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Abstract

In this report, we summarize the 2nd NTIRE challenge
on light field (LF) image super-resolution (SR) with a focus
on new methods and results. This challenge aims at super-
resolving LF images under the standard bicubic downsam-
pling degradation with a magnification factor of ×4. Com-
pared with single image SR, the major challenge of LF im-
age SR lies in how to exploit complementary angular infor-
mation from plenty of views with varying disparities. This
year of challenge has two tracks, including one track on
fidelity (i.e., restoration accuracy in terms of PSNR) only,
and the other track on fidelity with an extra constraint on
model size and computational cost. In total, 125 partici-
pants were successfully registered for this challenge, and 9
teams have successfully submitted results with PSNR scores
higher than the baseline methods. We report the solutions
proposed by the participants, and summarize their common
trends and useful tricks. We hope this challenge can stimu-
late future research and inspire new ideas in LF image SR.

∗Yingqian Wang, Zhengyu Liang, Qianyu Chen, Longguang Wang, Jun-
gang Yang, Radu Timofte and Yulan Guo are the NTIRE 2024 challenge
organizers, while the other authors participated in this challenge.
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Challenge webpage (Track 2): https : / / codalab . lisn .
upsaclay.fr/competitions/17266
Github: https://github.com/The-Learning-And-Vision-
Atelier-LAVA/LF-Image-SR/tree/NTIRE2024
BasicLFSR toolbox: https://github.com/ZhengyuLiang24/
BasicLFSR

1. Introduction
Light field (LF) cameras are capable of capturing the

intensity and directions of light rays, allowing for the
recording of 3D geometry in a practical and effective way.
Through encoding 3D scene cues into 4D LF images (2D
for spatial dimension and 2D for angular dimension), LF
cameras can facilitate numerous appealing applications, in-
cluding post-capture refocusing [1, 2], depth sensing [3–5],
virtual reality [6, 7], and view rendering [8–11].

In many applications, there is a significant need for high-
resolution (HR) LF images in order to achieve enhanced
perceptual quality and provide advantages for subsequent
applications. Nonetheless, obtaining HR LF images typ-
ically comes at a considerable cost due to the inherent
spatial-angular trade-off problem in LF imaging. There-
fore, it is crucial to reconstruct HR LF images from their
low-resolution (LR) counterparts, a process known as LF
image super-resolution (SR).

Recently, significant advancements have been made in
image SR by utilizing deep learning methods. Neverthe-
less, the majority of these approaches concentrate on en-
hancing the resolution of single images [12–19], stereo im-
ages [20–23], or videos [24, 25], and are not readily appli-
cable to the task of LF image SR. When dealing with LF
images, effectively integrating both spatial and angular in-
formation is crucial yet challenging due to the unique struc-
ture of LF data.

To develop and benchmark LF image SR methods, the
1st LF image SR challenge was hosted on the NTIRE 2023
workshop [26]. This challenge employed the widely used
and publicly available LF datasets [27–31] as training set,
and proposed a new LF dataset for both validation (model
development) and test (final ranking). The popular bicu-
bic downsampling degradation is used to generate LR LF
images, and the objective of this challenge is to make the
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super-resolved LF images as faithful as the groundtruth HR
ones. However, an important issue in image SR, i.e., the
computational efficiency, was not considered in the 1st LF
image SR challenge.

Succeeding the previous year, we hold the 2nd LF image
SR challenge on the NTIRE workshop in 2024. This chal-
lenge has two competition tracks. Track 1 is inherited from
the NTIRE 2023 challenge, focusing on the restoration fi-
delity (i.e., PSNR) only. Track 2 not only focuses on the
restoration fidelity, but also has a strict constraint on model
size (i.e., the number of parameters) and computational cost
(i.e., FLOPs). We introduce Track 2 in order to inspire the
community to explore the specific challenges in model de-
ployment, and stimulate the research for practical LF image
SR.

This challenge is one of the NTIRE 2024 workshop as-
sociated challenges on: dense and non-homogeneous de-
hazing [32], night photography rendering [33], blind com-
pressed image enhancement [34], shadow removal [35],
efficient super resolution [36], image super resolution
(×4) [37], light field image super-resolution [38], stereo im-
age super-resolution [39], HR depth from images of specu-
lar and transparent surfaces [40], bracketing image restora-
tion and enhancement [41], portrait quality assessment [42],
quality assessment for AI-generated content [43], restore
any image model (RAIM) in the wild [44], RAW image
super-resolution [45], short-form UGC video quality as-
sessment [46], low light enhancement [47], and RAW burst
alignment and ISP challenge.

