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Abstract

In real-world scenarios, images captured often suffer
from blurring, noise, and other forms of image degrada-
tion, and due to sensor limitations, people usually can
only obtain low dynamic range images. To achieve high-
quality images, researchers have attempted various image
restoration and enhancement operations on photographs,
including denoising, deblurring, and high dynamic range
imaging. However, merely performing a single type of
image enhancement still cannot yield satisfactory images.
In this paper, to deal with the challenge above, we pro-
pose the Composite Refinement Network (CRNet) to ad-
dress this issue using multiple exposure images. By fully
integrating information-rich multiple exposure inputs, CR-
Net can perform unified image restoration and enhance-
ment. To improve the quality of image details, CRNet explic-
itly separates and strengthens high and low-frequency in-
formation through pooling layers, using specially designed
Multi-Branch Blocks for effective fusion of these frequen-
cies. To increase the receptive field and fully integrate in-
put features, CRNet employs the High-Frequency Enhance-
ment Module, which includes large kernel convolutions and
an inverted bottleneck ConvFFN. Our model secured third
place in the first track of the Bracketing Image Restoration
and Enhancement Challenge, surpassing previous SOTA
models in both testing metrics and visual quality.

1. Introduction

In real photography scenarios, images captured are of-
ten subject to image degradation such as blur and noise due
to lighting conditions and exposure time limitations. More-
over, due to typical sensor limitations, people usually obtain
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Figure 1. Our CRNet can finely restore the details lost in images
from multiple exposure inputs and enhance them into HDR image.

low dynamic range images. To address these issues, var-
ious methods have been studied for deblurring, denoising,
and HDR imaging. However, these methods often focus
only on individual specific tasks, and the resulting images
are still unsatisfactory. To address this issue, establishing
a model that can handle the Unified Image Restoration and
Enhancement Task is crucial.

In previous studies, various single-image restoration
methods have been proposed, such as denoising [1, 5, 13,
22, 54, 55], deblurring [7, 28, 32, 41, 54], and high dynamic
range reconstruction [9, 20]. However, these methods of-
ten perform poorly due to limitations such as insufficient
information from a single image and exposure time con-
straints. Consequently, people have started exploring meth-
ods for multi-exposure image restoration and enhancement.
For instance, some studies [6, 19, 31, 39, 53, 57] utilize
dual-exposure images for image restoration, while others
[15, 16, 24, 33, 36, 47–52] employ multi-exposure images
to generate HDR images for image enhancement. These
methods have made breakthroughs again, but they overlook
the importance of edge and texture details in image restora-
tion and enhancement tasks, lacking in the enhancement of
high-frequency details. Recently, TMRNet[58] provides a
feasible solution for the unified image restoration and en-
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hancement tasks. It takes multi-exposure images as input
and progressively integrates non-reference frames with ref-
erence frames. However, with the deepening of the network
and the increase in input images, such fusion methods lead
to the gradual forgetting of earlier added frames by the net-
work.

To address the aforementioned issues, we propose the
Composite Refinement Network (CRNet) (Example vi-
sual effects are depicted in Fig. 1). CRNet takes multi-
exposure images as input and feeds them together into sub-
sequent network parts after optical flow alignment, rather
than frame by frame. To tackle the insufficient restora-
tion of high-frequency details in image restoration tasks,
CRNet explicitly employs pooling layers to separate high
and low-frequency information for enhancement, and uti-
lizes a specially designed non-stacked deep Multi-Branch
Block for thorough fusion. To better integrate different im-
age features, CRNet adopts the Convolutional Enhancement
Block, a pure convolutional module primarily composed of
large-kernel convolutions, which increases model’s recep-
tive field, along with ConvFFN featuring an inverted bot-
tleneck structure to fully merge features. CRNet not only
achieves breakthroughs in visual effects but also attains
previous state-of-the-art performance in various evaluation
metrics. Our CRNet secured third place in track 1 of the
Bracketing Image Restoration and Enhancement Challenge.
In summary, the main contributions are as follows:
• CRNet surpasses previous state-of-the-art (SOTA) mod-

els in both metrics and visual effects, achieving third
place in track 1 of the Bracketing Image Restoration and
Enhancement Challenge.

• To address the issue of insufficient high-frequency details
in image restoration tasks, we use pooling layers to ex-
plicitly separate high and low-frequency information and
employ a Multi-Branch Block for fusion.

