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Abstract

The goal of stereo image super-resolution is to enhance
the quality of low-resolution stereo image pairs by utiliz-
ing complementary information across views. Although
transformer-based methods have shown high efficiency in
single-image super-resolution tasks, they have not been fully
used in stereo super-resolution tasks. Therefore, it is crucial
to incorporate the complementary information of stereo im-
ages into the transformer method to improve image details.
To address this challenge, we propose a lightweight Hy-
brid Cross-view Attention Stereo Super-Resolution network
(HCASSR), which uses a Transformer-based network for
intra-view feature extraction and a cross-view attention mod-
ule to aggregate stereo image information. We also employ
multi-stage training strategies and data ensemble in test-time
to improve image quality. Our method has been extensively
tested on the KITTI 2012, KITTI 2015, Middlebury, and
Flickr1024 datasets, and the experimental results demon-
strate that the proposed method outperforms existing works
with smaller model size. Additionally, we won 3rd and 2nd
place respectively in Track 1 and Track 2 of the NTIRE 2024
Stereo Image Super-Resolution Challenge. Codes and mod-
els will be released at https://github.com/YuqiangY/HCASSR.

1. Introduction
Stereo image super-resolution technology is an advanced
image processing method whose core goal is to reconstruct
a more detailed high-resolution image from a pair of low-
resolution stereo views (i.e., left and right views). In many
applications like AR/VR and robot navigation, increasing the
resolution of stereo images is highly demanded to achieve
higher perceptual quality and help to parse the real world.
Therefore, this technology has developed rapidly in re-
cent years and has shown great application potential and
widespread attention in many fields. Stereo image super-
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Figure 1. Parameters vs. PSNR of models for 4× stereo SR
on Flickr1024 [29] test set. Compared with existing works, the
proposed HCASSR achieves higher PSNR with smaller model size.

resolution and single image super-resolution have essen-
tial similarities, but there is a key difference between them.
Single image super-resolution is limited to extracting in-
formation from one perspective, while stereo image super-
resolution can integrate information from two views with
large overlapping areas. This is crucial because information
that may be missing from one view may still exist in another
view. Therefore, by effectively integrating information from
two perspectives, the quality and details of reconstructed
images can be significantly improved, which is a key factor
in the success of stereo image super-resolution methods.

In previous studies, the application of Transformer archi-
tecture in super-resolution methods [3, 18] has proven its
significant effectiveness. The reason why the Transformer
architecture is effective is because it has a larger receptive
field and self-attention mechanism compared to traditional
convolutional neural networks, which enables it to better
handle long-distance dependencies in images. This power-
ful feature extraction capability is crucial for stereo image
super-resolution, as it requires the integration of informa-
tion from two perspectives to ensure the preservation of
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all valuable details during super-resolution reconstruction.
However, the current popular stereo image super-resolution
methods [5, 30] are still based on traditional convolutional
neural networks. In addition, the Transformer-based meth-
ods [4, 32] typically consume much more memory and com-
puting resources than convolutional neural networks, espe-
cially when dealing with high-resolution images or large
amounts of data.

Given the advantages and limitations of convolutional
neural networks and Transformer architectures, researchers
have been exploring how to combine them to achieve optimal
performance in stereo image super-resolution. Despite vari-
ous attempts, the optimal hybrid architecture design remains
an open issue. Based on the above analysis, we propose an
innovative hybrid architecture aimed at fully utilizing the fea-
ture extraction capability of Transformer and the efficiency
of convolutional neural networks in information exchange
between views.

In our method, we use the Transformer-based block as
the basic unit to ensure that the most important features
are extracted and preserved from each view low-resolution
image, and a cross-view attention module to further improve
the quality and details of results. As shown in Fig. 1, our
HCASSR achieves the best PSNR result, while the model
size is only within 1 M. In brief, our contributions can be
summarized as follows:
• We propose a lightweight hybrid cross-view attention

stereo image super-resolution network which uses a
Transformer-based network for intra-feature extraction
and a cross-view attention module to complement stereo
image information.

• We use the permuted self-attention to replace the self-
attention module in the Transformer architecture to reduce
network parameters and computational complexity.

