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A. Supplementary Discussions and Ablation
Studies

A.1. MobiVari (MobileNet Variants) and Recon-
struction Module

We revisit MobileNet V2 architectures [29] to incorpo-
rate simple and efficient CNN structures into our compo-
nents. Fig. A illustrates a comparison between the Mo-
bileNet and our modified version. We replace the ReLU6
non-linearity [29] with LeakyReLU [26] to preserve subtle
gradients that ReLU6 cannot capture [26]. Empirical evi-
dence in Tab. 4c of the main paper shows that this change
is the most stable. The 3 × 3 depth-wise (dw) and 1 × 1
point-wise (pw) convolutions in MobileNets are residually
connected [13] with the input feature. However, if the chan-
nels produced by pw convolutions differ from input chan-
nels, the skip connection for pw convolutions is ignored.
Furthermore, because the first 1 × 1 convolution expand-
ing channels in MobileNet V2 requires many parameters
and computations, it is not suitable for our lightweight de-
sign. Therefore, we substitute it with group convolution [7],
where the group size and expansion ratio are set to 4 and 1.2,
respectively, by default. Our MobiVari is applied to atten-
tion mixing layers of D-RAMiT and H-RAMi, a downsizing
layer, a bottleneck, and the reconstruction module.

Expand Conv ReLU6 dw Conv ReLU6 pw Conv

(a) MobileNet V2

(b) MobiVari (ours)

Expand
Group Conv

LeakyReLU dw Conv LeakyReLU pw Conv

Figure A. Comparison of MobileNets V2 and our corresponding
variants, MobiVari.

Fig. Ba depicts the reconstruction module (a final layer).
The basic structure follows the reconstruction module of
NGswin [6]. The only difference is that we place two

*This work has been done during Master’s course in Sogang University.
†Corresponding author.
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(a) Reconstruction module architecture.
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(b) Ablation study on the number of MobiVari layers at the reconstruction
module. The metrics are evaluated on color denoising task using σ = 50.
PSNR and SSIM average the scores on four benchmark datasets.

Figure B. Reconstruction module.

MobiVari layers before the default version to balance the
trade-off between performance and efficiency (See Fig. Bb).
This module slightly varies depending on tasks. For super-
resolution, a pixel-shuffler [31] is employed to upscale the
feature maps by r times. However, since other tasks (de-
noising, low-light enhancement, and deraining) do not re-
quire this process, the pixel-shuffler is discarded. The sym-
bols and numbers in parentheses indicate changes of chan-
nels. The operation Ires+ILQ follows convention [20, 39].
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(a) Attribute comparisons. The text in bold indicates the key differences. “LN” represents whether the position of layer-norm [2] is before (Pre) or after
(Post) the self-attention and feed-forward network.

Method SPSA & CHSA Existing Elements Employed Solving ProblemsOperating Importance on Window Shift Positional Encoding Self-Attention LN
DaViT [8] Alternatively Both equally No use Convolution [17] Scaled dot-product [34] Pre [9] High-level vision

D-RAMiT (ours) In parallel SPSA more Cyclic [23] Relative Position Bias [23, 30] Scaled cosine [24] Post [24] Low-level vision

(b) Ablation study on DaViT (Mult-Adds / #Params / Average PSNR).
Method SR ×2 SR ×4 CDN σ = 50 LLE DR

DaViT-full [8] 167.0G / 983K / 35.064 43.0G / 1,003K / 29.088 635.2G / 977K / 28.785 635.2G / 977K / 20.965 635.2G / 977K / 27.910
DaViT-core [8] 163.2G / 966K / 35.172 42.08G / 987K / 29.268 620.8G / 961K / 29.108 620.8G / 961K / 26.000 620.8G / 961K / 29.630
RAMiT (ours) 163.4G / 940K / 35.324 42.13G / 961K / 29.374 620.8G / 935K / 29.275 621.6G / 935K / 26.435 620.8G / 935K / 30.065

Table A. Comparisons of RAMiT and DaViT [8].

Complex patterns: require global dependency to be restored
Background or simple patterns: require neighboring local information to be restored

Figure C. The importance of capturing both local and global con-
text for restoring different parts.

