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Abstract

Recently, there has been a surge of interest in AI-
Generated Image Quality Assessment (AGIQA). Unlike
images in common image quality assessment tasks, AI-
generated images may suffer from some unique degrada-
tions. To this end, we propose a novel mixture-of-experts
boosted visual perception-driven and semantic-aware qual-
ity assessment for AI-generated images (MoE-AGIQA).
Firstly, we design a visual degradation-aware network to
ascertain perceptual rules by emulating human perception
of visual degradation. To enhance the diversity of vi-
sual degradation-aware features, we additionally devise a
prior knowledge injection module, which is pre-trained on
specific natural images. Secondly, we devise a semantic-
aware network to assess the inconsistency between input
text prompts and AI-generated images, and further de-
tect potential semantic problems. Thirdly, we propose to
conduct cross-attention on visual degradation-aware and
semantic-aware features, so that we can obtain compre-
hensive quality-aware features and the inherent correlation
between these features. Finally, we propose a mixture-of-
experts module, involving multiple experts working collab-
oratively. Each expert is responsible for a specific set of
features and outputs a corresponding prediction score. The
mixture of multiple experts will ultimately yield a holistic,
perceptual quality score. Experimental results on bench-
mark AGIQA datasets and the NTIRE 2024 Quality Assess-
ment for AI-Generated Content - Track 1 Image Challenge
demonstrate our superior performance. The source code is
available at https://github.com/37s/MoE-AGIQA.

1. Introduction
With the advent of the Artificial Intelligence Generated
Content (AIGC) era, millions of AI-generated images are
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A bicycle on top of a boat
A photo of an astronaut 

riding a horse in the forest

（b）

A banana without its peel
A pumpkin with a candle in 

it

（d）

Figure 1. Illustration of some unique degradations of AI-generated
images. (a), (b), (c), and (d) are examples of unreasonable com-
binations, unrealistic structures, mismatched image-text pairs, and
AI artifacts, respectively.

being created daily using AIGC models, including DALLE
[24], Stable Diffusion [27], etc. As a crucial indicator, im-
age quality can assist in evaluating the accuracy of these
AIGC models, enabling iterative improvements in their
performance to produce high-quality AI-generated images,
thereby better meeting user needs and expectations. How-
ever, unlike images in common image quality assessment
tasks [8, 9, 14, 34, 43], AI-generated images may suffer
from some unique degradations [32, 44], such as unrealis-
tic structures, unreasonable combinations, and mismatched
image-text pairs, etc., as depicted in Fig. 1. Therefore, there
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is an urgent need to design objective quality assessment
models specifically for AI-generated images.

Over the last few years, considerable efforts have been
invested in advancing the development of AI-Generated Im-
age Quality Assessment (AGIQA), including the construc-
tion of AGIQA datasets like AGIQA-1K [44], AGIQA-3K
[15], and AIGCIQA2023 [32], etc. Additionally, some AG-
IQA methods such as PSCR [38] and Q-Align [33], have
been proposed to assess the quality of AI-generated images.

Unfortunately, most existing methods [15, 32, 33, 38, 39,
44] predict quality scores based solely on AI-generated im-
ages, without considering the text prompts of these images.
This significantly limits the effectiveness of these methods
in coping with the problem of inconsistency between im-
ages and texts. Furthermore, some methods such as TIER
[40] cannot correlate well with human visual perception of
AI-generated images even when taking the information of
text prompts into account.

In summary, we identify three key challenges for evalu-
ating AI-generated images. First, conventional Image Qual-
ity Assessment (IQA) methods are primarily designed for
natural images. How can we accommodate existing meth-
ods for AI-generated images? Second, how can we ver-
ify whether AI-generated images are correlated with text
prompts, and evaluate image quality from a human visual
perception perspective simultaneously? Third, once we
have collected efficient features, how can we output a final
score that not only simulates the human decision-making
process, but also emulates the subjective score accurately?