• Extensive experiments demonstrate the efficiency and ef-
fectiveness of the proposed method both in metrics and
in visual quality. As a result, we won 3rd and 2nd place
respectively in Track 1 and Track 2 of the NTIRE 2024
Stereo Image Super-Resolution Challenge [28].

2. Related Work

2.1. Single Image Super-Resolution

Single image super-resolution is a fundamental and classic
task in the field of computer vision, which aims to recon-
struct high-resolution images from a given low-resolution
image. In early research, super-resolution technology mainly
relied on external images or sample databases to generate
high-resolution images.

With the development of deep learning-based methods,
super-resolution methods based on Convolutional Neural
Networks (CNN) have developed rapidly. SRCNN [7] is the
pioneering work of deep learning used in super-resolution

reconstruction. The author explains the structure of three-
layer convolution into three steps: image patch extraction
and representation, non-linear mapping, and reconstruction.
VDSR [14], SRDenseNet [23], SRResNet [16], EDSR [19]
and RDN [34] further improve performance by using deeper
and wider residual blocks. RCAN [33] combines the atten-
tion module into residual blocks, giving varying degrees of
attention to information from different channels, achieving
state-of-the-art performance. NAFNet [2] proposes a simple
baseline and achieves state-of-the-art performance.

In addition to CNN-based methods, Transformer-based
methods have also emerged in the field of image super-
resolution since Transformer has shown great advantages
in the field of natural language processing. Compared with
CNN, Transformer has been proven to be highly effective
in modeling long-range dependencies. Transformer elimi-
nates prior knowledge about locality in the convolutional
module, allowing the model to have a larger receptive field.
This design means that the model can capture image features
on a global scale, rather than being limited to local regions.
However, removing this prior knowledge also means that
the model needs more data during training to learn sufficient
prior knowledge. In practice, IPT [1] demonstrates that even
the simplest Transformer can surpass the performance of
CNN with sufficient data in low-level tasks. SwinIR [18]
reintroduces locality first and adopts a shifted window self-
attention module. SRFormer [35] proposes a permuted self-
attention (PSA) for image super-resolution tasks, which can
handle large window self-attention while maintaining a lower
computational cost. HAT [3] combines self-attention, chan-
nel attention, and a new overlapping cross-attention to ac-
tivate more pixels in the receptive field of the Transformer
model for image reconstruction.

2.2. Stereo Image Super-Resolution

Single image super-resolution and stereo image super-
resolution are two important research directions in the field
of computer vision, both dedicated to reconstructing high-
resolution images from low-resolution images. However,
there is a key difference between these two tasks: stereo
image super-resolution processes a pair of images with par-
allax, namely the left and right views, and there is redundant
information between these two views, which can be used to
improve the quality of reconstructed images. Traditional sin-
gle image super-resolution methods are often not directly ap-
plicable to stereo image super-resolution tasks because they
do not take into account the disparity information in stereo
images. To address this issue, researchers have developed
various communication modules to facilitate information
exchange between the left and right views. The introduction
of these communication modules significantly improves the
performance of stereo image super-resolution, as they en-
able two views to share information, thereby improving the
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Figure 2. The proposed HCASSR method.

overall quality of reconstruction results.
StereoSR [12] learns a mapping between continuous par-

allax shifts and a high-resolution image by jointly training
two cascaded sub-networks for luminance and chrominance,
respectively. PASSRnet [25] introduces a cross attention
module that specifically models remote dependencies in the
polar direction, while reducing computational and mem-
ory costs by limiting the scope of attention mechanisms.
iPASSR [30] further improves on PASSRnet [25] by intro-
ducing the biPAM module, which can aggregate information
from two views after each residual block and effectively han-
dle occlusion problems through a compact bidirectional dis-
parity structure. At the same time, SSRDE-FNet [6] focuses
on modeling the differences between two views, proposing
a unified architecture to estimate both disparity and super-
resolution results. By distorting the deep features of one
view based on disparity and using them to improve the re-
construction results of the other view, it further enhances the
performance of stereo image super-resolution. NAFSSR [5]
which inherits a strong and simple image restoration model,
NAFNet [2], significantly improves the final performance by
simplifying the cross-attention module, allowing for dense
information exchange after each block of the convolutional
super-resolution block, and wins the 1st place in the NTIRE
2022 Stereo Image Super-resolution Challenge [26].