A.2. Bi-dimensional Self-Attention

Regarding the importance of capturing both local and global
context, we present Fig. C. In this figure, while complex
patterns in the image require global context to recover,
background or simple patterns require only neighboring lo-
cal information.

Similar to our bi-dimensional self-attention of the pro-
posed D-RAMiT blocks, DaViT [8] also developed a Trans-
former using both spatial self-attention (SPSA) and channel
self-attention (CHSA). Tab. Aa summarizes the attributes
of DaViT and D-RAMiT. A core difference is that DaViT
“alternatively” places SPSA and CHSA, while D-RAMiT
operates them “in parallel”. As discussed in Sec. 3.2 of the
main text, our architecture can boost (depending on tasks)
both SPSA and CHSA through the reciprocal helper, which
DaViT fundamentally cannot utilize. Another crucial dis-
tinction is related to “which self-attention module is given
more importance”. While D-RAMiT assigns more multi-
heads on SPSA, DaViT makes the number of both mod-
ules identical. We hypothesize that DaViT’s simple ap-
proach is unsuitable for lightweight image restoration be-
cause although CHSA can capture global dependency, its
performance is significantly impaired under parameter con-
straints, as observed in Tab. 4a of our main body. Therefore,
more weights on SPSA can be more useful for constructing
an effective lightweight RAMiT. Other differences are sum-
marized in the table.

To further demonstrate our superiority over the simple

Input SwinIR-light SwinIR-NG RAMiT (ours) Input SwinIR-light SwinIR-NG RAMiT (ours)

Figure D. Local Attribution Map (LAM) [12] comparison. The
depth of the red areas indicates the extent to which the regions
contribute to recovering a red box of an input.

bi-dimensional approach of DaViT, we constructed two ver-
sions in Tab. Ab. The first version, DaViT-full, replaced
the D-RAMiT blocks’ elements in Tab. Aa with those of
DaViT. The second version, DaViT-core, changed only the
core designs (i.e., SPSA & CHSA “Operating” and “Im-
portance on”) from ours to those of DaViT, while the parts
of the “Existing Elements Employed” column remained as
our settings. The other elements not mentioned in the ta-
ble followed our default settings for a fair comparison, in-
cluding the shallow module, MobiVari, the downsizing lay-
ers, the bottleneck layer, H-RAMi layer, the reconstruc-
tion module, and the hyper-parameters of Tab. H (except
that chsa head ratio is no longer needed). The results
show that RAMiT outperformed both DaViT versions while
having fewer parameters and almost the same Mult-Adds. It
is demonstrated that our meticulous composition of SPSA
and CHSA can make a significant difference for multiple
lightweight image restoration tasks.

A.3. LAM Comparisons with Other Models

SwinIR-light (ICCVW21) [20] is the first successful at-
tempt applying window self-attention (WSA) to the image
restoration tasks. Most recently, SwinIR-NG (CVPR23) [6]
defined an N-Gram context method enlarging the regions



viewed for recovering distorted pixels, to solve the lim-
ited “local” receptive field problem of SwinIR-light. How-
ever, SwinIR-NG failed to capture “global context”, while
our RAMiT successfully exploit the “global receptive
field” maintaining WSA approach, which is clarified by
LAM [12] results in Fig. D. Even if SwinIR-NG tends to
utilize the slightly expanded receptive field when compared
to SwinIR-light, the gradients of SwinIR-NG that actually
contribute to reconstruct a small red box are limited within
“local areas”. By contrast, our RAMiT can convey the gra-
dients to “global regions”, which improves low-level vision
performances with fewer computational costs than SwinIR-
NG (reference Tab. 2 of the main paper).

This ability results from adoption of channel self-
attention. According to prior work, Squeeze-and-Excitation
networks [15], the channel-attention can effectively em-
bed the “global feature responses”. RCAN [43] delivered
an insight that channel-wise attention would be good at
modeling “global spatial dependency” for low-level vision
tasks. Afterwards, Restormer [39] applied this mechanism
to self-attention without squeeze operations, thereby pre-
serving abundant spatial information, which enabled the
image restoration networks to more effectively capture the
“global interdependencies” in a whole image. Exploiting
such advantages of channel self-attention and the effec-
tive WSA, RAMiT can yield meaningfully larger receptive
fields than the “pure local-attention” of the SwinIR family.
Therefore, our work can be considered an enhanced version
of the N-Gram context [6], which extends the “local” N-
Gram approach to a “Global-Gram” method.

