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Abstract

Low-light photography presents significant challenges.
Multi-image processing methods have made numerous at-
tempts to obtain high-quality photos, yet remain unsatis-
factory. Recently, bracketing image restoration and en-
hancement has received increased attention. By leverag-
ing the full potential of multi-exposure images, several tasks
(including denoising, deblurring, high dynamic range en-
hancement, and super-resolution) can be jointly addressed.
This paper reviews the NTIRE 2024 challenge on bracketing
image restoration and enhancement. In the challenge, par-
ticipants are required to process multi-exposure RAW im-
ages to generate noise-free, blur-free, high dynamic range,
and even higher-resolution RAW images. The challenge
comprises two tracks. Track 1 does not incorporate the
super-resolution task, whereas Track 2 does. Each track
featured five teams participating in the final testing phase.
The proposed methods establish new state-of-the-art perfor-
mance benchmarks.

1. Introduction

Low-light photography is a widely desired yet challeng-
ing problem. Recent years have witnessed significant ad-
vancements in enhancing low-light image quality through
learning-based methods. In comparison with single-image

*Zhilu Zhang, Shuohao Zhang, Renlong Wu, Wangmeng Zuo, and
Radu Timofte are the NTIRE 2024 challenge organizers, as shown in Ap-
pendix A. The other authors are participants in this challenge, as shown in
Appendices B and C.

restoration (e.g., denoising [1, 9, 30, 45, 49, 94, 98, 99],
deblurring [18, 62, 66, 74, 95, 97], and super-resolution
(SR) [41, 46, 48, 51, 100, 102, 103]) and enhancement (e.g.,
high dynamic range (HDR) reconstruction [15, 26, 42, 55,
69, 110]), multi-image processing methods offer more ad-
vantages in mitigating the ill-posed nature of this problem
and can generate results with higher fidelity.

Several multi-image processing works are summarized
in Tab. 1. Within these works, burst and dual-exposure im-
ages have limited dynamic range, making it difficult to re-
store underexposed or overexposed details. Multi-exposure
images contain richer information, while most methods
based on them require ideal prerequisites (e.g., no noise
or no blur). More recently, Zhang et al. [106] consider a
more realistic situation of multi-exposure images, encom-
passing noisy, blurry, underexposed, overexposed content,
as well as inter-frame misalignment. They utilize the com-
plementarity of exposure bracketing images to integrate im-
age restoration and enhancement tasks, thereby generating a
noise-free, blur-free, HDR, and high-resolution image. This
new objective, termed bracketing image restoration and en-
hancement, is proposed.

This paper reviews the NTIRE 2024 Challenge on
Bracketing Image Restoration and Enhancement, which
aims to foster further research and establish state-of-the-art
benchmarks. Participants are tasked with generating noise-
free, blur-free, HDR, and even higher-resolution RAW im-
ages from five multi-exposure RAW images. The challenge
consists of two tracks: Track 1 and Track 2. Track 1 does
not incorporate the super-resolution task, whereas Track 2
does. In the final testing phase, each track featured the par-
ticipation of five teams. This report briefly describes their
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solutions and reports their performance. Their proposed
methods have set new state-of-the-art benchmarks in brack-
eting image restoration and enhancement.

2. NTIRE 2024 Challenge

Bracketing Image Restoration and Enhancement is one
of the NTIRE 2024 associated challenges (https://
cvlai.net/ntire/2024/), which include dense and
non-homogeneous dehazing [3], night photography render-
ing [4], blind compressed image enhancement [91], shadow
removal [77], efficient super resolution [70], image super
resolution (×4) [16], light field image super-resolution [80],
stereo image super-resolution [78], HR depth from images
of specular and transparent surfaces [93], bracketing im-
age restoration and enhancement [107], portrait quality as-
sessment [10], quality assessment for AI-generated con-
tent [53], restore any image model (RAIM) in the wild [47],
RAW image super-resolution [19], short-form UGC video
quality assessment [44], low light enhancement [54], and
RAW burst alignment and ISP challenge.