With the rapid development of Transformer-based im-
age super-resolution methods, the field of stereo image
super-resolution has also ushered in new developments. Re-
searchers are trying to combine the Transformer’s superior
ability to extract image features with the cross-attention
mechanism in the CNN network. SwiniPASSR [13] explores
the use of disparity attention networks in the Transformer
structure and adopts a progressive training strategy, demon-

strating that better results can be achieved based on a sin-
gle view Transformer backbone. HTCAN [4] introduces
a hybrid Transformer and CNN attention network, which
employs a two-stage approach to reconstruct stereo images,
and wins the 1st place in Track 1 of the NTIRE 2023 Stereo
Image Super-resolution Challenge [27].

Therefore, our method is based on a hybrid network of
Transformer and CNN, which improves performance while
further reducing the number of parameters and the computa-
tional complexity.

3. The Method

In this section, more details about the proposed HCASSR
are provided. To improve stereo image resolution more
effectively and efficiently, we first improve the structure of
NAFSSR [5] and introduce the Residual Hybrid Attention
Group (RHAG) to better utilize the global information of
the image since it can activate more pixels and improve
the performance. In addition, data augmentation and multi-
stage training strategies are also training and testing-free
methods. To improve the performance of the model without
increasing the number of parameters and calculations, we
use various popular data augmentation methods, such as
flip, RGB channel shuffle, and so on. We also use different
loss functions in the training and fine-tuning stages, such as
Charbonnier Loss [15] and L2 loss [8].

3.1. Network Design

Fig. 2 gives an overview of our proposed HCASSR frame-
work, where we receive the low-resolution stereo images as
inputs and super-resolves both left and right view images.
More specifically, inspired by NAFSSR [5], our HCASSR
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Figure 3. Comparison between (a) self-attention and (b) permuted self-attention. To avoid spatial information loss, [35] proposes to reduce
the channel numbers and transfer the spatial information to the channel dimension.

also consists of three modules: intra-view feature extraction,
cross-view feature fusion, and reconstruction modules.

Intra-view feature extraction and reconstruction.
HCASSR has two weight-sharing branches to extract the
intra-view features of the left and the right view images re-
spectively. Firstly, the shallow features are extracted by a
3×3 convolution layer, which provides a preliminary spatial
mapping of the inputs. Then, the shallow features are fed
into N consecutive RHAG of HAT [3], which is beneficial to
activate more pixels and aggregate more global information.
We set N as 6. After feature extraction, the features are
upsampled by a scaling factor of 4 using a 3× 3 convolution
layer and a pixel shuffle layer [22]. Every RHAG contains
multiple Hybrid Attention Blocks (HAB), an Overlapping
Cross-Attention Block (OCAB), and a 3 × 3 convolution
layer, where the window size is set to 16. HAB combines
different types of attention mechanisms to activate more pix-
els for better reconstruction. The module consists of two
key components: Window-based Multi-head Self-Attention
(W-MSA) and Channel Attention Block (CAB). In addition,
to improve the performance and efficiency of the model, we
replace the W-MSA module with Permuted Self-Attention
(PSA) layer[35] to transfer the spatial information to the
channel dimension.

As shown in Fig. 3(b), taken an input feature map Fin ∈
RH×W×C and a token compression factor r, we first divide
Fin into P non-overlapping square patches F ∈ RPS2×C ,
where S is the size of each patch. Then, the Q, K, and V
are generated by three 1×1 convolution layers LQ, LK , LV :

Q,K,V = LQ(F), LK(F), LV (F). (1)

Here, the channel dimensions of Q are the same as F, like
Fig. 3(a). However, LK and LV reduce the channel di-
mension of F to C/r2, producing K ∈ RPS2×C/r2 and
V ∈ RPS2×C/r2 , which is different from Fig. 3(a). Next, in
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Figure 4. The SCAM module [5].

order to allow more tokens to participate in the self-attention
calculation and avoid an increase in calculation costs, we
arrange the spatial tokens in K and V into channel dimen-
sions, obtaining permuted tokens Kp ∈ RPS2/r2×C and
Vp ∈ RPS2/r2×C .