To tackle the challenges mentioned above, we pro-
pose a novel Mixture-of-Experts (MoE) boosted AG-
IQA model (MoE-AGIQA) that is visual perception-driven
and semantic-aware. We start by introducing a visual
degradation-aware network to ascertain perceptual rules by
emulating human perception of visual degradation. To en-
hance the diversity of visual degradation-aware features, we
further devise a prior knowledge injection module, which
is pre-trained on specific natural images. Meanwhile, we
devise a semantic-aware network to assess the inconsis-
tency between input text prompts and AI-generated images,
and further detect potential semantic problems. To ob-
tain comprehensive quality-aware features and the inherent
correlation between visual degradation-aware features and
semantic-aware features, we conduct a cross-attention fu-
sion strategy on these features. Inspired by the MoE frame-
work [13, 29], we propose a Top-K expert module that dy-
namically selects experts for quality prediction, facilitating
adaptive learning of degradation-specific knowledge. The
main contributions are summarized as follows:
• We present a novel MoE-boosted AGIQA model (MoE-

AGIQA), which evaluates the quality of AI-generated im-
ages in a visual perception-driven and semantic-aware
manner.

• We propose to design IQA features for AI-generated
images from a human visual perception perspective,
where we devise a visual degradation-aware network, a
semantic-aware network, and a natural degradation priors
injection module to enrich the diversity of visual quality-
aware features.

• We propose a Top-K expert quality prediction mod-
ule, adaptively and comprehensively computing qual-
ity scores for AI-generated images. Extensive experi-
ments on benchmark AGIQA datasets demonstrate that
our method outperforms the state-of-the-art.

2. Related Work
2.1. Image Quality Assessment

The purpose of IQA is to automatically predict the qual-
ity of images, mimicking the perceptual preferences of hu-
man observers. In the last decades, numerous IQA meth-
ods have been proposed. Despite significant successes they
have achieved in assessing common images (e.g. , natural,
graphic, and screen content images) [6, 21, 30, 37, 42, 43],
IQA for AI-generated images remains a challenge. As a
new branch of IQA, there is a relative lack of research on
AGIQA. Yuan et al. [38] propose a patches sampling-based
contrastive regression framework, named PSCR, to lever-
age differences among various AI-generated images for en-
hancing representation learning. Despite having overcome
the limitations of previous models in utilizing reference im-
ages on a no-reference image dataset, they still struggle to
address the issue of image-text mismatch, as they rely solely
on AI-generated images for quality assessment. To address
this issue, Yuan et al. [40] propose a text-image encoder-
based regression framework, called TIER, which uses an
image encoder and a text encoder to extract features from
the AI-generated images and corresponding text prompts,
respectively.

Different from the methods discussed previously, our
method considers both visual degradation and semantic in-
formation, and uses natural degradation priors to further en-
hance the representation of visual degradation. Addition-
ally, we obtain comprehensive quality-aware features by
implementing a cross-attention mechanism that enables het-
erogeneous feature fusion. To make reliable quality predic-
tions for AI-generated images, we define multiple experts
and select the Top-K experts from them to collaboratively
complete the prediction process.

2.2. Vision-Language Model

Vision-language models have garnered significant atten-
tion in recent years due to their outstanding performance
in multi-modal learning. Among the pioneering models
in this field are CLIP [23] and BLIP [17], which have
achieved impressive results in various visual understand-
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Figure 2. The overall architecture of our model. Given an input AI-generated image, we aim to evaluate its quality. We extract visual
degradation-aware features from the AI-generated image. Meanwhile, we use a pre-trained vision-language model (PVLM) with the AI-
generated image and its corresponding text prompt, to generate semantic-aware features, and transform them by a linear projection to the
same embedding space with visual degradation-aware features. The quality-aware features are obtained through a cross-attention module.
Among them, visual degradation-aware features serve as query (Q), and semantic-aware features serve as key (K) and value (V). We define
a list of n quality prediction experts. First, the quality-aware features are parsed into the weight scores of experts through the feedforward
network (FFN) and a softmax layer, and then the weight scores are used to find the best k experts. Finally, the final quality score is obtained
by weighting the quality scores predicted by the best k experts.

ing tasks. This paper proposes leveraging the Pre-trained
Vision-Language Model (PVLM) (e.g. , [35]) as the back-
bone of the semantic-aware network to generate features
sensitive to semantic content, thus enriching the diversity
of quality-aware representation.