2.1. Overview

The objectives of NTIRE 2024 Challenge on Bracket-
ing Image Restoration and Enhancement are as follows:
(1) highlighting the problems and promoting the research
in bracketing image restoration and enhancement, (2) es-
tablishing high-quality benchmarks for bracketing image
restoration and enhancement and facilitating comparisons
between various methods, (3) providing a platform for aca-
demic and industrial participants to engage, discuss, and po-
tentially establish collaborations.

The challenge has two tracks, i.e., Track 1 (https://
codalab.lisn.upsaclay.fr/competitions/
17573) and Track 2 (https://codalab.lisn.
upsaclay.fr/competitions/17574). Track 1 uti-
lizes bracketing photography to unify basic restoration (i.e.,
denoising and deblurring) and enhancement (i.e., HDR
reconstruction), named BracketIRE. Track 2 appends the
×4 super-resolution task, dubbed BracketIRE+. The in-
puts are five multi-exposure RAW images. The output
should be a noise-free, blur-free, HDR, and even higher-
resolution (only for Track 2) RAW image. Participants can
develop novel network architectures and other techniques
to achieve the goal. Besides, we provide a simple im-
age signal processing (ISP) toolkit (https://github.
com/cszhilu1998/BracketIRE/tree/master/
NTIRE2024) for converting the output RAW images into
16-bit RGB images for evaluation and visualization. We
also provide codes and pre-trained models of a baseline
(i.e., TMRNet [106]) at this URL.
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Figure 1. Overview of data simulation pipeline. HDR video is uti-
lized to synthesize multi-exposure images {Yi}Ti=1 and the corre-
sponding GT image X. S denotes the exposure time ratio between
Yi and Yi−1. Yi is obtained by summing and processing Si−1

({i−1}-th power of S) images from HDR raw video V. Qi denotes
the total number of images from V that participate in constructing
{Yk}ik=1.

2.2. Datasets

We follow the data simulation pipeline [106] to provide syn-
thetic datasets for BracketIRE and BracketIRE+ tasks, as
shown in Fig. 1. First, we perform ×32 frame interpolation
with RIFE [34] on HDR videos from Froehlich et al. [28].
Then, we convert the RGB videos to RAW space, getting
HDR RAW sequences{Vm}Mm=1.

Next, we introduce degradations to construct multi-
exposure images, mainly including the following 5 steps.
(1) Bicubic ×4 down-sampling is applied to obtain low-
resolution images, which only serves for BracketIRE+ task.
(2) Each video is split into T non-overlapped groups, where
i-th group should be used to synthesize Yi. (3) Denote the
exposure time ratio between Yi and Yi−1 by S. We se-
quentially move Si−1 ({i−1}-th power of S) consecutive
images into the above i-th group, summing them up to sim-
ulate blurry images. (4) We transform the HDR blurry im-
ages into low dynamic range (LDR) ones by cropping val-
ues outside the specified range and mapping the cropped
values to 10-bit unsigned integers. (5) We add the het-
eroscedastic Gaussian noise [9, 32, 79] to LDR images to
generate the final multi-exposure images (i.e., {Yi}Ti=1).
The noise variance is a function of pixel intensity, whose
parameters are estimated from the real-world images cap-
tured by Xiaomi 10S smartphone when ISO is set to 1,600.

The first frame V1 in HDR video clip is taken as a
ground truth (GT) image, whose resolution is 1,920×1,080.
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Table 1. Comparison between various multi-image processing manners.

Setting Methods Input Images
Supported Tasks

Denoising Deblurring HDR SR

Burst Denoising [29, 31, 64, 71, 86]

Burst

✓
Burst Deblurring [2, 21, 68, 83] ✓
Burst SR [22, 82, 84] ✓
Burst Denoising and SR [5–8, 24, 25, 39, 61, 63, 85] ✓ ✓
Burst Denoising and HDR [27, 33] ✓ ✓

Dual-Exposure Image Restoration [12, 38, 65, 72, 92, 104, 108] Dual-Exposure ✓ ✓

Basic HDR Imaging [36, 57, 67, 75, 88, 89, 105]