After that, the reshaped Kp, Vp and uncompressed Q
are performed PSA computation. The formulation can be
written as follows:

PSA(Q,Kp,Vp) = Softmax

(
QKT

p√
dk

+B

)
Vp, (2)

where B is the aligned relative position embedding, which
can be obtained by interpolating the original embedding
defined in [18] since the patch size of Q does not match
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that of Kp.
√
dk is a scalar as defined in [9]. In addition,

the above equation can be easily converted into a multi-
head version by dividing the channels into multiple groups.
In this way, PSA transfers the spatial information to the
channel dimension. The patch size of Kp and Vp can be
compressed to S

r ×
S
r while their channel dimensions remain

unchanged to ensure the expressive ability of the attention
map. Compared with the original W-MSA module, PSA can
use a larger window size with even fewer computations and
achieve better performance with a deeper network.

Cross-view feature fusion. The stereo image super-
resolution needs to process dual-view images. How to use
dual-view information to complement each other also de-
termines whether the model can achieve good results. Fol-
lowing [5], between the left and right branches, we also
insert a Stereo Cross Attention Module (SCAM) after each
RHAG to aggregate features extracted from the two views,
as shown in Fig. 4. Given stereo features produced by the
previous RHAG, SCAM performs bidirectional cross-view
attention and generates interaction features that are fused
with input features from the same view. Based on Scaled
DotProduct Attention [24], the SCAM computes the dot
products of the query with all keys and applies the softmax
function to obtain the weight of the values. While in the
stereo image super-resolution task, there is no vertical dis-
placement between the pixels corresponding to the left and
right views, and they are generally on the same horizontal
line. Therefore, the SCAM module only performs a dot
product on all tokens on the same horizontal line in the left
and right images without calculating vertical weights, which
is more effective for aggregating the cross-view features.

3.2. Training Strategies

Loss Function. The choice of loss function has a great
impact on the performance of the model. As with most
low-level visual tasks and competition methods, we use the
Charbonnier loss [15] in the training phase and finetune the
model with L2 loss [8], which helps optimize our HCASSR
for better results. The Charbonnier loss function LC is as
outlined below:

LC =
√
(ISR

L − IHR
L )2 + ε+

√
(ISR

R − IHR
R )2 + ε (3)

where ISR
L and ISR

R are the super-resolved left and right
images respectively, IHR

L and IHR
R are the ground truth. As

described in [15], the Charbonnier loss is more stable than
L1 loss since it introduces a regularization term ε, which
is set to 1× 10−6 in our training phase. In order to further
improve model performance, we change to L2 function in
the fine-tuning stage:

L2 = ∥ISR
L − IHR

L ∥2 + ∥ISR
R − IHR

R ∥2 (4)

The L2 loss is closer to the definition of PSNR and can help
the model achieve better quantitative results.

Table 1. Ablation studies of different components. We report the
results on Flickr 1024 [29] validation datasets. Note that, the MACs
is calculated on a stereo image pair of size 320× 192.

RHAG PSA Params MACs PSNR

✗ ✗ 0.88M 78.77G 23.6254
✓ ✗ 1.01M 148.78G 23.7963
✓ ✓ 0.92M 131.79G 23.8247

Table 2. Ablation studies of training strategies. We report the
results on Flickr 1024 [29] validation datasets.

Base L2 Loss 192× 192 Patch Data Ensemble PSNR

✓ ✗ ✗ ✗ 23.8247
✓ ✓ ✗ ✗ 23.8690
✓ ✓ ✓ ✗ 23.8834
✓ ✓ ✓ ✓ 23.9706

Training Patches. For low-level visual tasks, different
sizes of training patches have a significant impact on model
performance. To accommodate input images of different
sizes during the test phase, we use different patches for
multi-stage training. Specifically, we first randomly cut the
low-resolution input image into a regular 96 x 96 patch for
training, and then increase the size of the patch to 192 for
fine-tuning. Note that if the original image size is less than
192, we use the reflection-padding operation on the edges.

