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Figure 1. Results of using the different reference image. The first row shows the input images with different exposures that are also
the reference image for the first stage training for corresponding columns, with the last column showing the ground truth image. The
second and third rows show the results of the first and second stages. The last column shows the results of our proposed reference feature
generation method. The first column of the second row is the effect of [48].

Abstract

In a low-light environment, it is difficult to obtain high-
quality or high-resolution images with sharp details and
high dynamic range (HDR) without noise or blur. To solve
this problem, the Bracketing Image Restoration and En-
hancement integrates Dnoise, Deblur, HDR Reconstruction,
and Super Resolution techniques into a unified framework.
However, we find that most methods select the image that
aligns with GT as the reference image. Since the details
of the reference image are not good enough, seriously af-
fects the feature fusion, which finally leads to details being
blurred. To generate a high dynamic range and a high-
quality image, we propose a two-stage Bracketing method
named RT-IRE. In the first stage, we generate the high-
quality reference feature to guide feature fusion, remove
the degradation, and reconstruct HDR to get coarse results.
The second stage learns the residuals between the coarse
result and the GT, which further enhances and generates

details. Extensive experiments show the effectiveness of the
proposed module. In particular, RT-IRE won two champi-
ons in the NTIRE 2024 Bracketing Image Restoration and
Enhancement Challenge.

1. Introduction
It is very difficult to obtain high-quality or high-resolution
images with sharp details and high dynamic range (HDR)
without noise or blur in low-light environments. If the ex-
posure time is too short, underexposed photos will be ob-
tained with noisy and dark areas invisible. Conversely, if
the exposure time is too long, objects or camera shake will
cause motion blur and the bright areas will be overexposed.

The single image enhancement approach is not sufficient
to remove noise and blur while reconstructing the HDR and
super-resolution, so more researchers use multi-images to
solve this problem. The sub-pixel displacement between
multi-images caused by camera motion can be beneficial for
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denoise and SR. So most Burst method [2, 12] utilizes multi
consecutive frames with the same exposure time, which
achieve the good effect for super-resolution (SR) and de-
noise, but cannot reconstruct HDR. Long exposure images
are less noisy, so it has a significant positive effect on de-
noise. Short-exposure images have less motion blur that
can assist in deblurring. Under-exposed areas in the short
exposure image may be well exposed in the long exposure
image, and over-exposed areas in the long exposure image
may be clear in the short exposure image. So It is possible
to reconstruct HDR using multi-exposure images, but cur-
rent methods have limitations, some [9, 22] can denoise but
cannot deblur, and some [34] can SR but cannot denoise.

Recent study [48] has proposed the BracketIRE method,
which integrates the four tasks(i.e., Denoise, Deblur, HDR
reconstruction, and SR) into a unified framework to gener-
ate sharp, high dynamic range, and high-resolution images
with multi-exposure images. The input is multiple images
with different exposures. The exposure time is increased
sequentially, so the blur becomes more serious, the under-
exposure areas become less and the over-exposure areas be-
come more, as shown in the first row of Fig. 1. The solution
for this class of methods is basically the same: firstly, mul-
tiple images are aligned at the feature level according to the
reference image, then the aligned features are fused and fi-
nally reconstructed to get a high-quality image.

Reference image selection is very important, and most
methods select the image that aligns with GT as the refer-
ence image. For example, BracketIRE [48] uses the first
image as the reference, which has the aligned GT and the
shortest exposure time, the weakest blur, but with the most
under-exposure areas and worst noise. Since the details of
the reference image are not good enough, especially in the
under-exposure areas, it seriously affects the feature align-
ment and fusion, which finally leads to details blurred in the
bright areas. As shown in the first result of the second row
in Fig. 1. The first and second images in this training data
are almost aligned, and the quality of the second image is
significantly better than the first image. So we changed the
reference image directly. The result of using the second im-
age as the reference is shown in the second row and second
column in Fig. 1. The result is significantly better than the
method of using the first image as the reference image. The
third image is the best quality of all the input images, but
the results of using it as a reference image are not perfect
because it has a large misalignment with GT.

