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Abstract

In recent years, the rapid development of Artificial In-
telligence (AI) has facilitated the widespread use of AI-
Generated Images (AIGIs), a subset of Artificial Intel-
ligence Generated Content (AIGC). However, there are
prevalent issues associated with AIGIs, notably the unsat-
isfied quality of the generated images and the misalignment
between the generated images and their corresponding tex-
tual prompts. These challenges underscore the importance
of Image Quality Assessment (IQA) in the field of AIGIs
to provide more precise quality predictions that are con-
sistent with human perception. Responding to this need,
we introduce SF-IQA, a novel AIGC image quality met-
ric that integrates quality and similarity in a score fusion
manner. Specifically, we employ a multi-layer feature ex-
tractor and fusion module to extract and aggregate the lo-
cal and global-level features, facilitating the excavation of
quality-aware features. For image-text similarity, we fine-
tuned a strong vison-language model based on a powerful
perceptual-aware image-text alignment prior. With the as-
sistance of score fusion manner, our proposed SF-IQA ob-
tains state-of-the-art results on AGIQA-3K benchmarks and
achieves 4th place in the NTIRE 2024 Quality Assessment
of AI-Generated Content Challenge.

1. Introduction
With the rapid advancement of Artificial Intelligence (AI),
various models have been developed for generating AI-
Generated Images (AIGIs), which have played a crucial
role in various sectors such as entertainment, education, and
media. However, as illustrated in Fig. 1, AIGIs often suf-
fer from poor content quality and low similarity with the
corresponding textual prompts. To guide the generation of
AIGIs and evaluate the performance of AI Generated Con-
tent (AIGC) models, it is imperative to have an objective
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method to measure the quality of these generated images.
In the quality evaluation of AIGIs, it is essential to con-

sider not only the degradation but also the semantic consis-
tency between the image and the textual prompt. Typically,
traditional image quality usually relies on user experience
for different degradations [6, 14, 19, 27, 28, 30–32, 58, 63].
However, despite the great perceptual quality, the AIGC
images inevitably suffer from unmatched textures/contents
with corresponding prompts, resulting in sub-optimal gen-
eration. Semantic Similarity, denoting the alignment de-
gree of the generated image and the provided text prompt
from the perspectives of global high-level semantics, local
instance semantics, and certain object attribute consisten-
cies [17, 37, 62, 65], is another necessary aspect to measure
the quality of AIGIs [13, 15, 51, 52]. The former usually
relies on features extracted from pre-trained models to com-
pute the distance [8, 44] between generated images and nat-
ural images, or fine-tuning training based on existing non-
reference image quality assessment (NR-IQA) metrics [49].
The latter either employs pre-trained vision-language mod-
els [37] to extract image-text similarity or finetunes exist-
ing vision-language models [13] on extensive AIGC image
quality assessment datasets.

Obtaining an AIGI score that considers both image qual-
ity and image-text similarity from these features presents
a significant challenge. This score would provide a more
comprehensive evaluation of the AIGI, taking into account
both the visual quality of the image and its relevance to
the corresponding textual prompt. Developing such a scor-
ing system is a key research direction in the field of AI-
generated content.

Therefore, we introduce SF-IQA, an advanced AIGC im-
age quality metric that synergistically combines quality and
similarity via an innovative score fusion approach. In re-
sponse to the distinctive attributes of local and global dis-
tortion scopes, we utilize a multi-layered feature extraction
framework to fuse local and global-level features, enabling
the extraction of quality-aware representation. To obtain
image-text similarity in semantic space tailored for AIGC
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(a) soft blurred bokeh fuzzy po-
lice light night texture over black
background

(b) sniper joe from mega man

(c) photo of model nathalia
castellon

(d) portrait of beautiful princess.
ornate and intricate jewelry. ethe-
real background lighting. 4 k. oc-
tane render.