Data Augmentation. Beginning from Radu et al., who
propose rotation and flip data augmentation methods based
on spatial transformation, various low-level works have used
this method. In addition to flip and rotation, we also uti-
lize multiple data augmentations widely used at high-level
tasks, which are based on the pixel domain, such as Mixup
and RGB channel shuffle. Mixup randomly mixes two im-
ages in a certain proportion. RGB channel shuffle randomly
shuffles the RGB channels of input images for color enhance-
ment. These data augmentation approaches can be used not
only during training, but also to improve model performance
during testing. In order to balance the performance and cal-
culation cost, and meet the test requirements of the challenge
which limits the computational complexity (i.e., number of
MACs) to 400 G (a stereo image pair of size 320 × 180), we
use horizontal flipping, vertical flipping, and original input
stereo image pair to obtain higher PSNR.

4. Experiments

4.1. Implementation Detail

Dataset. The NTIRE 2024 Stereo Image Super-resolution
Challenge [28] uses 800 stereo image pairs for training,
112 pairs for validation, and 100 pairs for testing. Among
them, training and validation sets both come from the
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Table 3. Quantitative results achieved by different methods on the KITTI 2012 [10], KITTI 2015 [20], Middlebury [21], and Flickr1024 [25]
datasets. Here, PSNR/SSIM values achieved on both the left images (i.e., Left) and a pair of stereo images (i.e., (Left + Right) /2) are
reported. The best results are in bold faces.

Method Scale Params Left (Left + Right) /2

KITTI 2012 KITTI 2015 Middlebury KITTI 2012 KITTI 2015 Middlebury Flickr1024

VDSR [14] ×4 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR [19] ×4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN [34] ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN [33] ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR [12] ×4 1.42M 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet [25] ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
SRRes+SAM [31] ×4 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
IMSSRnet [17] ×4 6.89M 26.44/- 25.59/- 29.02/- 26.43/- 26.20/- 29.02/- -/-
iPASSR [30] ×4 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet [6] ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
PFT-SSR [11] ×4 - 26.64/0.7913 25.76/0.7775 29.58/0.8418 26.77/0.7998 26.54/0.8083 29.74/0.8426 23.89/0.7277
SwinFIR-T [32] ×4 0.89M 26.59/0.8017 25.78/0.7904 29.36/0.8409 26.68/0.8081 26.51/0.8135 29.48/0.8426 23.73/0.7400
NAFSSR-T [5] ×4 0.46M 26.69/0.8045 25.90/0.7930 29.22/0.8403 26.79/0.8105 26.62/0.8159 29.32/0.8409 23.69/0.7384
NAFSSR-S [5] ×4 1.56M 26.84/0.8086 26.03/0.7978 29.62/0.8482 26.93/0.8145 26.76/0.8203 29.72/0.8490 23.88/0.7468
CVHSSR-T [36] ×4 0.68M 26.88/0.8105 26.03/0.7991 29.62/0.8496 26.98/0.8165 26.78/0.8218 29.74/0.8505 23.89/0.7484

HCASSR (Ours) ×4 0.92M 26.93/0.8140 26.11/0.8028 29.88/0.8575 27.03/0.8200 26.85/0.8252 29.98/0.8578 24.04/0.7550

img_0023 (Left)

Bicubic EDSR [19] RDN [34] RCAN [33] StereoSR [12] SRRes+SAM [31]

iPASSR [30] SSRDE-FNet [6] NAFSSR-S [5] CVHSSR-T [36] HCASSR (Ours) Reference

img_0035 (Left)

Bicubic EDSR [19] RDN [34] RCAN [33] StereoSR [12] SRRes+SAM [31]

iPASSR [30] SSRDE-FNet [6] NAFSSR-S [5] CVHSSR-T [36] HCASSR (Ours) Reference

Figure 5. Visual results (×4) achieved by different methods on the Flickr1024 [25] dataset.

Flickr1024 [29] dataset, while the testing set contains an
additional set of 100 stereo image pairs. The low-resolution
input pairs of Track 1 are produced by downscaling with
the standard Bicubic method, while the input pairs of Track
2 is created with complex realistic degradations (i.e., blur,
downsampling, additive noise and JPEG compression).