2.3. Sparse Mixture of Expert

Sparse MoE [7, 26] is a variant of the MoE [12] frame-
work that emphasizes efficiency and scalability by employ-
ing sparsity. In traditional MoE models, all experts con-
tribute to the prediction, which can be computationally ex-
pensive, especially when dealing with a large number of
experts. In sparse MoE models, only a subset of experts
actively participates in the prediction process for a given
input, while the remaining experts are dormant. The selec-
tion of active experts is typically determined dynamically
based on the input data, often through a gating mechanism
[3]. This allows the model to bypass unnecessary computa-
tions and focus only on the most relevant experts for a given
input, leading to improved efficiency and reduced computa-
tional costs. We utilize the degradation-specific knowledge
in quality-aware features to dynamically select experts and
adaptively apply experts to predict the quality scores of AI-

generated images.

3. Method

Overview. Given an input image generated by the Text-
to-Image (T2I) model, our goal is to predict its quality
score in conjunction with its corresponding textual prompt.
Our method leverages visual degradation information de-
rived from a pre-trained encoder, and semantic informa-
tion obtained from a Pre-trained Vision-Language Model
(PVLM), allowing for adaptive and comprehensive quality
assessment. The overall architecture is illustrated in Fig. 2.

Specifically, we adaptively and comprehensively predict
the quality of the input AI-generated image, divided into
three steps: i) visual degradation and semantic measure-
ment, using the visual degradation-aware network and the
semantic-aware network to individually measure the visual
degradation and semantics of the AI-generated image; ii)
quality-aware feature aggregation, acquiring quality-aware
representation by aggregating visual degradation-aware and
semantic-aware features; iii) Top-K expert quality predic-
tion, selecting the best k experts from a candidate list of
n quality prediction experts and obtaining the final quality
score by weighting the quality scores predicted by these ex-
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Figure 3. The framework of the visual degradation-aware network.

perts.

3.1. Natural Degradation Prior

We incorporate natural degradation priors to improve the
representation of visual degradation in our quality predic-
tion model. In Fig. 3, natural degradation prior knowledge
Hprior is obtained from a pre-trained encoder (e.g. , [5]),
and the process can be expressed as:

Hpriorv1

= Encp(I
d), Hpriorv1

∈ R1×Cv1

(1)

where Encp(·) represents the pre-trained encoder. The
class token state at the output of [5] is denoted as Hpriorv1

,
with Cv1 representing the channel dimension. Additionally,
to ensure that Hpriorv1

aligns with the embedding space of
size C for our quality prediction model, we employ a multi-
layer perceptron network MLP (·), which can be formu-
lated as:

Hprior = MLP (Hpriorv1

), Hprior ∈ R1×C (2)

3.2. MoE Boosted AGIQA Model

Visual Degradation and Semantic Measurement. To
effectively deal with various degradations in AI-generated
images, we comprehensively consider learning both visual
degradation and semantic information. Specifically, we
measure the visual degradation-aware feature map Mv and
semantic-aware feature map Ms for the AI-generated im-
age Id,

Mvv1

= Encv(I
d),Mvv1

∈ RL1×4Cv1

(3)

Msv1

= PV LM(Id, P txt),Msv1

∈ RL2×Cv1

(4)

where Encv (·) is the pre-trained encoder (e.g. , [5]),
PV LM (·, ·) represents the PVLM, L1 denotes the num-
ber of patches for Id, and L2 indicates the sequence length

of text prompt P txt. The Mvv1

is then passed to a feed-
forward network FFNv (·) for improving the feature local-
ity.

Mv = FFNv(M
vv1

),Mv ∈ RL1×C (5)

Meanwhile, the Msv1

transformed by a linear projection
Proj (·) to the same embedding space of size C as Mv .

Ms = Proj(Msv1

),Ms ∈ RL2×C (6)

Quality-Aware Feature Aggregation. Since the visual
degradation-aware and semantic-aware features are hetero-
geneous, we utilize a cross-attention mechanism to enable
the heterogeneous fusion of these features. The process is
described as:

Q = W q (Norm (Mv)) (7)

K,V = W k (Norm (Ms)) ,W v (Norm (Ms)) (8)

F dv1

= Attention (Q,K, V ) = Softmax
(
Q,K⊤)V

(9)

F d = Norm (Mv) + F dv1

(10)

where Norm (·) is LayerNorm, W q , W k, W v are lin-
ear projection functions. After passing through the cross-
attention fusion module, we obtain the comprehensive
quality-aware features F d.