• CRNet employs the Convolutional Enhancement Block,
utilizing large kernel convolutions to increase the recep-
tive field, along with ConvFFN featuring an inverted bot-
tleneck structure for comprehensive feature fusion.

2. Related Work
Burst Restoration and Enhancement Burst images re-
fer to a series of images captured in rapid succession. Dur-
ing the capturing process, issues such as misalignment or
blurring may arise due to camera movement or subject mo-
tion. The goal of burst image restoration and enhancement
is to effectively use algorithms and techniques to process
these consecutive images, in order to obtain high-quality,
clear image outputs. Current methods[3, 11, 26, 29, 30, 45,
46] typically involve techniques such as denoising, deblur-
ring, image alignment, and super-resolution, with a primary
focus on feature alignment and fusion.

In the aspect of denoising, Godard et al.[11] proposed a

recursive fully convolutional deep neural network as a ”fea-
ture accumulator” capable of processing images from a sin-
gle frame to any number of burst frames. In terms of de-
blurring, Aittala et al.[2] introduced a novel convolutional
architecture that can equally process information from all
frames in a sequence, unaffected by their order. In the as-
pect of image enhancement, HDR+[35] selects a frame with
short exposure as the reference frame to avoid clipped high-
lights and motion blur, then aligns the other frames to this
one before merging. It decides on a per-pixel basis whether
to merge the image content or not. Building upon this, there
has been work focused on addressing two or more tasks si-
multaneously. A method involving a deep reparametriza-
tion of the maximum a posteriori (MAP)[3] formulation
was proposed, which involves reparametrizing the classical
MAP into a deep feature space. This approach shows good
performance on both super-resolution and burst denoising
tasks.

Multi-Exposure HDR Image Reconstruction. HDR
imaging refers to the process of reconstructing a High Dy-
namic Range (HDR) image from a series of Low Dynamic
Range (LDR) images with different exposures. A key chal-
lenge in this task is how to align multiple input frames to
address the ghosting problem. Traditional alignment meth-
ods primarily utilize alignment-based[4, 17, 44], rejection-
based[12, 34, 56], and patch-based methods[14, 27, 38]
for alignment. Although they have achieved certain break-
throughs, they often err under conditions of extreme light-
ing and motion. The emergence of deep learning has pro-
vided new ideas for this issue. Some researchers have
used CNN-based methods for alignment[16, 21, 33, 47, 48].
Kalantari et al.[16] first aligned images using optical flow
and then fused them through a CNN network. Yan et al.[47]
introduced a CNN-based spatial attention mechanism to
suppress movement and oversaturated areas. Yan et al. [48]
designed a non-local module to expand the receptive field
for global merging. CNN-based alignment methods have
made further progress, but still result in ghosting in overex-
posed areas due to motion. The advent of Transformers has
given researchers new ideas for alignment methods. Song et
al.[40] utilized the large receptive field of the Transformer
to globally recover motion areas.

3. Proposed Method
We are given a sequence of Raw images

{R1, R2, . . . , RN} captured in a dynamic scene, each
with a distinct exposure level, and our objective includes
simultaneous denoising, deblurring, and HDR reconstruc-
tion. The resultant image should closely mirror a reference
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Figure 2. An overview of the CRNet model reveals that it mainly comprises three components: alignment, high-frequency enhancement,
and output fusion. In the High-Frequency Enhancement Module, we swiftly separate high and low-frequency features and then utilize
cleverly designed Multi-Branch Block to fuse them. Subsequently, we employ a purely Convolutional Enhancement Block to efficiently
extract and fuse features for image enhancement.

image, denoted as Rr. Specifically, five Raw images
{R1, R2, R3, R4, R5}, ranked by their exposure from
lowest to highest, are selected for input, with R1 serving
as the reference. Then, we normalize Ri to Ri

∆ti/∆t1
, and

the term ∆ti refers to the exposure time of the i-th image.
Following the recommendations from multi-exposure HDR
reconstruction methods [24, 33, 42, 47, 50], we transform
the raw images after normalizing with gamma mapping to
obtain {L1, L2, L3, L4, L5}:

Li =

(
Ri

∆ti/∆t1

)γ

, (1)

where γ represents the gamma correction parameter and is
generally set to 1

2.2 , the same as TMRNet[58] does in its
code.