Training Settings. Our proposed HCASSR network is

trained in a multi-stage strategy. We first train the model
with the Charbonnier loss [15] using the Adam optimizer
(β1 = 0.9 and β2 = 0.99) and stop after 400k iterations.
Then the model is fine-tuned with the L2 loss using the same
optimizer. The batch size is set to 16 and the patch size is first
set to 96×96 and then 192×192 for fine tuning. The learning
rate is initialized with 5 × 10−4 and set to 1 × 10−4 and
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img_000007 (Left)

(a) (b) (c) (d) (e) (f)
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img_000002 (Left)

(a) (b) (c) (d) (e) (f)
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Figure 6. Visual results (×4) achieved by different methods on the KITTI 2012 [10] (left) and KITTI 2015 [20] (right) dataset. (a) Bicubic.
(b) EDSR [19]. (c) RDN [34]. (d) RCAN [33]. (e) StereoSR [12]. (f) SRRes+SAM [31]. (g) iPASSR [30]. (h) SSRDE-FNet [6]. (i)
NAFSSR-S [5]. (j) CVHSSR-T [36]. (k) HCASSR (Ours). (l) Reference.

img_motorcycle (Left)

Bicubic EDSR [19] RDN [34] RCAN [33] StereoSR [12] SRRes+SAM [31]

iPASSR [30] SSRDE-FNet [6] NAFSSR-S [5] CVHSSR-T [36] HCASSR (Ours) Reference

Figure 7. Visual results (×4) achieved by different methods on the Middlebury [21] dataset.

2×10−5 respectively for the two fine-tuning processes above.
We implement our network with the Pytorch framework and
train it with 4 NVIDIA Tesla A100 GPUs. We also use a
cosine annealing strategy to update the learning rate. To
increase the diversity of the training dataset and avoid an
overfitting issue, the data is augmented by horizontal/vertical
flipping, random shuffling of RGB channels and Mixup. It
is worth noting that the number of parameters is restricted
to 1 M and the computational complexity is limited to 400
G (a stereo image pair of size 320 × 180) in the challenge.
Therefore, the model ensemble strategy is abandoned and
we only use three methods including the original image (the
other two are horizontal and vertical flipping) for the data
ensemble strategy to improve the performance.

4.2. Ablation Study

In this section, we perform a series of ablation experiments
to evaluate the performance of some modules mentioned in
Sec. 3.1 and training/testing strategies mentioned in Sec. 3.2.

The evaluation is performed with the Flickr1024 [29] valida-
tion dataset.

Effectiveness of modules. We use NAFSSR [5] as the
baseline to evaluate the RHAG and PSA modules in the net-
work. Note that, we have modified the depth and width in
NAFSSR to keep its number of parameters within 1 M. From
Tab. 1, we find that replacing the NAFBlock in NAFSSR
with the RHAG module in HAT (keeping the number of
parameters to about 1 M) can bring a performance improve-
ment of 0.17 dB PSNR. In addition, we introduce the PSA
module into the above model, which reduces the number of
parameters by 0.09M and the computational complexity by
17G, while improving the performance by almost 0.03 dB
PSNR.

Effectiveness of training strategies. In this study, we
conducted several experiments on training strategies to im-
prove performance. As shown in Tab. 2, we first use the
model trained with the Charbonieer loss [15] and 96 × 96
patch as the baseline. Then, we fine-tune the model with
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the L2 loss, which can bring a performance improvement of
0.0443 dB. We further improved the performance by fine-
tuning the model with 192× 192 patch size, which resulted
in an additional performance gain of 0.0144 dB. Finally,
the data ensemble strategy is applied in test time, which
includes the original image, horizontal and vertical flipping,
and improves the PSNR value by 0.0872 dB.

4.3. Comparison to State-of-the-arts Methods

Settings. Deviating from the description in Sec. 4.1, we use
data identical to iPASSR [30] to allow a fair comparison
with other methods. In detail, the training set includes 800
images from training set of Flickr1024 [29] and 60 images
from Middlebury [21]. Note that, following [30], we perform
a bicubic downsampling by a factor of 2 on the images of
the Middlebury dataset to generate high-resolution (HR)
ground truth images to match the spatial resolution of the
Flickr1024 dataset. We then apply bicubic downsampling
by a factor of 4 to the HR images to generate low-resolution
(LR) inputs. The testing set includes 20 images from KITTI
2012 [10] and 20 images from KITTI 2015 [20], 5 images
from Middlebury [21] and 112 images from the testing set
of Flickr1024 [25].