Top-K Expert Quality Prediction. The degradation of
AI-generated images varies significantly, making it chal-
lenging to predict their quality consistently. To address
this issue, we utilize the degradation-specific knowledge in
quality-aware representation for adaptive and comprehen-
sive quality assessment. We have n candidate quality pre-
diction experts, {Ei|i = 1, ..., n}, tasked with handling dif-
ferent AI-generated images containing various degradation
types. Each candidate expert Ei specializes in mapping dis-
tortion representations of specific degradation types to qual-
ity scores. Specifically, the quality-aware features F d are
employed as the input for a feedforward network FFN t,
followed by a Softmax function that outputs normalized se-
lection scores W selection for n candidate experts,

W selection = Softmax(FFN t
(
F d

)
) (11)

The set
{
W selection

i |i = 1, ..., n
}

represents the likelihood
of utilizing the i-th expert Ei to map the distortion repre-
sentation of Id. To obtain a more reliable quality score, we
opt for the Top-K experts to make predictions collectively.
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Consequently, the final quality score S is computed by as-
signing weights to the quality scores (Sj , . . . , Sk) predicted
by the best k experts.

S =

k∑
j=1

(
Sj ·W selection

j

)
(12)

4. Experiment
4.1. Datasets

Pre-training Dataset. We use the IQA dataset KonIQ-
10K [11] to capture the human visual perception of realis-
tic distortions. Specifically, KonIQ-10K comprises 10,073
natural images, which are selected from a large-scale mul-
timedia dataset named YFCC100M [31].

Evaluation Datasets. Our method is evaluated on three
publicly available AGIQA datasets, including AGIQA-1K
[44], AGIQA-3K [15], and AIGCIQA2023 [32]. AGIQA-
1K consists of 1,080 AI-generated images produced by
two T2I models stable-inpainting-v1 and stable-diffusion-
v2 [27]. AGIQA-3K is the largest among the three
AGIQA datasets, which contains 2,982 images generated
from six T2I models including four diffusion-based mod-
els (GLIDE [22], Stable Diffusion V-1.5 [27], Stable Diffu-
sion XL-2.2 [28], Midjourney [10]), one GAN-based model
(AttnGAN [36]), and one auto-regressive-based model
(DALLE2 [25]). AIGCIQA2023 consists of 2,400 AI-
generated images created by six T2I models (such as Lafite
[45], Unidiffuser [1], and Controlnet [41], etc.) based on
100 text prompts. For each AGIQA dataset, 80% of the AI-
generated images contained in it are randomly sampled for
training and the rest 20% are used for testing.

4.2. Evaluation Metrics

Spearman’s Rank-Order Correlation Coefficient (SRCC)
and Pearson’s Linear Correlation Coefficient (PLCC) are
employed as evaluation metrics for our method, measuring
prediction monotonicity and precision, respectively. Both
SRCC and PLCC range from 0 to 1, with higher values in-
dicating a better performance of the AGIQA method. Fur-
thermore, a comprehensive metric known as the main score,
derived from the mean average of PLCC and SRCC, is also
provided.

4.3. Implementations Details

Our model has two generations, named MoE-AGIQA-v1
and MoE-AGIQA-v2, respectively. Among them, MoE-
AGIQA-v1 is used in NTIRE 2024 Quality Assessment
for AI-Generated Content - Track 1 Image Challenge, and
MoE-AGIQA-v2 is an optimized version of MoE-AGIQA-
v1 that introduces natural degradation priors. Specifically,
the only difference between them lies in the presence of the

Table 1. Quantitative comparison on the AGIQA-1K dataset. The
best and the second-best performance results are marked in bold-
face and italics, respectively.

Method AGIQA-1K
SRCC PLCC Main Score

ResNet50 [44] 0.6365 0.7323 0.6844
StairIQA [44] 0.5504 0.6088 0.5796
MGQA [44] 0.6011 0.6760 0.6386

WaDIQaM-NR [2] 0.7280 0.7791 0.7536
CONTRIQUE [20] 0.7930 0.8583 0.8257

PSCR [38] 0.8430 0.8403 0.8417
TIER [40] 0.8266 0.8297 0.8282

MoE-AGIQA-v1 0.8530 0.8877 0.8704
MoE-AGIQA-v2 0.8501 0.8922 0.8712

Table 2. Quantitative comparison on the AGIQA-3K dataset. The
best and the second-best performance results are marked in bold-
face and italics, respectively.