2. Related Work
In this section, we will provide a brief overview of signif-

icant works in the field of LF image super-resolution (SR).
We categorize existing LF image SR methods into three
main groups: traditional (i.e., non-learning) methods, CNN-
based methods, and Transformer-based methods.

2.1. Traditional Methods

Light field image SR has been a long-standing research
challenge and has been investigated for decades. Bishop
et al. [48] proposed a Bayesian deconvolution approach to
super-resolve LF images based on the estimated disparities.
Wanner et al. [49] initially estimated disparity maps using
structure tensor, and then developed a variational frame-
work for LF image SR. Farrugia et al. [50] constructed a
patch-volume dictionary of HR and LR LF image pairs, and
introduced a multivariate ridge regression method to learn
the linear mapping from LR patch volumes to their HR
counterparts. Alain et al. [51] addressed the ill-posed LF
image SR problem as an optimization problem based on the
sparsity prior. Rossi et al. [52] integrated inter-view infor-
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mation using graph regularization and formulated LF image
SR as a quadratic problem, which can be efficiently solved
with standard convex optimization techniques.

2.2. CNN-based Methods

In the last decade, convolutional neural networks
(CNNs) have been extensively researched and have shown
remarkable performance in LF image SR. Yoon et al. [53]
introduced the first CNN-based LF image SR method,
known as LFCNN. In their method, input LF images were
grouped into pairs or quads and passed through a three-
layer CNN to integrate complementary information from
neighboring views. This pioneering work demonstrated the
potential of CNNs in LF image SR. Since then, numer-
ous deeper CNN architectures with various mechanisms for
incorporating angular information have been developed to
achieve improved SR performance in LF image SR tasks.

Wang et al. [54] proposed a bidirectional recurrent CNN
to incorporate angular information from the sub-aperture
images (SAIs) along the horizontal or vertical angular di-
rection. Zhang et al. [55] stacked SAIs along four different
angular directions and developed a four-branch residual net-
work to implicitly learn the epipolar geometry from stacked
SAIs for LF image SR. In their subsequent work, Zhang et
al. [56] improved SR performance by performing 3D convo-
lutions on SAI stacks of different angular directions. Cheng
et al. [57] developed a framework to exploit both internal
and external similarities for LF image SR. Meng et al. [58]
applied 4D convolutions to simultaneously incorporate spa-
tial and angular information from 4D LF data and devel-
oped the high-dimensional dense residual network (HD-
DRNet) for LF image SR. Jin et al. [59] proposed an all-
to-one method for LF image SR and performed structural
consistency regularization to preserve the parallax struc-
ture. Wang et al. [60] applied deformable convolution to
LF spatial SR and designed a collect-and-distribute scheme
to incorporate complementary information from different
views. Mo et al. [61] proposed a dense dual-attention net-
work (DDAN) for LF image SR, which included a view at-
tention module and a channel attention module to adaptively
capture discriminative information from different views and
channels.

Additionally, some methods decoupled high-
dimensional LF data into different subspaces for LF
image SR. Yeung et al. [62] alternately reshaped LF images
between the SAI pattern and macro-pixel pattern, and
designed spatial-angular separable convolutions for LF
image SR. Wang et al. [63] proposed spatial and angular
feature extractors to extract corresponding information
from macro-pixel images and developed an LF-InterNet
to repetitively interact spatial and angular information
for LF image SR. In their subsequent work [64], Wang
et al. further generalized the interaction mechanism into
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Figure 1. An illustration of the center-view images in the NTIRE-LFSR dataset [26]. Both validation and test sets contain 16 real-world
and 16 synthetic LFs, respectively.

an LF disentangling mechanism, and developed three
CNNs (DistgSSR, DistgASR, and DistgDisp) for spatial
SR, angular SR, and disparity estimation, respectively.
Following LF-InterNet [63], Liu et al. [65] proposed an
intra-inter view interaction network (LF-IINet) with two
parallel branches to extract global inter-view information
and model correlations among all intra-view features.
These two branches are mutually interacted to fuse angular
and spatial information for LF image SR.

Besides the aforementioned works that design advanced
network structures to pursuit superior SR accuracy, several
works also studied some special yet important issue in LF
image SR. Cheng et al. [66] addressed the domain gap issue
by proposing a “zero-shot” learning framework, in which
the network learns to achieve spatial SR without using ex-
ternal training data except the given input LR LF. Wang et
al. [67] addressed the degradation formulation issue in LF
image SR, and proposed a method to handle LF image SR
with multiple degradation. Xiao et al. [68] proposed a data
augmentation approach tailored for LF image SR, which
can be applied to existing LF image SR networks to further
improve their SR performance.

