.27/0.9010 32.53/0.9322 39.19/0.9784

OSFFNet [31] AAAI 24’ 516K 83.2G 38.11/0.9610 33.72/0.9190 32.29/0.9012 32.67/0.9331 39.09/0.9780
AGDN(Ours) 279K 61.4G 38.21/0.9613 34.02/0.9220 32.33/0.9017 32.76/0.9346 39.33/0.9784

CARN [2]

×3

ECCV 18’ 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [12] ACM MM 19’ 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
RFDN [19] ECCVW 20’ 541K 55.4G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
SMSR [30] CVPR 21’ 993K 67.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25//0.8536 33.68/0.9445
ELAN [35] ECCV 22’ 590K 75.7G 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478

FDIWN-M [8] AAAI 22’ 446K 35.9G 34.46/0.9274 30.35/0.8423 29.10/0.8051 28.16/0.8528 -/-
ShuffleMixer [28] NeurIPS 22’ 415K 43.0G 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448

BSRN [17] CVPRW 22’ 340K 33.3G 34.46/0.9277 30.47/0.8449 29.18/0.8068 28.39/0.8567 34.05/0.9471
NGswin [5] CVPR 23’ 1007K 66.6G 34.52/0.9282 30.53/0.8456 29.19/0.8078 28.52/0.8603 33.89/0.9470

SAFMN [29] ICCV 23’ 233K 23.0G 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437
HPUN-M [27] AAAI 23’ 500K 48.1G 34.44/0.9271 30.37/0.8426 29.13/0.8056 28.18/0.8533 33.68/0.9450
DFAnet [15] ICASSP 23’ 508K 62.0G 34.52/0.9281 30.47/0.8449 29.17/0.8075 28.52/0.8604 33.72/0.9463
LKDN [33] CVPRW 23’ 311K 31.4G 34.54/0.9285 30.52/0.8455 29.21/0.8078 28.50/0.8601 34.08/0.9475

OSFFNet [31] AAAI 24’ 524K 37.8G 34.58/0.9287 30.48/0.8450 29.21/0.8080 28.49/0.8595 34.00/0.9472
AGDN(Ours) 285K 27.9G 34.63/0.9291 30.55/0.8460 29.26/0.8093 28.66/0.8633 34.30/0.9487

CARN [2]

×4

ECCV 18’ 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [12] ACM MM 19’ 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN [19] ECCVW 20’ 550K 31.6G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
SMSR [30] CVPR 21’ 1006K 41.6G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
ELAN [35] ECCV 22’ 601K 43.2G 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150

FDIWN-M [8] AAAI 22’ 454K 19.6G 32.17/0.8941 28.55/0.7806 27.58/0.7364 26.02/0.7844 -/-
ShuffleMixer [28] NeurIPS 22’ 411K 28.0G 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093

BSRN [17] CVPRW 22’ 352K 19.4G 32.35/0.8966 28.73/0.7847 27.65/0.7387 26.27/0.7908 30.84/0.9123
NGswin [5] CVPR 23’ 1019K 36.4G 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128

SAFMN [29] ICCV 23’ 240K 14.0G 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063
HPUN-M [27] AAAI 23’ 511K 27.7G 32.24/0.8950 28.66/0.7828 27.60/0.7371 26.12/0.7878 30.55/0.9089
DFAnet [15] ICASSP 23’ 520K 35.6G 32.29/0.8960 28.71/0.7835 27.64/0.7386 26.40/0.7955 30.71/0.9113
LKDN [33] CVPRW 23’ 322K 18.3G 32.39/0.8979 28.79/0.7859 27.69/0.7402 26.42/0.7965 30.97/0.9140

OSFFNet [31] AAAI 24’ 537K 22.0G 32.39/0.8976 28.75/0.7852 27.66/0.7393 26.36/0.7950 30.84/0.9125
AGDN-S(Ours) 69K 3.7G 32.03/0.8920 28.53/0.7793 27.52/0.7344 25.99/0.7821 30.29/0.9039
AGDN(Ours) 293K 16.1G 32.43/0.8980 28.80/0.7861 27.72/0.7412 26.50/0.7992 31.13/0.9148

Manga109 [24]. In line with standard practices, we assessed
image SR performance using metrics like PSNR and SSIM
[32]. Additionally, we conducted an analysis of the model
complexity based on parameters and multi-adds.

4.2. Implementation Details

In line with previous approaches, we apply random rota-
tion and horizontal flipping to augment the data. Our net-
work is trained using the Adam optimizer. During training,
we randomly sample 48 × 48 patches as input to the net-
work. We set the total training iterations to 1000k with a
batch size of 64. The initial learning rate is set to 2 × 10−3

and is halved at specific iterations: [100k, 500k, 800k, 900k,
950k]. All experiments were performed on one NVIDIA
RTX 4090 GPU using the PyTorch framework.

The proposed AGDN-S has 4 AGDBs, in which the num-
ber of feature channels is set to 24. We start by pretrain-

ing the model on the DIV2K and Flickr2K datasets, we ex-
pand the network’s input to 64 × 64 while keeping the rest
consistent with AGDN. We then conduct fine-tuning on the
DIV2K dataset and the first 10k images from LSDIR [16].
The input size is set to 96 × 96, with a batch size of 32.
The fine-tuning process optimizes the model by minimizing
the L2 loss function, starting with an initial learning rate of
5 × 10−4, which is reduced by half at 50k iterations. The
fine-tuning phase encompasses a total of 100k iterations.

4.3. Ablation Study

Efficacy of the Multi-level Variance-aware Spatial At-
tention. To demonstrate the effectiveness of MVSA, we
performed ablation experiments on MVSA, and the results
are shown in Table 1. After adding MVSA, the model com-
plexity produces a small rise, but the reconstruction effect
is greatly improved. It proves that MVSA is useful.
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17.30/0.8264

Figure 4. Result comparison of our method with other methods on the test datasets (×4).