A.4. Reciprocal Helper

Task Mult-Adds (G) PSNR
Color Denoising 620.8 / 621.6 29.275 / 29.253
Grayscale Denoising 618.5 / 619.3 27.143 / 27.100
Deraining 620.8 / 621.6 30.065 / 29.960

Table B. Ablation study on the proposed Reciprocal Helper for
denoising and deraining (w/o / w/ ).

As proved in Tab. 4b of the main content, our Recipro-
cal Helper1 can boost ×2,×3,×4 super-resolution and low-
light enhancement tasks. However, Tab. B shows that this
mechanism is unable to improve the performances of de-
noising and deraining. We interpret this limitation in terms
of properties of the tasks. Degradation used for the super-
resolution and low-light enhancement inputs relatively has
regularity and therefore may be easy to be globally encoded.

1To prevent any confusion, we adopted the term “Dimensional Recip-
rocal Attention Mixing Transformer” (D-RAMiT) to indicate that every
dimension (spatial and channel) of feature maps is utilized in calculat-
ing self-attention, and the outcomes are subsequently mixed by MobiVari.
Consequently, this implies that the reciprocal helper is not a prerequisite to
represent dimensional reciprocal attention.

(d) 𝑜4 ∗ 𝑜ℎ(a) High-Quality Image

(ground-truth)

(b) Stage4 Output (𝑜4) (c) H-RAMi output (𝑜ℎ)

Figure E. Impacts of H-RAMi. (a) A ground-truth high-quality
image. (b), (c) The feature maps after stage 4 and H-RAMi. (d)
Element-wise product of (b) and (c). (b), (c), (d) are obtained by
max-pooling along channel and standardization.

This property may make our reciprocal helper useful for the
parallel process of local and global self-attention. On the
other hand, when dealing with denoising or deraining low-
quality inputs, the network is required to erase somethings
that obscure the high-quality objects or background. Since
it is ill-posed to globally encode these (randomly) disorga-
nized obstructions with a small network capacity, the global
embeddings produced by the channel attention may confuse
the spatial attention module of the next blocks. However, if
the parallel process lacks the reciprocal helper, the Mobi-
Vari mixing layers alone can still resolve this issue well.
Admitting this limitation, we will conduct more sophisti-
cated future work on other helper algorithms that can im-
prove universal tasks. Nevertheless, our core ideas, i.e., di-
mensional and hierarchical reciprocal self-attention meth-
ods, have been already demonstrated to be effective and ef-
ficient enough to achieve new state-of-the-art lightweight
denoising and deraining.

A.5. Hierarchical Reciprocal Attention Mixing
Layer (H-RAMi)

Although H-RAMi may appear similar to the attention
banks used in DiVANet [3], there are notable differences.
DiVANet uses non-hierarchical attentions for every resid-
ual convolution block, increasing computational costs (see
Tab. Ca) and failing to learn semantic-level representation.
Moreover, the vertical and horizontal squeeze operations
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Figure F. Trade-off between efficiency and performance on super-
resolution. (Top) ×3. (Bottom) ×4.

prevent the attention layers from considering full-resolution
information. In contrast, our approach reduces time com-
plexity and utilizes semantic-level information by process-
ing compressed feature maps. Furthermore, the inputs to H-
RAMi are intermediate attentions from D-RAMiT blocks,
which preserve information from both full-resolution spa-
tial and channel self-attentions. We provide additional vi-
sual evidences of the benefits in Fig. E. As previously stated
in Fig. 4 of the main text, the stage 4 output alone at (b)
produces relatively unclear or incorrect edges, which are re-
solved at (d) by the clearer edges produced by H-RAMi at
(c).

A.6. Super-Resolution (SR)

Fig. F illustrate trade-offs between efficiency (Mult-Adds,
#Params) and performance (average PSNR) on SR tasks,
including our RAMiT-slimSR (Tab. Ca) and RAMiT. Our
methods deliver the best trade-off among the comparative
models.