2.3. Transformer-based Methods

Transformer networks, which were originally developed
for natural language processing [69], have recently gained
much attention in computer vision community. Recently,
Transformers have been successfully applied to many low-
level vision tasks such as image restoration [18, 70, 71] and
video SR [72–74], and achieved superior performance than
CNN-based methods.

In the past two years, researchers have explored Trans-
formers for LF image SR. Wang et al. [75] proposed a
detail-preserving Transformer (DPT) for LF image SR, in
which SAIs of each vertical and horizontal views are con-
sidered as a sequence, and the long-range geometric de-
pendency is learned via a spatial-angular locally enhanced
self-attention layer. Liang et al. [76] proposed a simple

yet effective Transformer network (i.e., LFT) for LF image
SR. In their method, an angular Transformer is designed
to incorporate complementary information among different
views, and a spatial Transformer is developed to capture
both local and long-range dependencies within each SAI.
More recently, Liang et al. [77] investigated the non-local
spatial-angular correlations in LF image SR, and developed
a Transformer-based network called EPIT to achieve state-
of-the-art SR performance. The proposed EPIT achieves a
global receptive field along the epipolar line, and is robust
to disparity variations. More recently, Jin et al. [78] com-
bined EPIT [77] and DistgSSR [64] to develop a DistgEPIT
network for LF image SR. The proposed network achieved
state-of-the-art SR accuracy and won the NTIRE 2023 LF
image SR Challenge [26].

3. NTIRE 2024 Challenge
In this section, we introduce the NTIRE 2024 LF im-

age SR Challenge. We first introduce the official datasets
and toolbox of this challenge. Then, we review the two
phases of this challenge. Finally, we summarize the com-
mon trends in the submitted solutions.

3.1. Dataset, Toolbox and Evaluation

Training Set. This challenge follows the common settings
in [64,65,75,77–79], and uses the EPFL [27], HCInew [28],
HCIold [29], INRIA [30] and STFgantry [31] datasets for
training. All the 144 LFs in the training set have an angular
resolution of 9 × 9. Challenge participants are required to
use these LF images as HR groundtruth to train their mod-
els. External training data or models pretrained on other
datasets are not allowed in this challenge.
Validation and Test Set. We use the dataset developed in
the 1st NTIRE LF image SR challenge for validation and
test, as shown in Fig. 1. Both validation and test sets con-
tain 16 synthetic scenes (rendered by 3DS MAX) and 16
real-world scenes (captured by Lytro Illum cameras). De-
tails of the NTIRE-LFSR dataset can be referred to [26].
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Table 1. NTIRE 2024 LF Image SR Challenge results, final rankings, and the main characteristics of the solutions. Note that, the average
PSNR value achieved on the test set is used for final ranking. The best results are in red, the second best results are in blue, and the third
best results are in green.

Rank Team
Test Set Validation Set

#Params FLOPs Architec*
Average Lytro Synthetic Average Lytro Synthetic

Tr
ac

k
1

1 BNU&TMU-AI-TRY⋆ 30.80/.9332 31.00/.9496 30.60/.9167 32.74/.9508 33.46/.9576 32.01/.9441 11.04M 569.30G Transf
2 BITSMBU⋆ 30.73/.9322 30.93/.9486 30.52/.9159 32.64/.9495 33.31/.9566 31.98/.9425 5.04M 137.56G Transf
3 OpenMeow⋆ 30.71/.9323 30.96/.9491 30.46/.9154 32.68/.9494 33.53/.9577 31.82/.9412 10.63M 353.52G Transf
4 IIR-Lab 30.44/.9288 30.96/.9456 30.24/.9120 32.25/.9462 33.03/.9535 31.48/.9388 2.87M 66.13G Transf
5 MILab 30.37/.9301 30.58/.9468 30.15/.9134 32.27/.9478 33.03/.9556 31.50/.9399 20.07M 378.92G Transf
6 VisionSR 30.31/.9275 30.43/.9439 30.20/.9111 32.38/.9465 33.00/.9530 31.75/.9399 4.52M 153.84G Transf
7 Low-level visualist 30.05/.9240 30.19/.9402 29.92/.9079 31.75/.9423 32.68/.9506 30.83/.9341 0.45M 19.33G CNN
8 BNU-Small-Potato 29.87/.9226 29.91/.9385 29.82/.9068 31.84/.9427 32.43/.9495 31.25/.9360 25.75M - CNN
9 AQNU-VMIC-team 29.71/.9250 29.53/.9413 29.89/.9087 31.84/.9430 32.44/.9501 31.26/.9360 4.56M 89.16G CNN