Subsequently, we concatenate each Li with its corre-
sponding Ri to form {I1, I2, I3, I4, I5}, according to the
following equation:

Ii =

{
Ri

∆ti/∆t1
, Li

}
, (2)

Then, we concatenate each Li with its corresponding Ri

to form {I1, I2, I3, I4, I5}. Feeding {I1, I2, I3, I4, I5} into
our model, we derive an HDR image free of noise and blur,
denoted as Ĥ , according to the following equation:

Ĥ = f(I1, I2, I3, I4, I5; θ), (3)

where the function f(·) signifies the imaging network, and
θ encapsulates the parameters of the network.

3.1. Overview of the CRNet

As shown in Fig. 2, within CRNet, for the inputs
{I1, I2, I3, I4, I5}, we first align five input images to get

{f1, f2, f3, f4, f5}, employing an Optical Flow Alignment
Block to align the five input images, which includes con-
volutional blocks for shallow feature extraction and a pre-
trained Spynet[37]. Experiments(See in See the experi-
mental section, ”The Structure to Fuse Features” part) in-
dicate that the frame-by-frame input method adopted by
TMRNet[58] could lead to the network gradually forget-
ting earlier added images as the network deepens and the
number of input images increases, shifting focus to more
recently added images and thus degrading image quality.
Therefore, we concatenate the five aligned images as the in-
put for subsequent processing, allowing for more compre-
hensive utilization of the information from each image.

Subsequently, the merged features are sequentially
passed through 3 High-Frequency Enhancement Modules.
Each module initially utilizes two distinct pooling layers to
separate and individually amplify high and low-frequency
information[25], followed by N Convolutional Enhance-
ment Blocks. After frequency separation, the valuable high-
frequency information is enhanced using Transformer, and
the information across frequencies is fused using Multi-
Branch Blocks[43], thereby fully restoring the details of
the image. Convolutional Enhancement Blocks can be re-
garded as high-frequency filters, employing large-kernel
depth-wise separable convolutions [23] and convolutional-
ized FFN [8] to increase the receptive field and fully merge
features, while further enhancing high-frequency informa-
tion.

Finally, the outcomes of the 3 High-Frequency Enhance-
ment Sub-networks are fused with the reference frame,
which has been aligned using simple convolutional blocks,
to output the final result.
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Figure 3. We efficiently separate high and low-frequency informa-
tion through simple pooling layers.

3.1.1 Frequence Separation and Fusion

In the unified image restoration and enhancement task,
enhancing high-frequency feature information is crucial,
and one effective method is to separately amplify high-
frequency and low-frequency features. Traditional sepa-
ration techniques, such as Fourier transforms, entail sig-
nificant computational overhead and are not straightfor-
wardly integrated into networks. To minimize the compu-
tational expenses associated with segregating high and low-
frequency features, we employ pooling layers[25] for this
task (as shown in the Fig. 4). In the CRNet, we specifically
utilized average pooling and max pooling. Specifically, a
pooling layer down-samples the input feature maps with di-
mensions B × H × W × C to obtain the low-frequency

features FL at a reduced resolution F
B×H

2 ×W
2 ×C

L . Bilinear
interpolation is then used to upsample these features back to
the original dimensions, fB×H×W×C

up . The high-frequency
features FH of F are subsequently computed by subtract-
ing FL from the original features F . This approach enables
us to quickly capture the image’s high and low-frequency
characteristics, as described by the equation below:

FL = Pooling(F ), (4)

FH = F − Upsample(FL), (5)

where Pooling refers to the down-sampling operation using
a pooling layer, and Upsample refers to the up-sampling
operation using bilinear interpolation. After obtaining the
explicitly extracted high-frequency features FH , we opt to
globally enhance them using Self-Attention mechanism to
fully exploit the high-frequency information and get FH1

.
However, simply fusing features across different frequency
domains through basic convolutional blocks could lead to
information loss and insufficient fusion. Therefore, to ade-
quately merge high-frequency and low-frequency informa-
tion, we primarily utilize the Multi-Branch Block (See in
Fig. 4).

Figure 4. Through asymmetric parallel convolutional groups, the
model effectively integrates high and low-frequency information.

The Multi-Branch Block consists of a dual-path convolu-
tional assembly, with each path employing a different num-
ber of convolutions. The first branch, equipped with three
convolutional kernels, focuses more on the high-frequency
details of the image, while the second branch, with a sin-
gle convolutional kernel, pays more attention to the low-
frequency content and contours of the image[43]. This al-
lows our network to effectively meet the requirements for
merging high and low-frequency features.