(e) Illustration Amanda a 14-year-old girl practicing meditation and mind-
fulness with her mother

Figure 1. Images generated by different models and prompts.
Fig. 1a and Fig. 1b have lower clarity and exhibit distortion.
Fig. 1c and Fig. 1d possess rich textures and exhibit higher qual-
ity. Fig. 1e is generated from the same prompt, both reflecting
“Illustration Amanda, a 14-year-old girl practicing meditation and
mindfulness”. However, they exhibit noticeable differences in
similarity. The image on the right lacks the “with her mother”
part, resulting in a lower similarity compared to the image on the
left.

image quality assessment, we finetune the vision-language
model, leveraging a powerful image-text alignment prior
from pic-a-pic [13]. Subsequently, the aforementioned de-
composed quality components are aggregated to represent
the overall quality of the AIGC image.

The contributions of this framework are summarized as
follows:
• We introduce SF-IQA, a novel AIGC image quality met-

ric that uniquely integrates image quality and text-image
similarity, marking a significant advancement in the eval-
uation of AI-generated images.

• SF-IQA employs a sophisticated multilayer feature ex-
traction and fusion module, effectively combining local
and global-level features for accurate quality-aware fea-
ture extraction, enhancing the assessment of AIGIs.

• We introduce an innovative score fusion approach, inte-
grating perceptual image scores with refined image-text
alignment, which significantly improves AIGI quality as-
sessment, obtaining state-of-the-art results on AGIQA-
3K benchmarks and achieving 4th place in the NTIRE
2024 Quality Assessment of AI-Generated Content Chal-
lenge [24].

2. Related work

2.1. Image Quality Assessment

No-Reference IQA (NR-IQA), which evaluates image qual-
ity without reference images, presents a more complex yet
universally applicable approach [6, 14, 18, 21–23, 31, 32,
63]. In the field of NR-IQA, the two most common model
architectures are CNN-based and Transformer-based mod-
els.
CNN-based IQA. Owing to the powerful feature ex-
traction capability of CNNs, many studies have employed
CNN-based models for quality evaluation. The mainstream
approach involves using feature learning and regression
models to learn features that adequately represent qual-
ity, thereby better-predicting image quality. CNNIQA [11]
was among the first to utilize convolutional neural networks
(CNNs) for IQA, predicting quality through score regres-
sion on the extracted features, and later advancing to multi-
task learning frameworks [12]. WaDIQaM-NR [2] demon-
strated joint learning of local quality and weights within
a unified framework, enhancing representation and under-
scoring the relative importance of local quality in global
quality estimation. HyperIQA [47] designed a hypernet-
work connection to model the mapping from image content
to perceived quality and integrated multi-scale local distor-
tion features for better image quality representation.
Transformer-based IQA. Despite CNNs capturing the lo-
cal structure of images, they struggle to capture non-local
information and exhibit strong local bias. IQA heavily re-
lies on both local and non-local features. Some works have
utilized attention mechanisms to aid in global modeling.
Maniqa [57], using ViT for feature extraction, applies atten-
tion across the channel and spatial dimensions to increase
the interaction among different regions of images globally
and locally. TReS [5] combines the capabilities of CNN and
transformer, focusing on both local and non-local features,
and reduces the bias generated by CNN’s local feature ex-
traction, leading to better quality perception. DEIQT [35]
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acknowledges that features extracted solely by the Trans-
former encoder may not adequately express the relationship
with quality, thus, it designed a decoder capable of extract-
ing information from attention-panel embedding, allowing
each part to learn image quality perception features from
unique perspectives. Additionally, the expansion of trans-
formers in large language models has led to a breakthrough
in integrating large language models (LLMs) in NR-IQA.
This integration combines natural language processing ca-
pabilities with IQA tasks. This multimodal approach has
opened new avenues for interpretability and efficiency in
IQA models [43, 48, 50].