Multi-Exposure

✓
HDR Imaging with Denoising [17, 52, 69] ✓ ✓
HDR Imaging with SR [73] ✓ ✓
HDR Imaging with Denoising and SR [40] ✓ ✓ ✓

BracketIRE
[106] Multi-Exposure

✓ ✓ ✓
BracketIRE+ ✓ ✓ ✓ ✓

We set the exposure time ratio S to 4 and the frame number
T to 5. Finally, we obtain 1,335 data pairs from 35 scenes.
1,045 pairs from 31 scenes are used for training, and the
remaining 290 pairs from the other 4 scenes are used for
testing. The validation set is selected from the testing set,
including 29 pairs from 4 scenes.

2.3. Challenge Rules

To ensure fairness and equitable comparisons to the great-
est extent possible, the following competition rules are es-
tablished: (1) Reproducibility of methods is a must. (2)
The method should input multi-exposure RAW images and
output an HDR RAW image. (3) The participants cannot
change the provided ISP. (4) During inference, the num-
ber of network parameters should be less than 100M, GPU
memory should be controlled within 24G and the use of a
self-ensemble strategy is prohibited. (5) Each participant
can only join one team. Each team can only submit one
algorithm for final ranking. (6) Any testing adaptive strate-
gies are not permitted. In other words, the model cannot
be fine-tuned using data related to the test images. For ex-
ample, using the testing results of Track 1 to fine-tune the
model of Track 2 is prohibited.

2.4. Challenge Phases

There are two phases in the challenge: (1) development and
validation phase, (2) testing phase.
Development and Validation Phase. Participants have ac-
cess to both the training data and validation data (refer to
Sec. 2.2 for dataset details). Note that the training data
includes multi-exposure images and the corresponding GT
images, while the validation data only includes the input
multi-exposure images. Participants can upload their re-
sults to the validation server to calculate PSNR metrics and
receive feedback.

Testing Phase. Participants have access to the testing multi-
exposure images to generate final results. Note that the GT
images are not available for them. They can submit their
results to the server and email their code and fact sheet to the
organizers. The organizers executed the provided code to
verify the results, which were then shared with participants
at the end of the challenge.

3. Challenge Results
There are 100 and 92 participants registered for Track 1 and
Track 2, respectively. Each track has five teams submitting
the final testing results (including model outputs, codes, and
fact sheets). Their solutions are described in Sec. 4.

3.1. Evaluation Metrics

The restored RAW images are post-processed to 16-bit
RGB ones by the provided ISP. We evaluate the results
on the 16-bit RGB domain. The widely used PSNR [35],
SSIM [81] and LPIPS [101] are employed as the quantita-
tive evaluation metrics. The ranking is based on the PSNR
metric of the full images. Besides, given that several pixels
around the image are invalid, we also calculate the metrics
on the cropped images that exclude the invalid pixels. To
compare the inference cost, #FLOPs, testing time, and GPU
memory are measured when generating a 1920×1080 RAW
image on a single NVIDIA RTX A6000 GPU. The num-
ber of model parameters is also measured. In addition, the
performance of a baseline model (i.e., TMRNet [106]) is
reported for reference.

3.2. Track 1: BracketIRE

Tab. 2 shows that all teams outperform the baseline (i.e.,
TMRNet[106]) with a large margin, improving PSNR re-
sults ranging from 0.27dB to 2.35dB. In particular, Sam-
sung team achieves the best performance, obtaining 2.35dB
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Input Frames TMRNet [106] FZU DXW CVG UPN1 MegIRE Samsung GT

Figure 2. Qualitative results on Track 1 of Bracketing Image Restoration and Enhancement Challenge.

Table 2. Quantitative results on Track 1 of Bracketing Image Restoration and Enhancement Challenge. Quantitative metrics are calculated
on the full images and the cropped images that exclude the surrounding 10 invalid pixels. #FLOPs, inference time, and GPU memory
are measured when generating a 1920 × 1080 RAW image. We use NVIDIA RTX A6000 GPU to calculate the inference time and adopt
THOP [109] toolkit to calculate #FLOPs. The ranking is based on the PSNR metric of the full images.