Overall, we first pass the high-frequency and low-
frequency features through several Multi-Branch Blocks in-
dividually, then upsample the low-frequency information to
match the dimensions of the high-frequency features, con-
catenate them together, and finally fuse them through chan-
nel attention and simple convolution. The specific formulas
are as follows:

H = MBB(FH1), (6)

L = MBB(MBB(MBB(FL))), (7)

Out = Conv1×1(CA(Conv3×3(Concatenate(Up(L), H)))),
(8)

where MBB represents the Multi-Branch Block, Conv1×1

represents a 1× 1 convolution, Conv3×3 represents a 3× 3
convolution, CA represents channel attention, and Up rep-
resents bilinear interpolation upsampling.

3.1.2 Convolutional Enhancement

To improve the receptive field and thoroughly integrate
the features from inputs, we employ the Convolutional En-
hancement Block in our network (see Fig. 5). This purely
convolutional module utilizes 7×7 depth-wise separable
convolutions to achieve a broad receptive field and features
an inverted bottleneck structure ConvFFN for thorough in-
formation extraction. Additionally, it acts as a high-pass
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Figure 5. Our Convolutional Enhancement Block utilizes depth-
wise separable convolutions with large kernels to achieve a large
receptive field. Additionally, it leverages ConvFFN with an in-
verted bottleneck structure to enhance feature fusion capability.

filter, facilitating efficient content fusion from the five input
frames and implicitly enhancing high-frequency informa-
tion. The formula for the entire process is as follows:

F2 = ConvFFN(Conv1×1(DConv7×7(Conv1×1(F1))))
(9)

Here, Conv11×1 represents a 1×1 convolution, DConv7×7

denotes depth-wise separable 7×7 convolution, and each
convolution layer is followed by GELU activation for non-
linear activation.

4. Experiments
4.1. Experiments Settings

Datasets. The dataset we utilized is the training set from
track 1 of the Bracketing Image Restoration challenge. This
dataset is constructed based on HDR videos to simulate
the motion and blur effects of multi-exposure images. Ini-
tially, HDR videos from Froehlich et al[10] were extracted
and processed by frame interpolation and conversion into
Bayer-pattern HDR raw sequences. Subsequently, degrada-
tion operations were introduced to generate multi-exposure
images, including downsampling, grouping, blur synthesis,
conversion to LDR images, and noise addition. Finally, the
dataset comprises 1355 data pairs, with 1045 pairs used for
training and 290 pairs for testing.

Training Loss. Following the approach of TMRNet, we
employ the µ-law to map the resulting image from the linear
domain to the tone-mapping domain:

T (x) =
log(1 + µx)

log(1 + µ)
, (10)

where µ=5000.
Given the result Ĥ from CRNet and the ground truth H ,

we conduct pixel-level L1 loss in the tone-mapping domain
as follows:

L = ∥T (H)− T (Ĥ)∥1, (11)

Evaluation Metrics. We compute five commonly used
metrics for evaluation, namely PSNR-µ and SSIM-µ, where

’L’ denotes the linear domain, and ’µ’ denotes the tone-
mapping domain. In the µ-law tone-mapping, µ = 5000.
In calculating the PSNR metric, the maximum value is set
to 1. In the calculation of the SSIM metric, the maximum
dynamic range is 1.

Implementation Details. During the training process,
images are randomly cropped to patches with a size of
128× 128, and are subject to random flipping and rotation.
In CRNet, N is set to 10. We used the PyTorch frame-
work and adopted the AdamW optimizer with β1 = 0.9 and
β2 = 0.999. The initial learning rate was set to 10−4, us-
ing StepLR for learning rate decay by multiplying it by 0.5
every 80 epochs. The model was trained on the synthetic
dataset provided by the BracketIRE Task on 4 A100 GPUs
for a total of 500 epochs, amounting to 3 days of training.
We utilized Hugging Face’s Accelerator for parallel train-
ing.

4.2. Comparison with the State-of-the-art Methods

Table 1. The evaluation results on the Bracketing Image Restora-
tion and Enhancement Challenge[58]’s dataset for Track1 and
Track2. The best and second-best results are highlighted in Bold
and Underline, respectively.