2.2. AIGC Image Quality Assessment

With the rapid advancement of text-to-image (T2I) synthe-
sis, image quality assessment within Artificial Intelligence
Generated Content (AIGC) has become crucial for foster-
ing research and technological advancements that align with
human judgment for high-quality image generation. To sup-
port the progress in AIGC, numerous datasets have been in-
troduced to aid the development of quality assessment tasks
[13, 15, 16, 29, 49, 52, 56, 64]. Unlike conventional im-
age quality assessment, AIGCIQA not only evaluates the
quality of the image itself but also considers the consis-
tency between the generated image content and the accom-
panying text [7]. Initial efforts[8, 44] in assessing the qual-
ity of generated images focused on measuring the distri-
butional distance between generated and real images. In-
spired by CLIP[37], subsequent works have shifted atten-
tion to the similarity between generated images and text
prompts, adopting this perspective as an evaluative aspect
in AIGCIQA. StairReward [15] assesses alignment quality
down to the morpheme level, establishing a precise one-to-
one correlation between image segments and their respec-
tive morphemes. PSCR [59] introduces a patch-sampling-
based contrastive regression framework, leveraging the dif-
ferences among various generated images to learn a more
representative feature space. TIER [61] performs score
regression by extracting features from both generated im-
ages and their corresponding textual prompts using respec-
tive text and image encoders. Simultaneously, IP-IQA [36]
introduces a dual-stream architecture based on the CLIP
model, utilizing an incremental pretraining strategy and em-
ploying a cross-attention-based image-prompt fusion mod-
ule. This approach effectively merges visual and textual
modalities, exploring the significance of the correlation be-
tween text prompts and generated images in assessing the
quality of generated content.

3. Method
We propose a novel network architecture, SF-IQA (Score
Fusion for Image Quality Assessment), which uniquely es-
timates the quality of the image and the similarity between

the image and text in a distinct manner. This advanced
approach enables SF-IQA to predict the quality from a
more comprehensive perspective, making it more suitable
for evaluating AIGIs.

In this section, we first provide an overview of the overall
framework in Sec. 3.1. In Sec. 3.2, we describe the Qual-
ity Perception Branch, which is responsible for extracting
the quality features of the image. In Sec. 3.3, we detail the
Similarity Assessment Branch, which extracts the seman-
tic similarity of the image and text. Finally, in Sec. 3.4,
we describe the Score Fusion Module, which combines the
quality score and the similarity score to provide a compre-
hensive evaluation of the AIGI’s quality.

3.1. Overall Framework

As depicted in Fig. 2, the SF-IQA architecture is designed
into a hybrid framework, which consists of a Quality Per-
ception Branch, a Similarity Assessment Branch, and a
Score Fusion Module. The Quality Perception Branch,
rooted in the input image I , utilizes a multi-layer feature
extractor to aggregate local and global-level features, facili-
tating the excavation of quality-aware features. The quality
prediction can be represented as Q(I). The Similarity As-
sessment Branch integrates the input image I with the tex-
tual prompt T and leverages an advanced vision-language
model [13] to assess the similarity between visual and tex-
tual prompts, resulting in a similarity score, S(I, T ). Fi-
nally, the Score Fusion Module combines scores from both
the Quality Perception and Similarity Assessment Branches
using innovative fusion layers to produce the overall quality
prediction for AIGI, expressed as P (I, T ).

P (I, T ) = F (Q(I), S(I, T )) (1)

where F denotes Score Fusion Module.

3.2. Quality Perception Branch

As illustrated in Fig. 1, the local texture of AIGIs is es-
sential for predicting the quality of AIGIs. We require a
model capable of handling high-resolution images and cap-
turing both the local texture details and global high-level
information of the image. The Swin Transformer V2[26]
is capable of processing high-resolution images and captur-
ing local details of the image. Therefore, in our proposed
framework, we adopt the Swin Transformer V2 as a quality
perception branch Q(·) to extract powerful features for low-
level details excavation. However, the Swin Transformer
V2 falls slightly short in capturing global information. To
address this, as shown in Fig. 2, we propose a Multilayer
Feature Extractor and Fusion improvement to enhance the
modeling of global features.