An end-to-end one-stage approach is effective in recon-
structing HDR and reducing noise in the image. However,
the results tend to be too smooth and lack detailed textures.
To address this issue, we propose a two-stage approach. In
the first stage, we use multi-exposure images to reconstruct
HDR and remove noise. In the second stage, we enhance the
images and generate detailed textures. Our primary contri-

butions include:
• We propose a dual-branch framework for generating ref-

erence features, where one branch removes degradations
such as noise and blur, while the other preserves details,
which drastically improves the quality of the reference
features.

• We introduce a two-stage solution pipeline to first recon-
struct HDR and remove noise, and then further improve
and generate detailed textures.

• Extensive experiments are conducted to demonstrate
the effectiveness of our proposed method. We won
two champions in the NTIRE 2024 Bracketing Image
Restoration and Enhancement Challenge.

2. Related Work
Burst Image Restoration and Enhancement. Compared
with single image processing, burst-based image restora-
tion [1, 13, 15, 16, 21, 39, 40] employs multiple consec-
utive frames to achieve superior performance. The inher-
ent randomness and independence of inter-frame noise [38]
play a crucial role in denoising tasks, prompting the devel-
opment of numerous methods [14, 26, 32] designed to ex-
ploit this property for effective burst image denoising. [32]
proposes an end-to-end burst denoising pipeline to jointly
utilize high-resolution and high-frequency features derived
from wavelet transforms. BPN [42] predicts a global low-
dimensional basis set for large denoising kernels to achieve
effective burst denoising. Similar to the denoising task,
burst image deblurring [1, 40] relies on the fusion of avail-
able information in multiple frames to restore the under-
lying clear image. Even though individual frames may be
very blurry, they still retain some information about the
sharp image [1]. [30] performs a local relative ranking of
frames through a novel blur estimation bi-variable function,
showing superior results compared with other burst image
deblurring methods. Similarly, burst image super-resolution
[2, 39] offers the possibility to reconstruct rich details by
combining high-frequency information from multiple low-
resolution views of the same scene. In contrast to handling
specific degradation, [16] is proposed to process joint de-
noising and HDR recon
Dual-Exposure Image Restoration. Several methods [7,
20, 27, 33, 50] utilize short-long exposure image pairs for
image restoration. High noise levels and color distortion
issues in the short-exposure image may be well eliminated
in the long-exposure one, while motion-blurred areas in the
long-exposure images may be sharp in the short-exposure
one. LSD2 [27] performs joint image denoising and de-
blurring by leveraging information from short-long expo-
sure images and adjusting their contributions based on the
prevailing conditions. Considering RGB images as input,
this method fails to account for noise or blur in the imaging
pipeline, resulting in unsatisfactory outcomes when applied
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Figure 2. Overall architecture of RT-IRE. RT-IRE consists of two modifications to improve feature fusion and HDR reconstruction coarse
result. For feature fusion, we introduce the Ref Generation module to obtain high-quality reference feature Fref to guide feature fusion.
In addition, on top of the first stage, we add the second stage to refine the coarse result into the refined result.

to real images. To alleviate this problem, LSFNet [7] de-
signs a novel method to synthesize realistic short- and long-
exposure raw images by simulating the imaging pipeline
in a low-light environment and proposes a new fusion net-
work to deal with the problems of low-light image fusion.
D2HNet [50] presents a two-phase network to address the
domain gap between training data and real photos. How-
ever, due to the limited dynamic range of dual-exposure im-
ages, their application in HDR imaging is extremely lim-
ited.

Multi-Exposure HDR Image Reconstruction. Multi-
exposure images, which contain rich information about the
scene, are widely utilized for HDR image reconstruction
[18, 24, 28, 31, 35, 47]. To achieve this, [18] first aligns the
low and high-exposure images to the medium-exposure one
using optical flow and then uses the aligned images for high-
quality HDR reconstruction. Recently, HDR-Transformer
[24] employs a spatial attention module to suppress mis-
alignment and designs the context-aware vision transformer
for high-quality HDR imaging. Most existing methods are
trained on images without any degradation and may not
fit the real-world data with noise or blur. Mobile-HDR
[23] establishes an HDR image dataset captured by mobile
phone cameras and presents a cross-attention based align-
ment module to perform joint HDR denoising. Meanwhile,
[10] further introduces motion blur for joint HDR denoising
and deblurring by learning spatiotemporal distortion mod-
els. Considering more realistic degradations in low-light

environments, BracketIRE [48] utilizes the complementary
potential of multi-exposure images to deal with image de-
noising, deblurring, HDR reconstruction, and SR, achiev-
ing SOTA performance on both synthetic and real-world
datasets.