Smaller Size. Tab. 2 of the main text appears to have
an unfair aspect. Some networks have fewer parameters
than our RAMiT, such as FMEN (CVPRW22) [10], ESRT
(CVPRW22) [25], ELAN-light (ECCV22) [42], and Di-
VANet (PR23) [3]. Although they require more Mult-Adds
than RAMiT, it can be questioned whether our improve-
ment is attributed to the proposed design or the result of
having simply more parameters. We address this issue in
Tab. Ca. The channel (network dimension) and depths (D-
RAMiT blocks in stage 1 to 4) of RAMiT were scaled
from 64 and [6, 4, 4, 6] to 48 and [8, 2, 2, 8], respectively.
In the bottleneck and H-RAMi, we also changed the group
size and expansion ratio of MobiVari from 4 and 1.2 to 1
and 2.0, respectively. The group size and expansion ra-
tio of the other MobiVari layers were retained as the de-
fault settings. Consequently, we got a compact network de-
noted as RAMiT-slimSR, which is composed of the fewest

(a) Comparison for RAMiT-slimSR. The best, second best, and third best
results are in red, orange, and blue. PSNR and SSIM scores average the
results on the five benchmark test datasets.

Scale Method
FMEN [10] ESRT [25] ELAN-light [42] DiVANet [3] NGswin [6] RAMiT-slimSR RAMiT

Mult-Adds / #Params ×2
172.0G / 748K 191.4G / 677K 168.4G / 582K 189.0G / 902K 140.4G / 998K 127.8G / 581K 163.4G / 940K

PSNR / SSIM 35.094 / 0.93794 35.146 / 0.93754 35.258 / 0.93906 35.186 / 0.93838 35.122 / 0.93836 35.226 / 0.93880 35.324 / 0.93938
Mult-Adds / #Params ×3

77.2G / 757K 96.4G / 770K 75.7G / 590K 89.0G / 949K 66.6G / 1,007K 60.4G / 588K 77.3G / 949K
PSNR / SSIM 31.242 / 0.87594 31.282 / 0.87586 31.412 / 0.87868 31.356 / 0.87752 31.330 / 0.87778 31.430 / 0.87872 31.508 / 0.87972

Mult-Adds / #Params ×4
44.2G / 769K 67.7G / 751K 43.2G / 601K 57.0G / 939K 36.4G / 1,019K 32.9G / 597K 42.1G / 961K

PSNR / SSIM 29.110 / 0.82376 29.142 / 0.82442 29.272 / 0.82742 29.182 / 0.82570 29.204 / 0.82618 29.286 / 0.82762 29.374 / 0.82940

(b) Training dataset size of RAMiT.
Dataset Scale Set5 [4] Set14 [40] BSD100 [27] Urban100 [16] Manga109 [28] Average

(#Images) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DIV2K (800) ×2

38.16 0.9612 34.00 0.9213 32.33 0.9015 32.81 0.9346 39.32 0.9783 35.324 0.93938
DF2K (3,450) 38.19 0.9613 33.95 0.9215 32.35 0.9017 32.90 0.9352 39.44 0.9788 35.366 0.93970
DIV2K (800) ×3

34.63 0.9290 30.60 0.8467 29.25 0.8093 28.76 0.8646 34.30 0.9490 31.508 0.87972
DF2K (3,450) 34.69 0.9295 30.60 0.8468 29.28 0.8097 28.80 0.8656 34.40 0.9494 31.554 0.88020
DIV2K (800) ×4

32.56 0.8992 28.83 0.7873 27.71 0.7418 26.60 0.8017 31.17 0.9170 29.374 0.82940
DF2K (3,450) 32.58 0.8995 28.87 0.7876 27.73 0.7419 26.65 0.8036 31.25 0.9174 29.416 0.83000

Table C. Ablation study on model size and training dataset for
super-resolution.