Efficacy of the Reallocated Contrast-aware Channel
Attention. As shown in Table 1, we performed ablation
experiments on RCCA. Adding RCCA to the baseline im-
proves the robustness of the network very well, and signif-
icant improvements are realized on several datasets. At the
same time, we can still realize the enhancement of recon-
struction performance with a small amount of model com-
plexity increase by adding RCCA on top of MVSA. This
proves that our RCCA is lightweight and practical.

Influence of the Attention Components. The model
integrated with ESA and CCA serves as the benchmark
for evaluating the effectiveness and performance improve-
ments brought about by the proposed attention module. The
comparative analysis is detailed in Table 2. We observed
that AGDN, equipped with MVSA and RCCA, exhibits im-
proved performance with only a 7K increase in parame-
ters. Particularly notable improvements were observed on
the Urban100 and Manga109 datasets.
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Influence of the Sparse Global Self-Attention. To
evaluate the importance of SGSA, we constructed the net-
work structure without SGSA. As shown in Table 1, the in-
troduction of SGSA resulted in a significant improvement
in performance, despite a tremendous increase in network
complexity. Even with this increase in complexity, the en-
tire network remains at a lightweight level. We also exper-
imented with the effect of the TLC approach on the final
results. Experiments using the TLC approach in Table 3
showed better robustness, proving the practicality and ef-
fectiveness of maintaining the testing phase with the same
patch size as the training phase in self-attention.

Influence of the number of AGDBs. In Table 4, we in-
vestigated the impact of varying the number of AGDBs. As
the number of blocks increases, both the network’s param-
eters and FLOPs increase, leading to a gradual improve-
ment in reconstruction performance. Notably, increasing
the number of blocks from 5 to 6 results in a significant
performance boost, and further increasing the number from
6 to 7 enhances the network’s robustness. Therefore, we
have settled on using 7 AGDBs, which keeps the network
lightweight while having good performance.

4.4. Comparison with the State-of-the-art Methods

We conducted a comparison between the proposed
AGDN and several efficient SR methods, namely CARN
[2], IMDN [12], RFDN [19], SMSR [30], ELAN [35],
FDIWN-M [8], ShuffleMixer [28], BSRN [17], NGswin
[5], SAFMN [29], HPUN-M [27], DFAnet [15], LKDN
[33], and OSFFNet [31]. The results of this comparison
are presented in Table 5. By comparing the results, we
can find that our AGDN is able to achieve the SOTA ef-
fect on most of the publicly available common benchmark
datasets with only a small number of parameters and multi-
adds. Relative to contemporary other methods during that
timeframe, our AGDN shows an intuitive improvement in
performance on ×2, ×3, and ×4 SR tasks with better model
robustness. These quantitative results demonstrate that our
proposed AGDN is efficient and reliable.

Fig. 4 illustrates the visual comparisons of different
SR methods on the B100 and Urban100 datasets for ×4
SR. AGDN makes the output clearer by enhancing tex-
ture and edge effects. Specifically, for images ”img024”
and ”img092”, most comparison methods exhibit obvious
artifacts and blurring effects. For example, CARN and
IMDN show obvious misalignment on ”img092”, while our
method retains more accurate lines. This intuitive visual
demonstration further proves the competitiveness of our
proposed AGDN in image SR.

4.5. AGDN-S for NTIRE 2024 Challenge

As shown in Table 6, our AGDN-S won first place
in the FLOPs track and second place in the Parameters

Table 6. Results of NTIRE 2024 Efficient Super-Resolution Chal-
lenge

Team Val PSNR Test PSNR Runtime[ms] Params[M] FLOPs[G]
XJU 100th Ann(Ours) 26.90 27.02 58.836 0.069 4.39

VPEG C 26.90 27.03 16.032 0.084 4.97
ZHEstar 26.93 27.04 27.866 0.090 5.81
VPEG E 26.90 27.01 18.476 0.093 5.89
PiXupt 26.91 27.00 48.562 0.060 9.84

MViC SR 26.90 27.00 11.882 0.138 8.16

track in the NTIRE 2024 Efficient SR Challenge. Our
AGDN-S achieved the performance required by the chal-
lenge with only 69K parameters and 4.39G FLOPs. Our
method demonstrates significant improvements in terms of
both parameters and FLOPs but still falls short in runtime
efficiency. The issue of long runtime may be attributed to
the slow computation of the attention mechanism and the
additional matrix transformations introduced by the TLC
approach. We plan to make further improvements in the
future. For more details and results, please refer to [25].

5. Conclusion
In this paper, we propose a more lightweight efficient

super-resolution network, AGDN. We reevaluate the pre-
vious network structure, identifying the feature distillation
block in the deep feature extraction phase as the key lim-
iting factor of network performance. Therefore, we de-
sign AGDB with more efficient spatial, channel, and self-
attention as the feature distillation block for AGDN. We en-
hance MDSA to obtain MVSA for better capturing struc-
turally information-rich regions. RCCA is designed not
only to redistribute weights across channels through tradi-
tional channel attention but also to improve the treatment of
common information in all channels. SGSA is introduced
for selecting the most useful similarity values to better uti-
lize global features for image reconstruction. Extensive ex-
periments demonstrate that our method achieves superior
performance with fewer parameters and multi-adds com-
pared to other efficient SR methods. In the future, we will
focus on optimizing the network runtime to address network
constraints. Additionally, we will explore the generality of
the proposed method to apply it to other image restoration
tasks, such as image denoising and enhancement.
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