3. Method
We propose a two-stage method for Bracketing Image
Restoration and Enhancement. In the first stage, our method
aims to produce a high-quality reference feature to guide
feature fusion, remove degradation, and reconstruct HDR,
thereby obtaining coarse results. Then, in the second stage,
our method works to refine the output of the first module
and generate a restored result that contains much more de-
tail than before.

3.1. Preliminary

Our method employs bracketing photography to accomplish
multi-frame denoising, deblurring, and super-resolution
tasks, yielding clear, high dynamic range, and high-
resolution images. RT-IRE is designed to perform denois-
ing, deblurring, and HDR reconstruction, while RT-IRE+
expands on these capabilities to include the super-resolution
(SR) task.

Specifically, RT-IRE uses multi-exposure noisy and blur
RAW images {Xi}Ni=1, Xi ∈ H × W × 4 to produce a
clear and high-resolution Raw image as H . Different from
RT-IRE, the RT-IRE+ model takes low-resolution images
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as input, with a shape of H
s × W

s × 4. Here, N represents
the number of input frames, s indicates the super-resolution
factor and i denotes the raw image captured with exposure
time ti and ti < ti+1. Following existing multi-exposure
HDR reconstruction techniques [10, 16, 24, 28], we nor-
malize Xi to Xi

ti/t1
, aligning brightness across all frames and

then concatenate it with its gamma-transformed image.

Xin
i = Concat(

Xi

ti/t1
, (

Xi

ti/t1
)γ). (1)

In our implementation, γ signifies the gamma correction,
conventionally set at 1/2.2. Subsequently, these concate-
nated images are inputted into the model.

3.2. Reference Feature Generation

TMRNet [48] adopts Basicvsr++ [5] architecture, a promis-
ing network for expanding into more sophisticated systems
due to its simplicity and adaptability. It is mainly used for
video super-resolution tasks, where the first frame is em-
ployed as the reference frame to guide the network learning
and direct the acquisition of knowledge from other frames
in each iteration. In video super-resolution, the degrada-
tion of each frame is similar, with most frames experiencing
only blurry changes. However, for bracket image restora-
tion and enhancement, each frame has different levels of
exposure, noise, and blur. From the first to the last frame,
the noise decreases while the blur gradually increases. The
first frame has low blur but significant noise, making it un-
suitable as the reference frame due to potential interference
in unclear areas during feature fusion.

To overcome this issue, we propose two approaches to
obtain Fref with less noise and blur for use in the feature
fusion stage: selecting a high-quality frame as the reference
frame, called 2ndRF, and generating a high-quality refer-
ence feature, denoted as GRF. Our experiments have shown
that these minimal redesigns can produce robust and effi-
cient results without additional bells and whistles.

3.2.1 Selecting High-quality Reference Frame

We chose the second frame as the reference frame since it
has less noise and acceptable blur, making it easier to avoid
interference from the reference feature noise on the fused
feature. It is important to note that the second frame has
very little motion with ground truth, which means it has
less impact on any misalignment with the ground truth im-
age. Using the second frame as the reference frame gives a
PSNR improvement of up to 0.93 dB, making it superior to
using the first frame as the base frame.

3.2.2 Generating Reference Feature

The method mentioned above may not apply when there
is significant motion between the high-quality input and

ground truth frames. The reference frame feature Fref in
Fig. 2 plays a guiding role in the process of feature fusion,
so generating high-quality reference features will yield re-
sults similar to the performance of the above method. To
achieve this, we have developed a lightweight module that
fuses features from five frames as the reference feature.
This approach contains more information than selecting a
single reference feature as the guiding feature, as the five
frame features have good quality in different regions.

To strike a delicate balance between suppressing noise
and blur and synthesizing detailed information, generating
the reference feature involves two branches: one focuses on
denoising and deblurring while the other preserves detailed
information about the original aligned features Fi. The ar-
chitecture depicted in Fig. 2 is inspired by self-attention
module [36] and channel attention mechanisms [17]. The
first 1 × 1 convolution decreases the number of feature
channels to reduce computational complexity. Including
the residual connection preserves signal integrity in the net-
work, while the last 1×1 convolution balances noise reduc-
tion and signal retention, with parameters trained alongside
the entire network.