Track1 Results
Models AHDRNet CA-VIT HyHDR SCTNet TMRNet Kim’s Ours

PSNR-µ 36.32 36.54 37.4 36.90 38.19 37.93 39.03
SSIM-µ 0.927 0.9341 0.940 0.944 0.949 0.945 0.950

Track2 Results
Models AHDRNet CA-VIT HyHDR SCTNet TMRNet Kim’s Ours

PSNR-µ 28.17 28.18 28.59 28.28 28.91 28.33 29.45
SSIM-µ 0.842 0.848 0.849 0.846 0.857 0.849 0.871

To further validate the superiority of our model, we
compared CRNet with several state-of-the-art deep learning
models AHDRNet [47], TMRNet[58] Transformer-based
CA-ViT [24], SCTNet[42], Kim’s[18] and HyHDR [50]
quantitatively and qualitatively on track 1 of the Bracketing
Image Restoration and Enhancement Challenge dataset. As
shown in Tab. 1, our approach outperforms the compared
models in the testing metrics. From Fig. 6(a), it can be
observed that in the bonfire scene, where the background
color is too dark and the flame area is too bright, and the
fluttering bonfire presents foreground object motion, which
is extremely challenging. Thanks to the proposed high-
frequency enhancement module, our model successfully de-
lineates clear and distinct edges in the flame’s boundary re-
gion and suppresses ghosting, while other models exhibit
edge discontinuities or redundancies. Additionally, in the
facial area (see in Fig. 6(b)), the facial contour, especially
the nose area, is particularly challenging. Our CRNet suc-
cessfully restores the contour of the nose, whereas other
models lack contour on the left side of the nose or exhibit
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Figure 6. Examples of comparisions on the track 1 of the Bracketing Image Restoration and Enhancement Challenge dataset.
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Table 2. Results[59] on track 1 of the Bracketing Image Restoration and Enhancement Challenge. Quantitative metrics are calculated
on the full images. #FLOPs, inference time, and GPU memory are measured when generating a 1920 × 1080 raw image. The test uses
NVIDIA RTX A6000 GPU to calculate the inference time and adopts the THOP [60] tool to calculate #FLOPs. The ranking is based on
the PSNR metric of the full images.The best and second-best results are highlighted in Bold and Underline, respectively.

Rank Team Full Images PSNR ↑ #Params (M) #FLOPs (T) Time (s) Memory (GB)

1 SRC-B 40.54 94.34 48.238 3.102 20
2 MegIRE 39.78 19.75 30.751 2.383 16
3 UPN1(CRNet) 39.03 13.32 10.409 1.090 6
4 CVG 38.78 13.29 21.340 7.518 11
5 FZU DXW 38.46 14.04 22.283 1.829 16

- TMRNet [58] 38.19 13.29 21.340 1.874 15

unclear delineation on the right side. This indicates a sig-
nificant improvement of our CRNet over previous methods,
especially in scenes with too dark or too bright conditions,
in high-frequency detail regions, and also surpasses previ-
ous state-of-the-art methods in numerical metrics. Further-
more, we introduced an upsampling module similar to that
of TMRNet into the base of CRNet and conducted tests on
track 2 of the Bracketing Image Restoration and Enhance-
ment Challenge dataset. As shown in Tab. 1, our approach
outperforms the compared models in the testing metrics.

4.3. Results of track 1 of the Bracketing Image
Restoration and Enhancement Challenge

As shown in Tab. 2, we achieved the third place in track
1 of the Bracketing Image Restoration and Enhancement
Challenge. Compared to other ranking models, our CR-
Net significantly outperforms in terms of FLOPS, inference
time, and GPU memory usage.computational costs.

4.4. Ablation Studies

Table 3. The Ablation study of CRNet.’-’ indicates that a certain
structure is not applicable, and another module with similar com-
putational complexity is embedded to replace it.

Models PSNR-µ SSIM-µ
CRNet 39.03 0.949
CRNet-Frequency Separation 38.71 0.922
CRNet-Multi-Branch Block 38.64 0.937
CRNet-Large Kernel Conv 38.76 0.941
CRNet-ConvFFN 38.69 0.933
CRNet+Recurrent Structure 38.79 0.945

To validate the effectiveness of each module in our CR-
Net, we conducted a series of ablation experiments(See in
Tab. 3):
• Model1: We use the full CRNet.
• Model2: We do not perform frequency separation; in-

stead, we directly pass the original feature maps through

Figure 7. From the figure, it can be observed that our CRNet suc-
cessfully restores the edges of the branches clearly after using fre-
quency separation.FS represents for Frequence Separation Block.

self-attention and merge them with the results after down-
sampling.

• Model3: In the frequence fusion part, we do not utilize
the Multi-Branch Block structure; instead, we simplify it
to four consecutive convolutional layers.

• Model4:We replace the 7 × 7 convolution in the Convo-
lutional Enhancement with three 3× 3 convolutions.