Method AGIQA-3K
SRCC PLCC Main Score

DBCNN [15] 0.8207 0.8759 0.8483
CLIPIQA [15] 0.8426 0.8053 0.8240
CNNIQA [15] 0.7478 0.8469 0.7824

WaDIQaM-NR [2] 0.2187 0.3934 0.3061
CONTRIQUE [20] 0.8073 0.8866 0.8470

PSCR [38] 0.8498 0.9059 0.8779
TIER [40] 0.8251 0.8821 0.8536

MoE-AGIQA-v1 0.8758 0.9294 0.9026
MoE-AGIQA-v2 0.8746 0.9282 0.9014

natural degradation priors injection module. MoE-AGIQA-
v1 lacks this module, while MoE-AGIQA-v2 incorporates
it. Our experiments are all implemented using PyTorch
2.0.0 and CUDA 12.0 based on a PC with four NVIDIA
A100 Tensor Core GPUs.

Pre-training. We utilize a ViT-Base/16 [5] with a two-
layer MLP as the original architecture of the natural degra-
dation priors injection module, which is pre-trained on
KonIQ-10K. The batch size is set to 16. We use the AdamW
[19] optimizer, with a weight decay of 1 × 10−5, a learn-
ing rate of 1 × 10−5 and a cosine annealing scheduler. It
takes about 10 hours to train the natural degradation priors
injection module, for 200 epochs.

Fine-tuning. During training, our model is trained for
100 epochs with a batch size of 16. The AdamW optimizer
with a weight decay of 1 × 10−5 is employed. The learn-
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Figure 4. Quality prediction ability of our method on AI-generated images produced by unseen T2I models in cross-dataset experiments.
We test MoE-AGIQA-v2, trained on AGIQA-3K, using the full AIGCIQA2023 dataset. Specifically, we assess eight AI-generated images
produced by two unseen T2I models (Lafite and Unidiffuser) from the AIGCIQA2023 dataset. The predicted quality scores generated by
MoE-AGIQA-v2 and MOS scores (higher is better) are placed at the bottom of each AI-generated image. Remarkably, both the rankings
of predicted quality scores and subjective MOS scores are identical.

Table 3. Quantitative comparison on the AIGCIQA2023 dataset.
The best and the second-best performance results are marked in
boldface and italics, respectively.

Method AIGCIQA2023
SRCC PLCC Main Score

CNNIQA [32] 0.7160 0.7937 0.7549
VGG16 [32] 0.7961 0.7973 0.7967
VGG19 [32] 0.7733 0.8402 0.8068

ResNet18 [32] 0.7583 0.7763 0.7673
ResNet34 [32] 0.7229 0.7578 0.7404

WaDIQaM-NR [2] - - -
CONTRIQUE [20] 0.8048 0.8271 0.8160

PSCR [38] 0.8371 0.8858 0.8615
TIER [40] 0.8194 0.8359 0.8277

MoE-AGIQA-v1 0.8729 0.8860 0.8795
MoE-AGIQA-v2 0.8751 0.8904 0.8828

ing rate is initialized with 1 × 10−5 and scheduled by the
cosine annealing strategy. Since we use ViT-Base/16 [5]
pre-trained on ImageNet [4] as the backbone of the visual
degradation-aware network, we random crop all input im-
ages into three sub-images with a spatial size of 224×224 or
384×384. For the sake of computational efficiency, we use
224×224 as the size of the input image in our experiments.
Meanwhile, for the semantic-aware network using the pre-
trained ImageReward [35] as the backbone, we resize all

input images to 224 × 224. Moreover, the backbone of
the visual degradation-aware network is frozen, 50% of the
transformer layers in the backbone of the semantic-aware
network are frozen, and the parameters of the remaining
modules can be tunable. The training loss applied is the
mean absolute error loss. During testing, for the visual
degradation-aware network, each input image is randomly
cropped 15 times. The final quality score is computed as the
mean of the quality scores from each cropped sub-image.