For the Degradation Remove module, denoising and de-
blur are achieved based on attention module [36]. The atten-
tion is regarded as non-local operation [37], which can also
be traced back to classic algorithms like non-local means [4]
and BM3D [11]. Their efficacy stems from abundant re-
dundant information in high-dimensional feature maps, al-
lowing these algorithms to eliminate significant noise and
blur. Concretely, we used transposed attention with lin-
ear complexity to reduce computational complexity. Tra-
ditional self-attention operates across spatial dimensions,
while transposed attention applies attention across feature
dimensions. Ref Generation module as shown in Fig. 2,
this branch helps to decrease the noise in the features.

The Detail Preservation module dynamically selects es-
sential features based on their significance in the spatial di-
mension by the channel mechanism. As shown in Fig. 2, we
extract information using an average pooling layer, a con-
volution layer, and a sigmoid activation. This information
describes the importance of features and is used to select
feature maps. A 1 × 1 convolution layer is then used to
guide the convolution layer in preserving the essential fea-
tures while dropping less informative ones.

Last, the concatenation of features from Degradation Re-
move and Details Preservation is then processed through
convolution layers to reduce dimension, resulting in refer-
ence features that are both high-quality and detailed.

3.3. Two-Stage Structure

Our approach consists of two primary modules: one for fu-
sion and structure reconstruction, and the other for detailed
enhancement.
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Figure 3. Visual comparison on the Challenge dataset [49] of RT-IRE task. Our method restores more details.

In the first stage of the network, we use the TMR-
NET [48], which consists of four essential steps: feature
extraction, alignment, feature fusion, and image reconstruc-
tion. The primary purpose of this stage is to combine and re-
construct high dynamic range images by integrating aligned
features. We do this by merging high-quality areas from
each frame to restore the overall image structure. How-
ever, the reconstructed images from the first stage may miss
out on some image details. To address this issue, we in-
troduce a Refinement Module based on the lightweight net-
work NAFNet [8]. The module helps the network to fo-
cus more on learning the image details by learning residuals
on the coarse results of the first stage. This ensures detail
enhancement while preserving the performance of the first
stage. Our experimental results show an improvement of
2.35 dB PSNR for the RT-IRE task and 5.35 dB PSNR for
the RT-IRE+ involving super-resolution tasks. The refine-
ment module exhibits a more significant impact on super-
resolution tasks than on image reconstruction alone.

Previous research [3, 43–45] has demonstrated that net-
works tend to learn structural information first and then fo-
cus on learning detailed information. However, our network
is designed to learn specific information at different stages.
This includes low-frequency structural cues in the first stage
and high-frequency fine details in the second stage, which
makes learning easier for the network and significantly re-
duces training complexity.

3.4. Training Loss

A cost function based on linear high dynamic range (HDR)
values may give too much importance to high luminance
levels, which could lead to overlooking significant differ-
ences within lower luminance ranges. To avoid this, most
deep learning systems that focus on HDR prediction use ob-
jective functions based on tone-mapped luminance values.
In this context, we calculate the loss using the widely used
τ -law function in the tone-mapped domain.

T (x) =
log(1 + µx)

log(1 + µ)
(2)

where T (x) is the tonemapped HDR image, and we set τ to
5000. In contrast to prior approaches [41, 46, 48] that rely
on pixel-wise loss metrics such as L1 or L2 error, we adopt
the PSNR loss for our pixel-level evaluation. The loss term

is defined as follows:

L = −PSNR(T (H), T (Ĥ)) (3)

This PSNR function term is defined as follows:

PSNR = 10 · log10
(

MAX2

MSE

)
(4)

where MAX denotes the maximum possible value of the
signal, and MSE stands for Mean Squared Error.