Rank Team
Full Images

PSNR ↑ / SSIM↑ / LPIPS↓
Cropped Images

PSNR ↑ / SSIM↑ / LPIPS↓
#Params

(M)
#FLOPs

(T)
Time

(s)
Memory

(GB)

1 Samsung 40.54 / 0.9637 / 0.077 41.77 / 0.9633 / 0.076 94.34 48.238 3.102 20
2 MegIRE 39.78 / 0.9556 / 0.102 39.82 / 0.9550 / 0.105 19.75 30.751 2.383 16
3 UPN1 39.03 / 0.9500 / 0.117 39.02 / 0.9493 / 0.120 13.32 10.409 1.090 6
4 CVG 38.78 / 0.9543 / 0.102 39.89 / 0.9557 / 0.104 33.40 21.340 7.518 11
5 FZU DXW 38.46 / 0.9527 / 0.105 39.61 / 0.9540 / 0.107 14.04 22.283 1.829 16

- TMRNet [106] 38.19 / 0.9488 / 0.112 39.06 / 0.9498 / 0.115 13.29 21.340 1.874 15

Table 3. Quantitative results on Track 2 of Bracketing Image Restoration and Enhancement Challenge. Quantitative metrics are calculated
on the full images and the cropped images that exclude the surrounding 16 invalid pixels. #FLOPs, inference time, and GPU memory
are measured when generating a 1920 × 1080 RAW image. We use NVIDIA RTX A6000 GPU to calculate the inference time and adopt
THOP [109] toolkit to calculate #FLOPs. The ranking is based on the PSNR metric of the full images.

Rank Team
Full Images

PSNR ↑ / SSIM↑ / LPIPS↓
Cropped Images

PSNR ↑ / SSIM↑ / LPIPS↓
#Params

(M)
#FLOPs

(T)
Time

(s)
Memory

(GB)

1 Samsung 34.26 / 0.8913 / 0.206 34.80 / 0.8913 / 0.208 95.00 5.285 0.813 5
2 NWPU 30.59 / 0.8728 / 0.268 29.93 / 0.8633 / 0.274 13.37 1.426 0.887 3
3 FZU DXW 29.82 / 0.8537 / 0.282 31.35 / 0.8660 / 0.277 14.34 1.500 0.493 3
4 CYD 29.66 / 0.8598 / 0.284 30.27 / 0.8632 / 0.285 17.60 1.560 0.751 4
5 CVG 29.25 / 0.8521 / 0.278 30.63 / 0.8645 / 0.275 71.82 6.898 0.679 4

- TMRNet [106] 28.91 / 0.8572 / 0.273 30.65 / 0.8725 / 0.270 13.58 1.441 0.489 4
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Figure 3. Qualitative results on Track 2 of Bracketing Image Restoration and Enhancement Challenge.

and 0.76dB PSNR improvements than the baseline and
second-place team (i.e., MegIRE), respectively. Besides,
#Params and GPU Memory of all teams meet the challenge
rules. The visual comparisons are shown in Fig. 2. It can be
seen that the results from Samsung team have more photo-
realistic details, and are more consistent with the GTs.

3.3. Track 2: BracketIRE+

This track appends ×4 super-resolution task based on Track
1, making it more challenging. The results are shown in
Tab. 3. It can be seen that all teams perform better than
the baseline (i.e., TMRNet[106]). Among all teams, Sam-
sung team performs best and outperforms other methods
by a large margin. Compared with the baseline, it obtains
5.35dB PSNR gains. Compared with the second-place team
(i.e., NWPU), it achieves 3.67dB improvements. Besides,
the inference cost of all methods follows the challenge re-
quirements. The visual comparisons in Fig. 3 show that
Samsung team produces more fine-scale details and fewer
artifacts.

4. Challenge Methods
4.1. Track 1: BracketIRE

4.1.1 Samsung Team †

The team proposes a high quality Reference feature for Two
stage bracketing Image Restoration and Enhancement Net-

†Full name: Samsung MX (Mobile eXperience) Business & Samsung Research China - Beijing (SRC-B).