4.4. Results

Quantitative Comparison. We conduct comparisons
with existing methods on three AGIQA datasets and present
the performance results in Tab. 1, Tab. 2, and Tab. 3, re-
spectively. Our method achieves state-of-the-art perfor-
mance. Based on the results, we can draw several conclu-
sions. Firstly, our method benefits from the pair-wise learn-
ing strategy, allowing it to acquire both visual degradation-
aware and semantic-aware information. As a result, it out-
performs purely image-driven methods such as DBCNN
[15], CNNIQA [15], and PSCR [38], etc. Secondly, our
method dynamically selects sparse experts to learn shared
and distortion-specific knowledge. By leveraging this adap-
tive learning mechanism, our method is able to efficiently
identify and utilize relevant expertise for different degrees
and types of degradation present in AI-generated images.
Furthermore, by introducing prior knowledge of reality dis-
tortions, the performance of our method is further improved
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Table 4. The SRCC and PLCC results of MoE-AIGIQA-v2 on cross-dataset experiments. The best performance results are marked in
boldface.

Train Test WaDIQaM-NR CONTRIQUE MoE-AGIQA-v2
SRCC PLCC SRCC PLCC SRCC PLCC

AGIQA-1K AGIQA-3K -0.0672 -0.978 0.3024 0.2925 0.7483 0.7506
AIGCIQA2023 0.1472 0.1463 0.1113 0.1436 0.4295 0.4440

AGIQA-3K AGIQA-1K 0.1066 -0.0860 0.7197 0.7906 0.7101 0.8008
AIGCIQA2023 0.0136 -0.0207 0.6857 0.7078 0.7619 0.7547

AIGCIQA2023 AGIQA-1K - - 0.5810 0.6798 0.6619 0.7444
AGIQA-3K - - 0.6372 0.6561 0.7500 0.8152

Table 5. Comparison of each component of our method on the
AIGCIQA2023 dataset.

ViDN SeAN NDPM TKEM AIGCIQA2023
SRCC PLCC

✓ × × × 0.8452 0.8654
× ✓ × × 0.8640 0.8787
✓ ✓ × × 0.8671 0.8808
✓ ✓ × ✓ 0.8729 0.8860
✓ ✓ ✓ ✓ 0.8751 0.8904

Table 6. Ablation study of different input sizes for ViT in the back-
bone of the visual degradation-aware network on the AGIQA-3K
dataset.

Input Size AGIQA-3K
SRCC PLCC

224× 224 0.8746 0.9282
384× 384 0.8789 0.9294

on AGIQA-1K and AIGCIQA2023 datasets. This under-
scores the advantage of leveraging such pre-existing in-
sights. In conclusion, these findings underscore the ef-
fectiveness of our method in addressing the AGIQA task.
Our method not only outperforms existing methods but also
showcases a promising direction for future research in this
field.

Qualitative Comparison. To demonstrate the generaliza-
tion ability of our method, we conduct cross-dataset exper-
iments. Specifically, WaDIQaM-NR [2] and CONTRIQUE
[20] are selected for comparison. The results in Tab. 4 in-
dicate that our method effectively handles a variety of AI-
generated images using a single set of parameters. Fur-
thermore, the alignment between the rankings of predicted
quality scores and subjective MOS values shown in Fig. 4
further emphasizes the robust generalization ability of our

Table 7. Ablation study of various combinations for the outputs of
different layers of ViT in the backbone of the visual degradation-
aware network on the AIGCIQA2023 dataset.

AIGCIQA2023
SRCC PLCC

l = 12 0.8677 0.8853
l = 1, 2, 3, 4 0.8656 0.8861
l = 5, 6, 7, 8 0.8751 0.8904

l = 9, 10, 11, 12 0.8661 0.8853

method.

4.5. Ablation Studies

Model Architecture. In Tab. 5, we provide an ablation
study to verify the effectiveness of the visual degradation-
aware network (ViDN), semantic-aware network (SeAN),
natural degradation priors injection module (NDPM), and
Top-K expert quality prediction module (TKEM). The re-
sults indicate that each component plays a crucial role in
achieving optimal performance.