4. Experimental Results
4.1. Experimental Settings

Dataset NTIRE 2024 Challenge on Bracketing Image
Restoration and Enhancement [48] contains 1,045 data pairs
from 31 scenes as the training dataset and 290 pairs from
the other four scenes as the test dataset. The low-quality
multiple-exposure images are synthesized by applying vari-
ous processing techniques and degradations to high-quality
videos, including frame interpolation, conversion of RGB
videos to raw space with Bayer pattern, 4× bicubic down-
sampling (optional) serving for involving super-resolution
task, blur synthesis, and the introduction of noise. Each data
pair includes five low-quality frames in raw space, and their
corresponding ground truth is aligned with the first frame.
Network Details Our solution pipeline comprises TMR-
NET [48] as the first-stage framework and NAFNet [8] as
the second-stage network. Compared to the original TMR-
NET [48], we only increased the channel number from 64
to 96. For the second stage, we follow the same settings of
the model architecture in NAFNet [8].
Training Details In the first stage of our experiment, we
use input patch sizes of 256× 256 for the RT-IRE task and
64×64 for the RT-IRE+ task. In the second stage, the input
patch size is the same for both tasks, at 512×512. The batch
size is set to 4. We use the AdamW optimizer [25] with
β1 = 0.9, β2 = 0.999, weight decay of 0.01, and a cosine
annealing strategy. During the first stage, the learning rate
gradually decreases from an initial rate of 1 × 10−4 to 1 ×
10−6 over 400 epochs. Similarly, in the second stage, the
learning rate decreases from an initial rate of 3×10−5 to 1×
10−6 over 600 epochs. All experiments use PyTorch [29] on
a single Nvidia RTX A100 GPU. Additionally, we initialize
model weights in RT-IRE+ using the weights from RT-IRE.
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Figure 4. Visual comparison on Challenge dataset [49] of RT-IRE. Our refined results improve edge sharpness and smoke details.

Figure 5. Visual comparison on Challenge dataset [49] of RT-IRE+. Our refined results restore more details in tree and fire.

Table 1. Quantitative comparison with PSNR for the full image.

Methods Burstormer [12] Kim et al. [19] RT-IRE

PSNR 38.57 38.60 38.64

4.2. Comparison with the State-of-the-art Methods

Reconstructing images by integrating information from
multiple frames mainly involves feature extraction, align-
ment, and fusion. Currently, two main frameworks sepa-
rate alignment and fusion, while the other integrates them.
We have chosen one method from each of these two ad-
vanced frameworks for comparison: Burstormer [12] be-
longing to the former and Kim et al. [19] belonging to the
latter. The Burstormer [12] based on Transformer leverages
multi-scale features for alignment and feature fusion, while
Kim et al. [19] utilizes attention mechanism [36] for im-
plicit alignment and feature fusion from different frames.
To ensure a fair evaluation, we adjusted their architectures
to accommodate inputs with five frames and retrained them
using the 2024 NTIRE Bracketing Image Restoration and
Enhancement Challenge data. In addition, to eliminate the
impact of the reference frame on the results, we use the
same reference frame with the same order of 5-frame in-
puts. As shown in Tab. 1, by leveraging the powerful fusion
feature capability of BasicVSR++ [5], simply by increasing

the network size achieves a slight improvement compared
to the other two frameworks. Moreover, visual comparison
results in Fig 3 show that our method performs better in
restoring details.

4.3. NTIRE 2024 Bracketing Image Restoration and
Enhancement Challenge Result

RT-IRE obtained two champions in the NTIRE 2024 Brack-
eting Image Restoration and Enhancement Challenge [49].
Our model set a new record of 40.54 dB in the Tack 1 and
34.26 dB in the Tack 2. The competition results can be seen
in Tab. 2 and Tab. 3. In Track 1, our method outperformed
the second place by 0.76 dB and the baseline method by
2.35 dB. In Tack 2, our method outperformed the second
place by 3.67 dB and the baseline method by 5.35 dB. The
remarkable performance in the competition highlights the
generalizability and effectiveness of RT-IRE.

4.4. Ablation Study

We started by measuring the impact of the proposed com-
ponents by gradually integrating them into the baseline. As
shown in Table 4, each component significantly improved
the PSNR. Specifically, in RT-IRE, the PSNR increased
from 0.2 dB to 2.35 dB, while in RT-IRE+, the increase
ranged from 0.7 dB to 5.35 dB.
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Figure 6. Visualization of feature maps in the alignment stage using different reference frames. The first row represents the baseline method
using the first frame as the reference frame. The second row represents the 2ndRF method using the second frame as the reference image.
The first column from top to bottom represents the first, second, and fifth frames. The second column displays the prediction results. The
fourth column displays aligned features that align the fifth frame feature with the reference image.