Figure 4. Structure of RT-IRENet proposed by Samsung team.

work, called RT-IRENet [87]. Specifically, the first module
is based on TMRNet [106] which fuses 5 RAW images into
the coarse restored result. The second module is based on
NAFNet [14] which refines the output of the first module
into the final result with much more details.
Network Architecture. The network architecture is shown
in Fig. 4. For the first module, the team increases the num-
ber of channels from 64 to 96 in TMRNet [106]. Further-
more, the team chooses the second frame instead of the first
frame of input as a reference frame. The reason for this
is that the second frame has less noise and acceptable blur,
which is beneficial in avoiding noise information from the
first frame feature on the fused feature. It’s worth noting
that the second frame has only a tiny position misalignment
with ground truth, thus such an operation has less impact
on calculating loss terms. For the second module, the team
adopts NAFNet [14], and changes the number of input and
output channels to 4.
Inference Strategy. During inference, the team crops sur-
rounding 5 pixels for input RAW images and feeds the
cropped images to the model. Then they pad 5 pixels for
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Figure 5. Illustration of IREANet proposed by MegIRE team.

the output RAW image. This ensures a high-quality output
around the image.
Training Details. The team uses AdamW [59] optimizer
(β1 = 0.9, β2 = 0.999) with a weight decay of 0.01. They
adopt the cosine annealing strategy where the learning rate
gradually decreases from 1 × 10−4 to 1 × 10−6 for 1000
epochs. They utilize PSNR loss to optimize. The batch size
is 4, and the input patch size is 256× 256. The experiments
are conducted on the NVIDIA A100 GPU.

4.1.2 MegIRE Team

The team utilizes flow-guided feature alignment and en-
hanced feature aggregation to propose IREANet, which is
shown in Fig. 5.
Flow-Guided Feature Alignment. It is designed as a dual-
branch architecture to perform feature alignment, as shown
in Fig. 5(b). The first branch is flow-guided deformable
alignment [11], which is also adopted in TMRNet [106].
The second branch performs spatial feature attention on
the flow-guided aligned features, obtaining spatial attention
features. The spatial attention mechanism has been proven
to effectively reduce noise and undesired contents caused by
foreground object movement [57, 88]. The features from
the two branches can be seen as complementary and are
then combined using element-wise addition to acquire the
final aligned features.
Enhanced Feature Aggregation. Similar to TMR-
Net [106], a unidirectional recurrent network is utilized to
aggregate temporal features. Furthermore, they introduce
an enhanced feature aggregation module, which takes the
proposed enhanced residual block as a basic component, as
shown in Fig. 5 (c). The proposed module increases the net-
work’s nonlinearity and enables better convergence, thus al-
lowing for more effective aggregation of temporal features.
Training Details. The team uses a random combination
of Bayer preserving augmentation [50] (see Fig. 6), verti-
cal flip, horizontal flip, and rotation to augment the training
data. They adopt AdamW [59] optimizer and the cosine an-
nealing strategy of learning rate. The batch size is 8 and the
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Figure 6. Illustration of Bayer preserving augmentation.

Figure 7. Overview of CRNet proposed by UPN1 team.

input patch size is 128×128. Experiments are conducted on
4 NVIDIA TITAN Xp GPUs.

4.1.3 UPN1 Team

For the task, image details are of paramount importance.
Moreover, to be applicable on edge devices, the inference
time and the GPU memory footprint when generating im-
ages should also be carefully considered. The team pro-
poses a Convolutional Restoration Network (CRNet) [90]
(see Fig. 7), which can produce high-quality image details
and has significant advantages in terms of inference time
and GPU memory usage.
Network Architecture. TMRNet adopts a frame-by-frame
processing manner. However, as the network deepens and
the number of input frames increases, the team experimen-
tally observes that this manner may lead to the network
gradually forgetting the earlier frames and focusing more on
the later frames, resulting in poor image quality. Instead, the
team concatenates the five aligned images together for sub-
sequent processing. First, the aligned images go through 3
high-frequency enhancement modules. Each module starts
with two different pooling layers to separate high and low-
frequency information [60] and enhance them separately,
and ends with N convolutional extraction blocks. The fre-
quency separation module utilizes self-attention to enhance
the precious high-frequency information and deploys multi-
branch [76] blocks to fuse high and low-frequency informa-
tion. The convolutional extraction block can be seen as a
high-frequency filter, and it utilizes large-kernel depth-wise
separable convolutions [56] and convolutional FFN [23] for
computationally friendly feature enhancement. Then, they
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Figure 8. Network architecture proposed by CVG team.