Method (seed) Set5 [4] Set14 [40] BSD100 [27] Urban100 [16] Manga109 [28]
SwinIR-NG (α) 38.17 / 34.64 / 32.44 33.94 / 30.58 / 28.83 32.31 / 29.24 / 27.73 32.78 / 28.75 / 26.61 39.20 / 34.22 / 31.09
RAMiT (α) 38.16 / 34.63 / 32.56 34.00 / 30.60 / 28.83 32.33 / 29.25 / 27.71 32.81 / 28.76 / 26.60 39.32 / 34.30 / 31.17
RAMiT (β) 38.18 / 34.65 / 32.54 34.02 / 30.62 / 28.86 32.33 / 29.25 / 27.72 32.81 / 28.75 / 26.62 39.28 / 34.28 / 31.15
RAMiT (γ) 38.18 / 34.64 / 32.48 34.00 / 30.60 / 28.80 32.33 / 29.25 / 27.71 32.83 / 28.75 / 26.58 39.28 / 34.29 / 31.11
RAMiT (δ) 38.18 / 34.64 / 32.54 34.02 / 30.59 / 28.83 32.32 / 29.25 / 27.71 32.79 / 28.70 / 26.57 39.27 / 34.31 / 31.12

Table D. Ablation on randomness. PSNR on x2 / x3 / x4. The bold
face indicates better performance over SwinIR-NG [6].

learnable parameters and Mult-Adds among the compara-
tive methods. Note that RAMiT-slimSR consumes fewer
computations than NGswin (CVPR23) [6], which required
the fewest Mult-Adds in Tab. 2. RAMiT-slimSR still out-
performed others, showing that our advancements on super-
resolution were attributed to the effectiveness and efficiency
of the novel approaches.

Training Dataset. As shown in Tab. Cb, we found room
for improvement of RAMiT with more training data. In
addition to 800 images of DIV2K [1] used by RAMiT for
super-resolution in Tab. 2 of the main text, many recent
studies utilized 2,650 Flickr2K [32] dataset as well to re-
inforce their SR networks [5, 10, 20, 42, 44]. Following
them, we additionally trained our models on DF2K (DIV2K
+ Flickr2K) for the enhanced performances. The impacts on
all upscaling tasks were observed.

Randomness. To further prove that the improvements
are attributed to not randomness (weight initialization, ran-
domly cropped patches, random data augmentation, etc.)
but our approach, we have conducted extra SR experiments
as shown in Tab. D. RAMiT trained with different random
seeds (α, β, γ, δ) still outperforms SwinIR-NG. The seed α
indicates our default.

Comparison with Large Model. One might question
the efficiency of our proposed lightweight method com-
pared to its larger counterpart. To address this concern,
we present Tab. E where the SwinIR [20] large model out-
performs ours with 12.5 times more parameters than our
RAMiT. However, there is a significant difference in the
number of frames per second that SwinIR and RAMiT
can process. Our lightweight method demonstrates supe-
rior processing speed in image restoration tasks on both



Method #Params Urban100 (PSNR / FPS) Manga109 (PSNR / FPS)
SwinIR [20] 11,753K 33.40 / 0.34, 0.94 39.60 / 0.26, 0.71
RAMiT (ours) 940K 32.81 / 1.38, 9.38 39.32 / 1.10, 7.38

Table E. Comparison between large and lightweight models.
“FPS” indicates frames per second processed by each method,
which means the higher FPS, the faster, i.e., the better. The former
of FPS is measured on an NVIDIA TITAN Xp, while the latter on
an NVIDIA GeForce RTX 4090.

outdated (TITAN Xp) and recent (RTX 4090) GPU de-
vices, surpassing the SwinIR large model. The result ap-
parently demonstrates that the recent state-of-the-art image
restoration models cannot be applied to real-world applica-
tion despite their enhanced performance. In contrast, our
lightweight approach is specially designed to resolve this
efficiency-effectiveness trade-off issue, offering a viable so-
lution for practical implementation.

A.7. Low-Light Enhancement (LLE)

Tab. F compares MAXIM (CVPR22) [33] and RAMiT to
present the effectiveness and efficiency of our model for
the LLE task. MAXIM has shown outstanding results on
the general image restoration tasks with a large model size.
Surprisingly, our RAMiT outperformed MAXIM in terms
of average PSNR scores on the 15 images LOL evalua-
tion dataset [35]. Notably, we achieved this impressive re-
sult using only 6.63% parameters of MAXIM. Additionally,
RAMiT showed lower variance for the evaluated images
than MAXIM, indicating more stable restoration of dark im-
ages into brighter ones. The visual results are in Fig. G.