Specifically, we extract multi-level features from mul-
tiple layers within the Swin Transformer V2, which are
subsequently aggregated through a transformer encoder to
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Figure 2. The proposed method’s framework, wherein the Quality-aware Feature and Semantic Feature are extracted respectively by Swin
Transformer V2[26] and the pre-trained CLIP-style model[13, 38]. Ultimately, the quality scores and similarity scores are fused, and they
are regressed to form the MOS for the AIGIs.

obtain a global feature. The global features can provide
high-level information for the quality of AIGIs. Simulta-
neously, the Swin Transformer V2 extracts local features
from the image. These local features can capture the
fine-grained details of the image. Finally, the global and
local features are concatenated to construct an enhanced
representation, thereby facilitating the extraction of quality-
aware characteristics. This combined feature representation
leverages the strengths of both global and local features,
providing high-level and detailed information about the
image, thereby enhancing the performance of our AIGIs
quality assessment task. Finally, we fit the perceptual
quality features of the image through a linear layer to
obtain a predicted quality score Q(I).

3.3. Similarity Assessment Branch

Building upon the framework established by the Contrastive
Language–Image Pretraining (CLIP) model [38], we fine-
tune our approach to extract and analyze semantic features
from both textual prompts and their generated images. The

integration of CLIP empowers our model to extract the un-
derlying semantic similarity between text and image modal-
ities, due to its pretraining on the web-scale image-text
pairs.

Utilizing a methodology akin to the one employed in
the PickScore architecture, described by [38], our similarity
score function, S, intricately computes a scalar value encap-
sulating the degree of semantic alignment between prompt
T and image I . Our scoring function is calculated using
the inner product of the d-dimensional vectors I and T ,
produced by the image and text encoders, and scaled by a
learned scalar t. The formulation of our scoring function
can be succinctly expressed as:

S(I, T ) = Etxt(T ) · Eimg(I) · t (2)

where Etxt(T ) and Eimg(I) denote the encoded represen-
tations of the textual prompt and the image, respectively.
And S(I, T ) quantitatively measures the similarity between
the generated images and their corresponding textual de-
scriptions.
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(a) Training split (b) Testing split

Figure 3. Distribution of labeled MOS in our custom split of the
AIGIQA-20K dataset.

3.4. Score Fusion Module

Upon acquiring the predicted score of quality (Q(I) and
similarity S(I, T ), we proceed by concatenating these
scores into a two-dimensional vector:

v = [Q(I), S(I, T )] (3)

This concatenated vector, v, is then projected into a
higher-dimensional space through a fully-connected (FC)
layer characterized by weights W1 and bias b1, further re-
fined by a Rectified Linear Unit (ReLU) to introduce non-
linearity, enhancing the Score Fusion Module’s capacity for
complex representations. Subsequently, z undergoes an-
other linear transformation, delineated by weights W2 and
bias b2, to obtain a final evaluation score, P (I, T ). This
score fulfills a comprehensive assessment of the AIGIs, en-
capsulating both perceptual quality and semantic similarity
metrics. The process of the Score Fusion Module is encap-
sulated in the following equation in Eq. 4 and Eq. 5:

z = ReLU(W1v + b1) (4)

P (I, T ) = W2z+ b2 (5)

4. Experiments
4.1. Datasets and Evaluation Criteria

Datasets. In our study, we selected four NR-IQA datasets
for pre-training, including CLIVE[4], KonIQ-10K[10],
LIVE[46], KADID-10K[20]. Among these, KonIQ-10K
and CLIVE are real distortion datasets, while LIVE and
KADID-10K are synthetic distortion datasets.

We also selected four AIGC-IQA datasets for pre-
training, including AGIQA-1k[64], AGIQA-3K[15],
AIGCIQA2023[49] and PKU-I2IQA[60].