Figure 7. Visualization of feature maps in the fusion stage of different methods. The first row represents the baseline method using the first
frame as the reference frame, the second row represents the second frame as the reference image, and the third row represents our proposed
reference feature generation method. The first column represents the prediction. From the second column to the last column, the fused
feature maps are shown from the first frame to the fifth frame.

Table 2. Quantitative results on Track 1 of Bracketing Image
Restoration and Enhancement Challenge. #FLOPs and inference
time are measured when generating a 1920 × 1080 RAW image.
Using NVIDIA RTX A6000 GPU calculates the inference time
and adopting THOP [51] toolkit calculates #FLOPs. The ranking
is based on the PSNR metric of the full images.

Team PSNR #Params (M) #FLOPs (T) Time (s)

Samsung 40.54 94.34 48.238 3.102
MegIRE 39.78 19.75 30.751 2.383
UPN1 39.03 13.32 10.409 1.090

TMRNet [48] 38.19 13.29 21.340 1.874

Crop Black Border The images we use have a black border
of 5 pixels. However, we remove this border before feeding
the images into the network during training. The issue is
that when we use the entire image during testing, we can
obtain inaccurate boundary estimates. To tackle this prob-
lem, we crop the border of the input image during testing.

For the RT-IRE task, we remove five pixels from the

Table 3. Quantitative results on Track 2 of Bracketing Image
Restoration and Enhancement Challenge. #FLOPs and inference
time are measured when generating a 1920 × 1080 RAW image.
Using NVIDIA RTX A6000 GPU calculates the inference time
and adopting THOP [51] toolkit calculates #FLOPs. The ranking
is based on the PSNR metric of the full images.

Team PSNR #Params (M) #FLOPs (T) Time (s)

Samsung 34.26 95.00 5.285 0.813
NWPU 30.59 13.37 1.426 0.887

FZU DXW 29.82 14.34 1.500 0.493

TMRNet [48] 28.91 13.58 1.441 0.489

edges of the input image. Next, we add five pixels to the in-
put image by reflecting the existing pixels. Finally, to match
the edge pixel values of the input, we set the 5-pixel widths
of the output edge to zero. This process has been shown
to significantly improve the metrics, as demonstrated in Ta-
ble 4. The results show that RT-IRE achieves a 0.20 dB
PSNR improvement.
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Table 4. Accuracy on test images in the Challenge Dataset [49]. The results presented in the bracket are compared with the Baseline.

Methods PSNR

Baseline Crop Black Border GRF 2ndRF 96 Channels Second Stage RT-IRE RT-IRE+

✓ 38.19 28.91
✓ ✓ 38.39 (+0.20) 29.61 (+0.7)
✓ ✓ ✓ 39.01 (+0.82) 30.04 (+1.13)
✓ ✓ ✓ 39.12 (+0.93) 30.16 (+1.25)
✓ ✓ ✓ 38.76 (+0.57) 30.64 (+1.73)
✓ ✓ ✓ ✓ 39.14 (+0.95) 31.36 (+2.45)
✓ ✓ ✓ ✓ ✓ 40.54 (+2.35) 34.26 (+5.35)

For the RT-IRE+ task, we remove a 2-pixel border from
the input and then add 2 pixels to the input by reflecting
existing pixels. Lastly, we pad the output with 16 pixels
instead of 5, which is necessary for the super-resolution to
work effectively. This also significantly improves the met-
rics, as shown in Table 4, where RT-IRE+ obtains a 0.70 dB
PSNR improvement.
Reference Feature We further provide some qualitative
comparisons to understand the contributions of the pro-
posed Reference Feature Generation: 2ndRF and GRF
methods, which are more noticeable in regions containing
fine details and complex textures in Figs. 6 and 7.