Tr
ac

k
2 1 BITSMBU⋆ 30.16/.9260 30.32/.9425 30.00/.9095 32.12/.9445 32.81/.9518 31.43/.9371 0.66M 19.91G Transf

2 Low-level visualist⋆ 30.05/.9240 30.19/.9402 29.92/.9079 31.75/.9423 32.68/.9506 30.83/.9341 0.45M 19.33G CNN
3 IIR-Lab⋆ 29.96/.9238 30.14/.9407 29.78/.9070 31.72/.9411 32.47/.9489 30.96/.9332 0.83M 19.47G Transf

B
as

el
in

es

- DistgEPIT [78] 30.66/.9314 30.82/.9475 30.51/.9152 32.71/.9496 33.36/.9562 32.07/.9430 20.34M 566.48G Hybrid
- EPIT [77] 29.87/.9259 29.72/.9420 30.03/.9097 32.04/.9447 32.54/.9507 31.53/.9387 1.47M 76.39G Transf
- DistgSSR [64] 29.64/.9244 29.39/.9403 29.88/.9084 31.75/.9424 32.26/.9490 31.23/.9357 3.58M 65.27G CNN
- Bicubic 25.79/.8378 25.11/.8404 26.46/.8352 27.51/.8714 27.49/.8719 27.53/.8710 - - -

Note: “Transf” denotes that the model adopts Transformer as a basic component, “CNN” denotes that the model was developed based on convolutions only.

Note that, all the LF images in the validation and test set are
bicubicly downsampled by a factor of 4, and only the LR
versions are released to the participants. Challenge partic-
ipants are required to apply their developed models to the
LR LF images, and submit the super-resolved LF images to
the CodaLab server for validation and ranking.
Toolbox. We provide BasicLFSR, an open-source and easy-
to-use toolbox to facilitate participants to quickly get ac-
cess to LF image SR and develop their own models. The
BasicLFSR toolbox is publicly available at https://
github.com/ZhengyuLiang24/BasicLFSR.
Evaluation. Peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) are used as metrics for performance
evaluation. The implementation details of PSNR and SSIM
can be found in the BasicLFSR toolbox. The submitted re-
sults are ranked by the average PSNR values on the test set
(both real-world and synthetic scenes).

3.2. Tracks

Track 1: Fidelity Only. This track aims to encourage par-
ticipants to explore the precision upper bound of LF image
SR. In this track, the rankings are determined by the aver-
age PSNR value on the test set only. DistgSSR [64] is set as
the baseline method in this track. The solutions with PSNR
values lower than the DistgSSR will not be ranked in the
final leaderboard.
Track 2: Fidelity with Efficiency Constraint. In this
track, the model size (i.e., number of parameters) is re-
stricted to 1 MB, and the FLOPs is restricted to 20 G (with
an input LF of size 5×5×32×32). The rankings are deter-
mined by the average PSNR value on the test set, but the

solutions with model size larger than 1M or FLOPs larger
than 20G will not be ranked in the final leaderboard. Bicu-
bic interpolation is set as the baseline method in this track.
The solutions with PSNR values lower than the bicubic in-
terpolation will not be ranked in the final leaderboard.

3.3. Challenge Phases

Development Phase. The participants can download the
validation set and apply their developed models to the LR
LF images to generate their SR versions. A validation
leaderboard is available during this phase. The participants
can compare their scores with the ones achieved by the
baseline models or models developed by other participants.
Test phase. The participants are required to apply their
models to the released test set, and submit their super-
resolved LF images to the test server. The test server is
available online during this phase, and will be closed after
the test deadline. The participants are asked to submit the
SR results, codes, and a fact sheet of their methods before
the given deadline.

3.4. Challenge Results

Among the 125 registered participants, 10 and 6 teams
have participated the final test phase and submitted their re-
sults, codes, and factsheets. In Track 1, the top 9 teams pro-
duced PSNR scores higher than the baseline method Dist-
gSSR [64]. For Track 2, 3 of the 6 teams developed mod-
els that meet the efficiency requirement (model size≤1M,
FLOPs≤20G). Table 1 reports the PSNR and SSIM scores
achieved by these methods on both test and validation sets,
together with their major details. We briefly describe these
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Figure 2. Team BNU&TMU-AI-TRY: The network architecture of the proposed BigEPIT (Track 1).

solutions in Section 4, and introduce the corresponding
team members in Appendix 6.