For the AIGIQA-20K dataset[16], as the official valida-
tion and testing splits have not yet been released, we per-
form a custom train-test split on the training set and conduct

(a) Training split (b) Testing split

Figure 4. Distribution of Method in our custom split of the
AIGIQA-20K dataset.

training and ablation experiments on this dataset. Specifi-
cally, we divide the annotated 14000 AIGIs into two parts:
11200 AIGIs for training and 2800 AIGIs for testing. As
shown in the Fig. 3 and Fig. 4, our train-test split is consis-
tent with the distribution of MOS and AIGC methods.
Evaluation Criteria. Spearman’s Rank-Order Correlation
Coefficient (SRCC) and Pearson’s Linear Correlation Coef-
ficient (PLCC) are selected as the criteria for measuring the
accuracy and consistency of the predictions, respectively.
Both of these metrics range from 0 to 1. A larger SRCC in-
dicates a more accurate ranking ability of the model, while
a larger PLCC indicates a more accurate fitting ability of
the model. We also use the average of PLCC and SRCC,
named main score, as the performance evaluation metric for
our model.

4.2. Implementation Details

Our experiments are conducted on an NVIDIA GeForce
3090 GPU, using PyTorch 2.2.0 and CUDA 11.8 for train-
ing and testing. All ablation studies are performed on the
custom split of the AIGIQA-20K dataset.
Quality Perception Branch. We chose the SwinV2-T[26],
pre-trained on ImageNet-1K[42], as the backbone network.
For the NR-IQA datasets, we adjusted the larger edge of
the image to 512 while maintaining the aspect ratio. During
training, images were randomly cropped to a size of 256
x 256 and were horizontally and vertically flipped with a
probability of 0.5. We used an Adam optimizer with a learn-
ing rate of 0.00002 and a weight decay of 0.0005, along
with a cosine annealing scheduler. The batch size was set
to 32, and the training was conducted for 70 epochs. Sub-
sequently, we pre-trained on the AIGC-IQA datasets, using
SAMA[25] to process the images to a size of 256 x 256.
SAMA is an image and video processing strategy based on
scaling and masking. We used an Adam optimizer with a
learning rate of 0.000002 and a weight decay of 0.0005,
along with a cosine annealing scheduler. The batch size was
set to 32, and the training was conducted for 20 epochs.
Similarity Assessment Branch. We used PickScore[13],
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All Bad Model Medium Model Good ModelType Metric SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
CEIQ[55] 0.3228 0.4166 0.1754 0.2094 0.2775 0.3043 0.1743 0.1643
DSIQA[3] 0.4955 0.5488 0.1908 0.3139 0.2140 0.3655 0.1665 0.2520
NIQE[32] 0.5623 0.5171 0.2031 0.3309 0.2259 0.2526 0.1750 0.2533Hand-crafted

Sisblim[6] 0.5479 0.6477 0.2887 0.3341 0.0540 0.2932 0.0417 0.2110
FID[8] 0.1733 0.1860 0.1836 0.1938 0.1402 0.1614 0.0562 0.0798
ICS[45] 0.0931 0.0964 0.0243 0.1692 0.0797 0.1693 0.0856 0.1042Loss-function
KID[1] 0.1023 0.0786 0.0028 0.0187 0.1279 0.0860 0.0704 0.0614

BMPRI[31] 0.6794 0.7912 0.3686 0.4076 0.2374 0.3760 0.2046 0.2212
GMLF[54] 0.6987 0.8181 0.3942 0.4798 0.2578 0.4036 0.0018 0.0834SVR-based
Higrade[14] 0.6171 0.7056 0.3017 0.3001 0.2376 0.2861 0.2020 0.2164
DBCNN[63] 0.8207 0.8759 0.5520 0.6825 0.5011 0.5575 0.4288 0.4853
CLIPIQA[48] 0.8426 0.8053 0.1882 0.2549 0.6537 0.6014 0.5038 0.5081
CNNIQA[11] 0.7478 0.8469 0.3233 0.4547 0.4278 0.4534 0.3952 0.4517
HyperNet[47] 0.8355 0.8903 0.5086 0.5985 0.4687 0.5480 0.5562 0.6149