Quantitative Evaluations. We compare our HCASSR
with existing state-of-the-art super-resolution (SR) algo-
rithms, including SR methods for single images and SR
methods for stereo images. Single image SR methods in-
clude VDSR [14], EDSR [19], RDN [34], and RCAN [33].
Stereo image SR methods include StereoSR [12], PASSR-
net [25], SRRes+SAM [31], IMSSRnet [17], iPASSR [30]
and SSRDE-FNet [6], PFT-SSR [11], SwinFIR[32], NAF-
SSR [5], CVHSSR [36].

The quantitative comparison results are shown in Table 3.
Following [30], we report PSNR/SSIM scores on the left
images with their left boundaries (64 pixels) cropped, and
average scores on stereo image pairs (i.e., (Left + Right) /2)
without any boundary cropping. Compared with all networks
within 1 M parameters, our method achieves the best results.
Specifically, our method surpass previous state-of-the-art
model NAFSSR-S [5] by 0.1 dB, 0.09 dB, 0.26 dB, and 0.16
dB at KITTI 2012 [10], KITTI 2015 [20], Middlebury [21]
and Flickr1024 [25], respectively, which clearly shows the
effectiveness of the proposed HCASSR.

Visual Comparison. We show the visual comparison re-
sults for ×4 stereo SR on Flickr1024 [25], KITTI 2012 [10],
KITTI 2015 [20] and Middlebury [21]. As shown in Fig. 5,
our method produces richer details accurately without obvi-
ous artifacts in densely repeated texture areas. Specifically,
in the left figure of Fig. 6, only our method successfully re-
stores the horizontal texture on the rolling shutter door. The
right figure in Fig. 6 shows the effectiveness of our method
in reconstructing font edge details. Our method also recovers
clearer tire texture than other methods in Fig. 7.

Table 4. The final results in the NTIRE 2024 Stereo Image Super-
Resolution Challenge [28].

Track1 Track2

Rank PSNR (RGB) Rank PSNR (RGB)

1 23.6503 1 21.8724
2 23.6105 2 (Ours) 21.6983
3 (Ours) 23.6070 3 21.6702
4 23.5941 4 21.6691
5 23.5896 5 21.5935
6 23.5725 6 21.5655
7 23.5271 7 21.5313
8 23.4851 8 21.5238
9 23.4598 9 21.4970
10 23.4510 10 21.1994
11 23.4270 11 20.7642
12 23.3888 12 20.7518
13 23.1895 13 20.6167
14 23.0977 - -

4.4. NTIRE Stereo Image SR Challenge

We use the above method to participate in the NTIRE 2024
Stereo Image Super-resolution Challenge [28] Track 1 and
Track 2. Different from previous years, this challenge lim-
its the number of parameters to 1 M and the computational
complexity to 400 G (a stereo image pair of size 320 × 180)
in testing phase. Specifically, the computational complexity
of the data augmentations using in the test-time for the self-
ensemble is also taken into account. Therefore, we only use
three methods for data augmentation, including the original
image, horizontal flipping, and vertical flipping, and do not
use a model ensemble strategy. As a result, our final submis-
sion ranked 3rd on Track 1 with 23.6070 dB PSNR on the
test set and 2nd on Track 2 with 21.6983 dB PSNR on the
test set, as shown in Tab. 4.

5. Conclusion

In this work, we propose a lightweight Transformer-based
method HCASSR for stereo image super-resolution task,
which is stacked by a set of RHAGs with PSA modules
for effective intra-view feature extraction. We also insert
SCAM in two branches to aggregate intra-view and
cross-view features. Additionally, we utilize multi-stage
training strategies with data augmentation, hyperparameters
and loss functions to improve the performance of the
model without loss of efficiency. Extensive experiments
demonstrate the efficiency and effectiveness of the pro-
posed method in terms of both metrics and visual quality.
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