It can be observed from Table 1 that the Track 1 win-
ner BNU&TMU-AI-TRY achieves 0.14 dB improvement
in PSNR over DistgEPIT [78] (winner of NTIRE 2023 LF
image SR Challenge) on the test set, which pushes LF im-
age SR accuracy to a new height. The winner solution of
Track 2, proposed by the BITSMBU team, achieves 30.16
and 32.12 in PSNR on the test and validation set, respec-
tively. It is worth noting that the PSNR scores of all the
three solutions in Track 2 surpass those of DistgSSR [64]
and EPIT [77] on the test set, which indicates that efficient
LF image SR has a large potential.

It is also worth noting that all the proposed methods are
based on the deep learning techniques. Most teams adopted
Transformers as the basic architecture, while 3 teams build
their networks based on CNNs. It seems that Transform-
ers are increasingly popular in LF image SR, and is more
powerful in modeling the mapping between LR and HR LF
images.

4. Challenge Teams and Methods
4.1. BNU&TMU-AI-TRY: BigEPIT (Track 1⋆)

The BNU&TMU-AI-TRY team proposed an enhanced
network of EPIT [77], called BigEPIT, to handle the dis-
parity problem in LF image SR. They used a Transformer
network with repetitive self-attention operations to learn the
spatial-angular correlation by modeling the dependencies
between each pair of the EPI pixels. Specifically, they in-
creased the channel of feature maps (i.e., 64 → 128) and the
number of cascading blocks (i.e., 5 → 10) to improve the
model capability. They used the resampling method, which
manually specifies different sampling intervals when gener-
ating the training data rather than just using the view of the
central region.
Data Augmentation: All LFs in the released datasets have
an angular resolution of 9×9. In the training stage, they
cropped each SAI into patches of size 128×128 with a
stride of 32 and used the bicubic downsampling approach
to generate LF patches of size 32×32. They performed ran-
dom horizontal flipping, vertical flipping, and 90-degree ro-

tation to augment the training data. Note that, the spatial
and angular dimensions need to be flipped or rotated jointly
to maintain LF structures.

Inspired by [78], they also used the augmented data sam-
pling strategy to extract 5×5 SAIs for training and testing,
including central, even, and uneven sampling. This strategy
explicitly increases the number of images of large dispar-
ity LFs, which can improve the robustness of the model to
disparity changes.
Regularization: The proposed BigEPIT was trained using
the L1 loss and optimized using the Adam method [80] with
β1=0.9, β2=0.999, and a batch size of 8. Their network was
implemented in the framework PyTorch-based BasicLFSR
on a cluster with four NVIDIA A100 GPUs. The learning
rate was initially set to 2 × 10−4 and decreased by a factor
of 0.5 for every 15 epochs. The training was stopped after
31 epochs, they selected the best model according to the
performance on the validation set.
Ensemble Strategy: They used full-size images as input
if GPU memory was available. They utilized 8-set spatial
self-ensemble strategies [81] to improve the final results.
They fed augmented input LFs independently to the net-
work, including horizontal flip, vertical flip, and rotation,
and use the average outputs as predictions. Besides data
self-ensemble, they also used a multi-model ensemble strat-
egy to further improve the result, including BigEPIT, Dist-
gEPIT d w [78] and RR-HLFSR [82]. DistgEPIT d w and
RR-HLFSR were trained with augmented data sampling
strategy from scratch. However, the multi-model ensemble
is time-consuming and introduces little improvements.

4.2. BITSMBU: TriFormer (Track 1⋆, 2⋆)

This team participated in two tracks and proposed two
networks, respectively.

Track 1: This team proposed a TriFormer network, as
shown in Fig. 3(a). TriFormer comprises three parts in-
cluding initial feature extraction, deep spatial-angular fea-
ture learning, and reconstruction. The design of first and
last parts follows prior works LFT [76] and EPIT [77]. For
the deep spatial-angular feature learning part, this team first
employed the proposed Trident block (Triblock) to extract
angular and spatial features alternately for three times. Af-
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Figure 3. Team BITSMBU: (a) The network architecture of the proposed TriFormer (Track 1); (b) Illustration of the proposed Trident
block.

ter that, they employ Triblock to extract spatial-angular cor-
relation on horizontal and vertical EPIs alternately for an-
other three times. Triformer can capture both low-frequency
and high-frequency details, and local-global information on
the other hand in spatial, angular, and EPI domains.