DL-based

SF-IQA(quality) 0.9024 0.9314 0.4936 0.5237 0.6739 0.7468 0.8239 0.8634
CLIP[37] 0.5972 0.6839 0.5463 0.5355 0.2272 0.2916 0.2420 0.3342

ImageReward[52] 0.7298 0.7862 0.5652 0.6869 0.4464 0.5109 0.3925 0.4966
HPS[51] 0.6349 0.7000 0.5255 0.5803 0.2762 0.3516 0.3126 0.3498

PickScore[13] 0.6977 0.7633 0.4293 0.5588 0.3962 0.3924 0.4183 0.4743
StairReward[15] 0.7472 0.8529 0.5401 0.7076 0.4642 0.5423 0.4411 0.5581

Similarity

SF-IQA(similarity) 0.8454 0.9072 0.3906 0.4345 0.6574 0.7472 0.7144 0.6965

Table 1. Performance results of quality metrics and similarity metrics on the AGIQA-3K [15] and different subsets of Text-to-Image AIGI
models. The best performance results for quality prediction are marked in red, while the best performance results for similarity prediction
are marked in blue.

pre-trained on Pick-a-Pic[13], as the backbone network. It
is a CLIP-style model with a variant of InstructGPT’s re-
ward model objective[34].

4.3. Comparison with SOTA Results

In Tab. 1, AGIQA-3K [15] is used to conduct a compre-
hensive evaluation against the state-of-the-art (SOTA) met-
rics, we follow the dataset partitioning guidelines specified
within. This methodology involved a random division of
AGIQA-3K into training and testing subsets at an 80/20 ra-
tio, with an emphasis on ensuring the image with the same
object label falls into the same set.

Same as AGIQA-3K, In our analysis, AIGI mod-
els were classified into three distinct categories based
on their subjective performance/alignment score, namely
bad model (AttnGAN[53], GLIDE[33]), medium model
(DALLE2[39], Stable Diffusion[40]), and good model
(Midjourney[9], Stable Diffusion XL[41]). This classifica-
tion allowed for a targeted analysis of the assessment con-
sistency of the perception model.

With different training objectives, we developed
two different models, named SF-IQA(quality) and SF-
IQA(similarity). Each model was meticulously trained on
its respective label type, thereby enabling an independent

examination of both perceptual quality and semantic simi-
larity.

This bespoke approach yielded superior results for both
SF-IQA variants across medium and good AIGI models, as
benchmarked on AGIQA-3K, establishing new SOTA met-
rics. Notably, the observed decline in performance met-
rics for models classified as bad indicates the challenges for
our model inherent in extracting meaningful features from
images that markedly deviate from naturalistic representa-
tions.

4.4. Ablation Studies

In order to further analyze the effectiveness of each branch
and the impact of different fusion methods, we conducted
ablation experiments on the custom split AIGIQA-20K
dataset.
Ablation on the Image Semantic Feature Extraction. For
the extraction of image semantic features (ISFE), we con-
sidered two approaches, namely detached ISFE and inde-
pendent ISFE. Detached ISFE involves separating the im-
age semantic features from the image features, which are
obtained from the quality perception branch. Independent
ISFE involves using an image encoder to obtain image se-
mantic features directly from the image. The advantage
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Quality Similarity Score Fusion PLCC SRCC Main Score
✓ ✓ ✓ 0.9288 0.9006 0.9145
✓ × × 0.8931 0.8503 0.8717
× ✓ × 0.9118 0.8784 0.8951
✓ ✓ × 0.9192 0.8870 0.9031

Table 2. Ablation on the branch structure and score fusion.

of the former is that it can use a simpler model structure.
However, since the features obtained from the image fea-
ture extraction module also need to be used for the extrac-
tion of quality-aware features of the image, the separation
of semantic features may negatively impact the extraction
of quality-aware features.