Visual Degradation-Aware Network. From Tab. 6, it is
evident that utilizing ViT-Base/16 with an input size of
384×384 yields optimal performance. This indicates a big-
ger resolution image provides more space to capture richer
visual degradation representations. In addition, in Tab. 7,
we test the outputs of different layers of ViT on the AIG-
CIQA2023 dataset. Our model performs best when select-
ing the outputs of the 5th, 6th, 7th, and 8th layers.

Semantic-Aware Network. The semantic-aware network
is proposed to acquire semantic information. By introduc-
ing this network, we can observe a significant improve-
ment in the performance of SRCC and PLCC. This proves
the effectiveness of semantic information. Furthermore, in
Tab. 8, we test different fixed rates for the transformer lay-
ers in the backbone of the semantic-aware network on the
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Table 8. Ablation study of different fixed rates for the transformer
layers in the backbone of the semantic-aware network on the AIG-
CIQA2023 dataset.

AIGCIQA2023 0.1 0.3 0.5 0.7

SRCC 0.8685 0.8701 0.8751 0.8694

PLCC 0.8879 0.8873 0.8904 0.8865

Table 9. Ablation study of different combinations of the number
of candidate experts n and the number of selected experts k on the
AIGCIQA2023 dataset. Our model performed best when n = 4
and k = 3.

AIGCIQA2023
SRCC PLCC

n = 2, k = 1 0.8703 0.8880
n = 2, k = 2 0.8714 0.8871
n = 3, k = 1 0.8613 0.8787
n = 3, k = 2 0.8628 0.8797
n = 3, k = 3 0.8614 0.8851
n = 4, k = 1 0.8633 0.8803
n = 4, k = 2 0.8668 0.8858
n = 4, k = 3 0.8751 0.8904
n = 4, k = 4 0.8684 0.8866

AIGCIQA2023 dataset. Our model performs best when the
fixed rate is set to 0.5.

Natural Degradation Priors Injection Module. The
natural degradation priors injection module is proposed to
introduce human impressions of realistic distortions. Re-
sults in Tab. 5 show that such prior knowledge is essential
for our method.

Top-K Expert Quality Prediction Module. Different
AI-generated images often exhibit varying degrees and
types of degradation and should be adaptively and compre-
hensively evaluated. Specifically, we select specific com-
binations of experts for different AI-generated images. In
Tab. 5, this module brings performance gains in SRCC and
PLCC. Furthermore, in Tab. 9, we tested different combina-
tions of the number of candidate experts n and the number
of selected experts k on the AIGCIQA2023 dataset. Our
model performed best when n = 4 and k = 3.

4.6. Results of the NTIRE 2024 Quality Assessment
for AI-Generated Content - Track 1 Image
Challenge

The objective of the NTIRE 2024 Quality Assessment for
AI-Generated Content - Track 1 Image Challenge [18] is to

Table 10. Results of the NTIRE 2024 Quality Assessment for AI-
Generated Content - Track 1 Image Challenge on the AIGIQA-
20K dataset. Our method won sixth place in the challenge.

Team Main Score

1st 0.9175
2nd 0.9169
3rd 0.9157
4th 0.9138
5th 0.9091

MoE-AGIQA-v1 (ours) 0.9087
7th 0.9068
8th 0.9044
9th 0.9023

10th 0.8835
11th 0.8736
12th 0.8715
13th 0.8628
14th 0.8613
15th 0.8595

develop a solution that accurately predicts the quality of AI-
generated images produced by T2I models in the AIGIQA-
20K dataset [16], thereby fostering advancements in the
field of multi-modal generation. The final results of the
challenge on the testing data are reported in Tab. 10, where
our method achieved sixth place in terms of the main score.

5. Conclusion

We propose a novel MoE-boosted AGIQA model, named
MoE-AGIQA, which evaluates the quality of AI-generated
images in a visual perception-driven and semantic-aware
manner. The key insight is to design features from a hu-
man visual perception perspective and emulate the human
decision-making process. Specifically, we propose a vi-
sual degradation-aware network, a semantic-aware network,
and a natural degradation priors injection module to en-
rich the diversity of visual quality-aware features. We
then predict the quality score of AI-generated images with
three steps: visual degradation and semantic measurement,
quality-aware feature aggregation, and Top-K expert qual-
ity prediction. Experiments on benchmark AGIQA datasets
show that our method outperforms the state-of-the-art by a
large margin.
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