Trident Block (Triblock): The proposed Triblock con-
sists of three parallel branches: the High-Frequency Aware
branch, the Low-Frequency Aware branch, and the Low-
Frequency Enhancement branch. For the High-Frequency
Aware branch, they adopt convolution to extract high-
frequency local details. Meanwhile, they employ a max-
pooling layer to preserve the global structural information
as compensation for the locality of convolution. Linear
layers are used for channel compression. For the Low-
Frequency Aware branch, a vanilla multi-head self-attention
(MHSA) is applied to capture the long-range dependency
of specific LF domains. Lastly, for the Low-Frequency
Enhancement branch, they first convert the feature to the
frequency domain by performing a Fast Fourier Transform
(FFT). Then, the central low-frequency part of the feature

is extracted for further enhancement via MHSA. Different
from the Low-Frequency Aware branch, they put spatial
and angular dimensions all together to excavate the spatial-
angular correlations across all views. After three special-
ized feature extraction processes, the extracted features are
fused through convolutions, and the output is further trans-
ferred to a feed-forward layer to produce the enhanced fea-
ture.

Inference: During inference, they performed the Position-
Sensitive Windowing operation proposed by DistgEPIT
[78] to preserve the parallax structure of the border region
when cropping the full LF image into patches. They also
adopted Test Time Augmentation (TTA) to improve the re-
construction quality.

Track 2: Similar to their approach in Track 1, this team
also employed the TriFormer network in the Track 2 Fi-
delity and Efficiency, as shown in Fig. 4. Specifically,
the Spatial-Angular Feature Learning module was predom-
inantly implemented using the proposed TriBlocks in four
forms: the angular Trident Block (AngTriBlock), spatial
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Figure 4. Team BITSMBU: The network architecture of the proposed TriFormer (Track 2).

Figure 5. Team OpenMeow: (a) The network architecture of the proposed Fidelity-LF-DET (Track 1).

Trident Block (SpaTriBlock), horizontal EPI Trident Block
(H-EPITriBlock), and vertical EPI Trident Block (V-EPI
TriBlock). The AngTriBlock and SpaTriBlock were alter-
nately used N times, while the H-EPITriBlock and V-EPI
TriBlock were alternately used T times.

4.3. OpenMeow: Fidelity-LF-DET (Track 1⋆)

This team chose LF-DET [79] as their baseline model
which copes both spatial and angular Transformers to cap-
ture LF image details and model different disparities. Be-
yond that, given the scalability and flexibility of LF-DET
architecture, they expanded the Transformer model size
with more feature channels to discover the potential of
large Transformer model, and unify the activation func-
tions in convolutional layers from LeakyReLU to GELU.
Referring to Fig. 5, the input SAI obtains spatial features
through several convolutional layers, extracting local spa-
tial features. Subsequently, these initial features are passed
through multiple Spatial-Angular Global Feature Extraction
Transformer blocks for global angular modeling. In the

context of these blocks, the output from the preceding block
serves as the input to the subsequent block. This sequential
process enables hierarchical features to express a wider ar-
ray of diversified information. In the following learned ex-
pressive representations from different blocks will fuse and
aggregate via the Feature Aggregation module. Final fused
features will be up-sampled through upsampling layers and
combined with bicubic up-sampled SR result to obtain the
final super-resolved LF image result.

PSW++: Position-Sensitive Windowing Strategy In this
team’s previous work [78], they introduced an overlap-
ping Position-sensitive windowing (PSW) method as post-
processing procedures for large-scale LF image inference.
The PSW method utilizes a sliding window approach to
crop the image while preserving parallax constraints, par-
ticularly around the image border positions. Building upon
this work, this team delved deeper into the windowing pro-
cedure and proposed an upgraded non-overlapping method
called PSW++, which slides windows to collect chops with-
out overlapping the center area of each chop. Given that the
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Figure 6. Team Low-level visualist: The network architecture of the proposed LGFN (Track 1, 2).

disparity values gradually decrease from the outermost re-
gions to the center, PSW++ ensures consistency in the dis-
parity structures within the SAI subspace. This avoids the
creation of inaccurate disparity structures, ultimately lead-
ing to promising performance enhancements as observed
through the implementation of PSW++.