The 2ndRF mainly affects two parts of the network:
alignment and fusion modules. The second frame con-
tains less noise than the first, reducing optical flow errors
between the current frame and the reference in the align-
ment module. As shown in Fig. 6, when aligning the fifth
frame with a large amount of blur with the reference frame,
the alignment feature obtained by 2ndRF is more precise
at edges compared to the baseline. The aligned features of
the baseline contain blurry edges because the warping of
the fifth feature into the first frame is performed using the
wrong optical flow. For the fusion module, the feature of the
second frame with less noise can also provide more help-
ful guidance for feature fusion than the feature of the first
frame. As shown in Fig 7, all fused features from the first
to five frames of 2ndRF have less noise than the baseline.
The noise from the first frame feature may interfere with the
current feature fusion. As shown in Tab. 4, 2ndRF obtains a
0.93 dB PSNR improvement compared to the baseline.

The GRF algorithm generates a reference future to en-
hance the reference feature of the baseline. This is useful
when there is significant motion between the high-quality
input and ground truth frames. The GRF reference feature
combines all frame features into a reference, which contains
more information than selecting a single reference feature
as the guiding feature. As illustrated in Fig. 7, the fused fea-
ture of GRF is much clearer than that of 2ndRF. However,
GRF does not perform better than 2ndRF in the alignment
module. Maybe that’s why GRF has a lower score in RT-

IRE and RT-IRE+ than 2ndRF as shown in Tab. 4. There-
fore, we opted for the 2ndRF approach during the challenge
to achieve a high score.
Two-Stage Structure As shown in Figs. 4 and 5, the re-
fined output is better quality than the initial coarse result.
The refined output has more details and clearer edges. As
shown in Table 4, RT-IRE and RT-IRE+ have PSNR im-
provements of 2.35 dB and 5.35 dB, respectively, compared
to the baseline. The two-stage method outperforms the one-
stage method in both visual results and metric scores.

5. Conclusion
Existing multi-image processing methods usually focus
only on restoration or enhancement, or only on SR or HDR
reconstruction, which is insufficient for obtaining the high-
quality image with sharp details in low-light conditions.
The current bracket image restoration and enhancement
method can be solved, but the fusion effect is seriously
affected due to the reference image selection. This paper
proposes a two-stage approach, firstly using multi-exposure
images to generate high-quality reference features to guide
feature fusion in order to get a clean image with a high dy-
namic range and then further enhancing and generating de-
tailed textures in the second stage. Extensive experiments
show that our model achieves the best performance. Our
model won two champions in the NTIRE 2024 Bracketing
Image Restoration and Enhancement Challenge.
Limitations In low light conditions, input images often
have inherent noise that significantly affects the accuracy of
the alignment module. The inaccurate alignment makes it
difficult to make the most of the cues from multi frames, re-
sulting in overly smoothed details as shown in Fig. 6. This,
in turn, causes the feature fusion module to lose detailed
information. Our GRF aims to merge complementary in-
formation from multiple features as the reference feature to
improve feature fusion. However, it does not address the
issue of inaccurate alignment caused by noise and blur. In
the future, we explore the problem by either selecting more
suitable reference frames or enhancing images before align-
ment, similar to the Clean Module in RealBasicVSR [6].
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[1] Miika Aittala and Frédo Durand. Burst image deblurring

using permutation invariant convolutional neural networks.
In ECCV, pages 731–747, 2018. 2

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Deep burst super-resolution. In CVPR, pages 9209–
9218, 2021. 2

[3] Qingwen Bu, Dong Huang, and Heming Cui. Towards build-
ing more robust models with frequency bias. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4402–4411, 2023. 5

[4] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local
algorithm for image denoising. In 2005 IEEE computer so-
ciety conference on computer vision and pattern recognition
(CVPR’05), pages 60–65. Ieee, 2005. 4

[5] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5972–5981, 2022. 4, 6

[6] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Investigating tradeoffs in real-world
video super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5962–5971, 2022. 8

[7] Meng Chang, Huajun Feng, Zhihai Xu, and Qi Li. Low-light
image restoration with short-and long-exposure raw pairs.
IEEE TMM, 24:702–714, 2021. 2, 3

[8] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In European confer-
ence on computer vision, pages 17–33, 2022. 5

[9] Yiheng Chi, Xingguang Zhang, and Stanley H Chan. Hdr
imaging with spatially varying signal-to-noise ratios. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5724–5734, 2023. 2
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