The results in Tab. 3 show the effectiveness of inde-
pendent ISFE(Image Semantic Feature Extraction). The
practice of separating quality-aware features and semantic
features from the extracted image features led to poorer
results. This may be due to the separation of semantic
features interfering with the extraction of quality-aware
features, and the semantic features extracted in this way
lack the prior for similarity prediction.
Ablation on the Similarity Score. For the similarity
score, consider the use of a cross-attention module or
inner product. In the Cross Attention module, we have
an image semantic feature Eimg(I) as query and a text
semantic feature Etxt(T ) as both key and value. We can
then use the resulting attention output as a representation
of the interaction between the two features to fit the final
similarity score through the linear layer. The results in
Tab. 4 show that the Inner Product approach is better than
the Cross Attention approach. This may be due to the
complexity of the structure which increases the difficulty
of the model training.
Ablation on the Branch Structure. The results in Tab. 2
demonstrate the validity of the quality prediction branch
and the similarity assessment branch we used. Note that the
Similarity branch is actually a fine-tuned PickScore. The
results show that the individual branches still have good
performance in the evaluation of AIGIs, indicating that the
design of each branch is reasonable and that the evaluation
of AIGIs is related to quality prediction and similarity
prediction respectively.
Ablation on the Score Fusion. The results in Tab. 2 prove
the effectiveness of the score fusion strategy and our score
fusion module. Compared with the single branch structure,
using a mean of quality score and similarity score can
bring about performance improvement, which indicates
that the score fusion strategy is better than considering the
quality scores or similarity scores alone for the evaluation
of AIGIs. However, the results in Tab. 2 indicate that using
a score fusion network to perform comprehensive quality
fitting will bring more effective performance.

Independent ISFE PLCC SRCC Main Score
× 0.8793 0.8297 0.8545
✓ 0.9288 0.9006 0.9145

Table 3. Ablation on the image semantic feature extraction.

Similarity PLCC SRCC Main Score
Inner Product 0.9288 0.9006 0.9145

Cross Attention 0.8861 0.8449 0.8555

Table 4. Ablation on the similarity score.

Ranking Team name Main Score
1 pengfei 0.9175
2 MediaSecurity SYSU&Alibaba 0.9169
3 geniuswwg 0.9157
4 Ours 0.9138
5 QA-FTE 0.9091
6 HUTB-IQALab 0.9087
7 IQ Analyzers 0.9065
8 PKUMMCAL 0.9044
9 BDVQAGroup 0.9023
10 JNU 620 0.8835
11 MT-AIGCQA 0.8736
12 IVL 0.8715
13 z6 0.8628
14 Oblivion 0.8613
15 IVP-Lab 0.8595

Table 5. Compared to others, we get fourth place in the main score,
which was obtained on the AIGIQA-20K[16] test set.

4.5. Comparison with Others

The final ranking of the test phase in NTIRE 2024 Quality
Assessment of AI-Generated Content Challenge is shown
in Tab. 5. The SF-IQA achieved fourth place in the main
score.

5. Conclusion
In this work, we introduce a framework, SF-IQA (Score Fu-
sion for Image Quality Assessment), which evaluates the
quality of AI-Generated Images (AIGIs) by integrating im-

6698



age quality and image-text similarity. Structurally, SF-IQA
comprises two branches that consider the quality score of
the image and image-text similarity score respectively, and
uses the design of the Score Fusion Module effectively to
combine image quality and image-text similarity. This fu-
sion allows for a more comprehensive and accurate assess-
ment of AIGI quality, taking into account both the visual
quality of the image and its relevance to the corresponding
textual prompt.

Furthermore, experimental results in s on the AGIQA-
3K database and different subsets of Text-to-Image
AIGI models prove the prediction ability of SF-IQA,
and ablation studies were conducted to verify the effec-
tiveness of each component in the SF-IQA framework.
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