Training Strategy: In the Fidelity track, this team would
like to fully exploit the capability of large Transformer
architecture. To achieve this, they extended the network
channels to 160 and trained their Fidelity-LF-DET with a
WarmupMultiStepLR learning rate warmup scheduler. This
involved a gradual increase of the initial learning rate to
2.5 × 10−4, followed by reductions of 0.5 via a decay in-
terval set at 15 epochs. They utilized the L1 loss function
for optimization and trained the model using the Adam op-
timizer. The training was carried out with a batch size of
3 and β1 and β2 values set to 0.99 and 0.999, respectively.
The fidelity-LF-DET model was implemented in PyTorch
and the training was conducted on a system equipped with

three NVidia V100 GPUs.

4.4. Low-level visualist: LGFN (Track 1, 2⋆)

The Low-level visualist team participated in two tracks
with the proposed LGFN method. As shown in Fig. 6,
the proposed pipeline includes the shallow feature extrac-
tion, deep feature extraction HLGFM (.), and up-sampling
modules. The LGFM consists of three parts including the
double-gated convolution extraction module (DGCE), the
efficient spatial attention module (ESAM), and the efficient
channel attention module (ECAM). Based on the similarity
of LF sub-aperture images, LGFN achieves LF image SR by
learning local and global features. Specifically, they design
a lightweight convolution module to extract the local fea-
tures of the LF image by modulation. In addition, in order
to learn the global features, they design an efficient spatial
attention module and an efficient channel attention module
by enlarging the receptive field through large kernel convo-
lution.
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The proposed FGFN was trained using the L1 loss and
FFT Charbonnier loss with weights of 0.01 and 1, respec-
tively. The model was implemented in PyTorch on a PC
with an NVidia RTX 3060 GPU. The learning rate was ini-
tially set to 2×10−4 and decreased by a factor of 0.5 for ev-
ery 15 epochs. The training was stopped after 100 epochs.

4.5. IIR-Lab: PDistgNet (Track 1, 2⋆)

This team participated in two tracks with the proposed
PDistgNet and its large version PDistgNet-L.

Track 2: Inspired by IMDN [83] and disentangling
mechanism [84, 85], the IIR-Lab team introduced a pro-
gressive disentangling block (PDistgB), which progres-
sively disentangles the LF feature into multiple subspaces
for leveraging the structure priors of LF and reduce the
computational costs. Additionally, considering the macro-
pixel pattern has a relatively small size (i.e., 5 × 5), ap-
plying Transformer on the angular domain is also an effi-
cient choice to incorporate the angular correlations. This
team developed PDistgNet with PDistgB and angular Trans-
former (AngT) for efficient LF image SR.

An overview of the proposed PDistgNet is shown in
Fig. 7(a). Concretely, their method contains three steps: ini-
tial feature extraction, spatial-angular correlation learning,
and reconstruction. The initial feature extraction consists of
a 1 × 1 convolution and a feature extraction (FE) module
(Fig. 7(b)) to extract the intra-view correlations. After that,
they apply N cascaded blocks, which are composed of the
angular transformer (AngT) and Progressive disentangling
block (PDistgB), to leverage the inherent spatial-angular
correlations of LF. The structures of AngT and PDistgB are
depicted in Fig. 7(c) and (d), respectively. Specifically, they
follow previous work [86] to build their AngT, and further

apply two spatial convolutions to enhance the feature rep-
resentations. In PDistgB, multiple feature splits and disen-
tanglements are performed. In addition to the spatial, angu-
lar, and EPI domains, they also follow previous work [85]
to conduct horizontal/vertical virtual-slit domain disentan-
gling. Finally, they up-sample the spatial resolution of the
LF feature to generate HR LF image. A global residual con-
nection with bicubic interpolation is deployed to feed low-
frequency information to the output.

Track 1: They also developed a large version of PDist-
gNet, called PDistgNet-L, for Track 1. Specifically, N is
set to 4 in PDistgNet, and N is set to 16 in PDistgNet-L.

4.6. MILab: HA-DET (Track 1)

The MILab team proposed a HA-DET model which is an
upgraded version of LF-DET [79] enhanced by HAT [87]
modules. The main module of HA-DET is the Spatial-
Angular Separable Transformer Block. In this block, they
sequentially conducted spatial and angular transformer en-
coding dimensions under the representations of SAI and
MacPI (see Fig. 8). Considering that the vanilla Trans-
former block suffers from huge computation and memory
consumption incurred by high-resolution SAIs, they de-
ployed the HAT module in the spatial stage, which includes
a parallel swin-transformer module and channel attention
module. As for the angular stage, they kept the basic struc-
ture in LF-DET but expanded the scope of the Transformer
to capture more comprehensive angular information.
Ensemble Strategy. They used three different configura-
tions to implement their HA-DETs. Specifically, the three
models in terms of channel numbers, heads of MSA, win-
dow size, and encoder depths were respectively {96, 4, 8,
8}, {120, 6, 16, 6}, and {120, 6, 16, 8}. The numbers
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Figure 8. Team MILab: The network architecture of the proposed HA-DET (Track 1).