• Model5: We do not employ the inverted bottleneck struc-
ture in ConvFFN. Instead, we use two 1× 1 convolutions
without changing the number of channels.

• Model6: While keeping the model’s parameter count al-
most identical, we arrange all the High-Frequency En-
hancement Modules in CRNet according to the recurrent
structure of TMRNet, sequentially feeding images into
them. The output of the last High-Frequency Enhance-
ment Module is then combined with the reference frame
and input into the Feature Fusion Block.
Frequence Separation.
As shown in Table 3, Model 1 outperforms Model 2 by

0.32 in PSNR-µ and 0.027 in SSIM-µ. This indicates that
utilizing frequency separation to extract high-frequency fea-
tures and enhancing them selectively significantly improves
the image quality. As illustrated in Fig. 7, after employing

6092



Figure 8. ”\\” represents parallel inputs. As shown in the fig-
ure, we attempted three different ways of allocating convolutional
blocks.

frequency separation, our CRNet successfully restores the
edges of the branches clearly after using frequency separa-
tion.

Multi-Branch Block. As shown in Table 3, Model

Table 4. Ablation for Multi-Branch Block. The allocation scheme
of having three convolution blocks on one side and one on the
other side appears to be the most effective.

Models PSNR-µ SSIM-µ
3\\1 39.03 0.949
2\\2 38.82 0.941
4\\0 38.64 0.937

1 outperforms Model 3 by 0.39 in PSNR-µ and 0.012 in
SSIM-µ. This indicates that our utilization of the Multi-
Branch Block for the fusion of high and low-frequency con-
tent is highly effective. To further validate the effectiveness
of our structure, we conducted more detailed ablation ex-
periments. As illustrated in Fig. 8, we reconfigured the po-
sitions of the four convolutional kernels for investigation.
As shown in Tab. 4, Model 1 performs the best, implying
that our Multi-Branch Block structure achieves better per-
formance under the same computational cost.

Convolutional Enhancement Block.
As shown in Table 3, Model 1 outperforms Model 4 by

0.27 in PSNR-µ and 0.008 in SSIM-µ. Model 1 outper-
forms Model 5 by 0.34 in PSNR-µ and 0.016 in SSIM-µ.
This indicates that our Convolutional Enhancement Block’s
large kernel convolution design and ConvFFN fusion of in-
put features are highly effective.

To validate the effectiveness of our Convolutional En-
hancement Block structure, we conducted further ablation
experiments. (See in Fig. 9)We attempted to replace the
7×7 depthwise separable convolution with either three 3×3
depthwise separable convolutions or a stack of one 5 × 5
convolution followed by one 3×3 convolution, and we tried
to replace the ConvFFN with a normal bottleneck structure

Figure 9. The figure shows the model diagrams of the comparison
models included in Tab. 5

Table 5. The stuctures presented in the table are depicted in Fig. 9.
Models a and b are used to replace the 7× 7 depthwise separable
convolution, while models c and d are used to replace the inverse
bottleneck ConvFFN.

Models PSNR-µ SSIM-µ
CRNet 39.03 0.949
3× 3× 3(a) 38.76 0.941
5× 5+3× 3(b) 38.88 0.939
normal bottleneck(c) 38.69 0.933
normal 1× 1 convolutions(d) 38.82 0.945

or a normal 1× 1 convolution chaining structure. As shown
in Tab. 5, the experimental results indicate that the 7 × 7
depthwise separable convolution and the inverse bottleneck
ConvFFN adopted by us are more optimal structures for the
tasks of image restoration and enhancement.

The Structure to fuse features As shown in Table 3,
Model 1 outperforms Model 6 by 0.24 in PSNR-µ and 0.005
in SSIM-µ. From this, it is evident that inputting the feature
maps together into the High-Frequency Enhancement Mod-
ule is a better approach than using the Recurrent Structure.

5. Conclusion

We introduced the Composite Refinement Network (CR-
Net), which uniformly completes image restoration and en-
hancement. CRNet explicitly separates the frequency do-
main and employs the Multi-Branch Block for targeted
fusion, thereby enhancing high-frequency details in im-
age restoration. Additionally, it utilizes the Convolu-
tional Enhancement Block, leveraging large kernel con-
volutions and ConvFFN to increase the receptive field
and enhance feature fusion capabilities. CRNet surpassed
previous state-of-the-art models in both metrics and vi-
sual effects, and achieved third place in track 1 of the
Bracketing Image Restoration and Enhancement Challenge,
with computational costs far below those of other mod-
els.
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