use simple convolutional blocks to fuse the features from
the 3 high-frequency enhancement modules and the refer-
ence frame to output the final result.
Implemental Details. They adopt the AdamW [59] opti-
mizer with β1 = 0.9 and β2 = 0.999. The learning rate is
initially set to 10−4 and decays by half every 80 epochs.
The model is trained on 4 NVIDIA A100 GPUs for 500
epochs for 3 days. Additionally, they utilize Hugging Face’s
Accelerator for parallel training.

4.1.4 CVG Team

In the process of image restoration, denoising is crucial to
balance detail and noise. Given the promising capabilities
of diffusion models, the team integrates a single-frame dif-
fusion module and a multi-frame processing module, thus
proposing a two-branch network (see Fig. 8).
Network Architecture. In the multi-frame branch, the
team adopts TMRNet [106]. In the single-frame branch, the
team uses a diffusion-based framework to process the ref-
erence frame. They utilize both noise-domain and image-
domain loss terms to train the diffusion module for conduct-
ing stable sampling during inference. Finally, the output of
the diffusion-based branch is connected to the reconstruc-
tion module in TMRNet.
Training Details. The team first trains the diffusion mod-
ule for about 300 epochs. Then they optimize the multi-
frame branch module for about 1000 epochs. When they
train the multi-frame branch, they fix the weight of the dif-
fusion module. The optimizer is Adam [37] with an initial
learning rate of 10−4. The batch size is 16 and the patch
size is 48×48. Experiments are conducted on 2 NVIDIA
Tesla A800 GPUs for about 4 days.

4.1.5 FZU DXW Team

The team proposes an efficient aggregation restoration net-
work for leveraging inter-frame complementary informa-
tion effectively, named LGSTANet [20], as shown in Fig. 9.
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Figure 9. Structure of LGSTANet proposed by FZU DXW team.

Network Architecture. Inspired by video restoration
methods, the team adopts an efficient architecture of align-
ment, aggregation, and reconstruction. Additionally, they
introduce a learnable global spatio-temporal adaptive ag-
gregation module to help effectively aggregate inter-frame
complementary information. Furthermore, they propose an
adaptive restoration modulator to address specific degra-
dation disturbances of various types, thus achieving high-
quality restoration outcomes.
Training Details. The team adopts the progressive training
strategy [96], which increases patch size and reduces batch
size during training. The patch size of the training includes
[128, 160, 192, 256, 320, 384]. They adopt AdamW [59]
optimizer with β1 = 0.9 and β1 = 0.999 for training 800
epochs. The initial learning rate was set to 10−4. Cosine
annealing strategy [58] is employed to decrease the learning
rates to 10−6. All experiments are conducted on a single
NVIDIA GeForce RTX 3090 GPU.

4.2. Track 2: BracketIRE+

4.2.1 Samsung Team †

The solution is roughly the same as stated in Sec. 4.1.1.
Some differences are as follows: (1) The first module of RT-
IRENet further adds ×4 upsampling operation. (2) During
inference, they crop 2 pixels for the input raw images and
pad 16 pixels for the output. (3) During training, they utilize
model weights from Track 1 to initialize the model weights
for Track 2. The input patch size is set to 64× 64.

4.2.2 NWPU Team

The team proposes a CNN-based model named BSCCNet
based on TMRNet[106].
Network Architecture. The model includes three compo-
nents: alignment, reconstruction, and upsampling module.