Figure 9. Team VisionSR: The network architecture of the proposed E-EPIT (Track 1).

of the spatial and angular Transformers were both set to 4
in the three models. The numbers of parameters of these
models were 12.9M, 15.1M, and 20.0M, respectively. In
the test phase, they utilized the self-ensemble approach in
EDSR [88] to further enhance the model performance.

4.7. VisionSR: E-EPIT (Track 1)

Inspired by EPIT [77], the VisionSR team proposed an
enhanced EPIT (E-EPIT) network to improve data fidelity.
The overall structure is shown in Fig. 9. The Given input
LR images are processed through two separate pathways:
the SAI path and the MacPI path. The SAI path is to use
LR SAI views as inputs to go through the 3D convolution
process (Feature extraction in the yellow box) and obtain
the joint spatial-angular feature representation. The spa-
tial attention (the orange box in the figure) is adopted from

EPIT [77]. The idea is to convert the feature horizontally
and vertically and use a multi-head attention module to ex-
tract the non-local feature correlations.

The MacPI path is to use pixel shuffling operator to rear-
range the LR SAI images into MacPI patterns. The MacPI
image is then processed by the Residual Channel Attention
Network (RCAN), which contains multiple residual blocks
to enhance the global feature representation. Both results
from MacPI and SAI are combined to learn the residues be-
tween LR and HR images. To match the dimension of the
target image, they use pixel shuffle again to fuse the features
for the final image. Meanwhile, this team used back projec-
tion to initially upsample the LR image and use it to add
back to the final output. The idea of back projection is to
iteratively update the residues between LR and SR images
to reduce pixel distortion.
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Figure 10. Team BNU-Small-Potato: The network architecture of the proposed LFSRDiff (Track 1).

Loss Function. This team used the L1 loss to minimize
the pixel distortion. To facilitate model training, they addi-
tionally utilized a pre-trained LF Depth estimation module
to enhance overall optimization. To extract the depth, they
used pre-trained OACCNet [4]. Since the pre-trained model
only accepts inputs with an angular resolution of 9×9, they
designed the following process for loss calculation: 1) they
prepared the ground truth 9×9 SAI images as Y9×9, 2) then
used Y9×9 as inputs to OACCNet to calculate the dispar-
ity mask M and corresponding depth Z, 3) they replaced
the center 5×5 views of Y9×9 by the SR images and obtain
estimated 9×9 SAI images as Y

′

9×9, and 4) they used the
disparity mask M and estimated 9×9 SAI images to obtain
the depth map Z ′. Finally, They calculated the L1 loss be-
tween Z and Z ′ for supervision.

4.8. BNU-Small-Potato: LFSRDiff (Track 1)

The BNU-Small-Potato team incorporated the LF disen-
tanglement mechanism to the LFSRDiff [89], the diffusion-
based LF image SR model. The main components of the
proposed Distg U-Net contain three DitsgRes-Groups in the
encoder (DistgRes-E), two DitsgRes-Groups in the bottle-
neck (DistgRes-M), and three DitsgRes-Groups in the de-
coder (DistgRes-D). Skip connections are used between the
encoder and the decoder at the same level. Each DitsgRes-
Group (see Fig.10(b)) consists of a residual spatial convolu-
tion, two disentangling blocks (Distg-Blocks). The timestep
embedding te is added to the extracted feature of the first
Distg-Blocks through spatial replication. DistgRes-E and
DistgRes-D have an extra downsampling or upsampling op-

eration.

4.9. AQNU-VMIC-team: MRVRNet (Track 1)

This team designed a Multi-Representation View Recon-
struction Network (MRVRNet) to fully explore the struc-
tural properties of the LF by utilizing the properties of dif-
ferent representations. They followed DistgSSR [64] in
the MacPI Branch, which organizes the input LF into a
MacPI and refines the process by leveraging disentangle-
ment blocks and channel attention to effectively extract fea-
tures. In the SAI Branch, they organized the input LF into
a sub-aperture array and perceive LF texture by extracting
gradient information and using Resblock to effectively mit-
igate the loss of texture and structural details, especially
for high-texture areas. Channel attention and angular atten-
tion [90] are also introduced to enhance feature representa-
tion and further explore angular consistency.
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