†Full name: Samsung MX (Mobile eXperience) Business & Samsung Research China - Beijing (SRC-B).
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Figure 10. Structure of reconstruction module in BSCCNet pro-
posed by NWPU team. fi refers to the ith feature after alignment.

In the alignment module, they use flow-guided deformable
alignment [11], which is also adopted in TMRNet [106]. In
the reconstruction module, they adopt a recurrent mecha-
nism similar to TMRNet, progressively constructing the im-
age through frame-by-frame processing. Fig. 10 shows the
reconstruction process. Initially, each frame passes through
a convolutional module with shared weights, followed by
their respective feature extraction modules. Different from
TMRNet, they choose SCConv (Spatial and Channel re-
construction Convolution) [43] as their feature extraction
module to emphasize the uniqueness of each frame more.
SCConv consists of two units: the Spatial Reconstruction
Unit (SRU) and the Channel Reconstruction Unit (CRU),
which can help suppress spatial and channel redundancy,
aiding in learning more representative features. SCConv not
only improves performance but also significantly reduces
the model’s complexity and computational cost by mini-
mizing redundant features. In the subsequent up-sampling
stage, they add the reference frame and use bilinear interpo-
lation to increase the resolution.
Training Details. The team opts for the Adam [37] opti-
mizer with β1 = 0.9 and β2 = 0.999. The initial learn-
ing rate is set to 10−4. They employ the cosine warm-up
method for learning rate reduction with lrmin = 10−6 and
warmupt = 5. The training lasted for 200 epochs and took
approximately 120 hours on four NVIDIA A100 GPUs.

4.2.3 FZU DXW Team

The solution is roughly the same as stated in Sec. 4.1.5.
Some differences are as follows: (1) The upsampling oper-
ation is added at the end of the proposed model. (2) They
first train the ×2 SR model whose weights are initialized
with the best model from Track 1. Then they take the pre-
trained weights of ×2 SR model to initialize the ×4 SR
model. (3) The ×2 and ×4 SR models are trained for 400
and 801 epochs, respectively. The batch size is set to 8 and
progressive training strategies are not used.

4.2.4 CYD Team

The proposed model of the team is called HLNet [13], as
shown in Fig. 11. The team mainly improves the aggrega-

Figure 11. Structure of HLNet proposed by CYD team.

Figure 12. Network architecture proposed by CVG team.

tion module of TMRNet [106].
Network Architecture. The aggregation module in TM-
RNet includes a shared module for all frames and a spe-
cific module only for ith frame, which are composed of
simple residual blocks. The team replaces the residual
blocks of the two modules with Spatial-Channel Enhance-
ment Blocks (SCEB) and High-Low Frequency Separation
Blocks (HLFSB), respectively. Specifically, SCEB alter-
nately uses regular convolution and SCConv [43]. SCConv
can utilize spatial and channel redundancy and reduce the
number of parameters effectively. HLFSB is inspired by
ESRT [60], where high- and low- frequency information
are processed separately. For high-frequency information,
HLFSB adopts small convolution kernels and dense connec-
tions, which can better focus on local information, thereby
restoring the details of the image. For low-frequency infor-
mation that requires global information to restore the back-
ground and contours of the image, HLFSB adopts multi-
scale feature extraction and Transformers to obtain long-
distance dependencies. To compensate for the detail loss
caused by downsampling, HLFSB fuses features of differ-
ent scales based on wavelet transform.
Training Details. The team adopts AdamW [59] optimizer
with β1 = 0.9 and β2 = 0.999. The initial learning rate is set
to 10−4, and they use a cosine warmup strategy for learning
rate decay. The model is trained for 200 epochs for 6 days
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on 4 NVIDIA A100 GPUs.

4.2.5 CVG Team

The solution is roughly the same as stated in Sec. 4.1.4.
Some differences are as follows: (1) The upsampling oper-
ation is added to the end of the proposed two-branch mod-
ule. (2) For image alignment in the multi-frame branch,
they train a noise pre-processing module using extra RAW
data collected by the Xiaomi 13 smartphone, as shown in
Fig. 12. (3) The multi-frame branch module is trained for
about 400 epochs.
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