Secondarily, we reported a fair comparison with
URetinex-Net (CVPR22) [18] in Tab. Ga. This method re-
quires only 38.6% parameters of RAMiT, which can pro-
voke a concern of unfairness. To handle this issue, the
channel (network dimension) and the depths (D-RAMiT
blocks in stage 1 to 4) of RAMiT were reduced from 64
to 48 and from [6, 4, 4, 6] to [4, 2, 2, 4], respectively. In
the bottleneck and H-RAMi, the group size of MobiVari
is changed from 4 to 3. As a result, we obtained a down-
sized model composed of fewer parameters than URetinex-
Net, and called it RAMiT-slimLLE. RAMiT-slimLLE still
outperformed URetinex-Net by PSNR margins of up to
7.16dB, which emphasizes our effectiveness and efficiency.

A.8. Deraining (DR)

Tab. Gb shows our efficiency for deraining task. MPR-
Net (CVPR21) [38] made advancements on multiple image
restoration tasks a few years ago. However, RAMiT can
outperform it with 25.7% parameters of MPRNet on a de-
raining benchmark dataset, such as Test100 [41].

B. Experimental Details
In Common. As explained in Sec. 4.1, we optimized
L1 pixel-loss between IRC and IHQ with the Adam opti-
mizer [19] (β1 = 0.9, β2 = 0.99, ϵ = 10−8), where IRC is
a reconstructed image and IHQ is a high-quality ground-
truth image. Learning rate was initialized as 0.0004 ×
64/batch size. The data augmentation method for LQ
and HQ pairs was already specified in the main contents.
Before we fed the LQ input images to the network, each
input was normalized using mean and std pre-calculated
from the LQ training datasets corresponding to each task.
Note that since we used the random (blind) noise levels
(σ) for training our denoising networks, we used mean and
std of HQ training datasets for color and grayscale denois-
ing. When computing the training loss, the normalized IRC

was de-normalized (opposite process of normalization). For
evaluation, an input image ILQ was upsized by symmetric
padding to fit the size to a multiplier (= 32 = 8×22) of the
local-window M(= 8) and downsizing number (= 22) for
the hierarchical stages. We implemented all processes using
PyTorch and two NVIDIA GeForce RTX 4090 GPUs. The
implementation details of RAMiT are in Tab. H.

Super-Resolution. We trained RAMiT for ×2 task
from scratch, of which the training epochs were set to 500.
For ×3,×4 tasks, we followed a warm-start strategy [21],
where we fine-tuned the final reconstruction module for 50
epochs (warm-start phase) before fine-tuning whole net-
work parameters (whole-finetuning phase) lasting for 250
epochs. In warm-start phase, the network parameters pre-
trained on ×2 task were loaded to initialize ×3, ×4 net-
works, except for the reconstruction module. Learning
rate was decayed by half at {200, 300, 400, 425, 450, 475}
and {50, 100, 150, 175, 200, 225} epochs for training from
scratch (×2) and whole-finetuning phase (×3,×4), respec-
tively. Learning rate of warm-start phase remained as a con-
stant (i.e., 0.0004×64/batch size). We also linearly in-
creased learning rate from 0 to 0.0004× 64/batch size
during the first 20 epochs of the training from scratch and
whole-finetuning phase (warmup epoch [11]). Each train-
ing image was cropped into a patch size of 64× 64 with 64
batch size regardless of training from scratch or warm-start
strategy. To consistently manage the datapoints per epoch,
we repeated each datapoint 80 and 18.551 times for DIV2K
and DF2K datasets, which made the number of training im-
ages used for an epoch equal to 64, 000.

Others. For color and grayscale denoising, low-light
enhancement, and deraining, we adapted the progressive
learning [39], where the patch size was initially set to
64 × 64, and then progressively increased to 96 × 96 and
128×128 after {100, 200} epochs, respectively. The corre-
sponding batch size was {64, 32, 16}. We decrease learning
rate by half at {200, 300, 350, 375} epochs. Warmup epoch
was the same as super-resolution. The training process



Model #Params 001 022 023 055 079 111 146 179 493 547 665 669 748 778 780 Mean Std.
MAXIM [33] 14,100K 20.98 28.68 24.89 18.83 27.16 17.82 23.30 19.65 13.79 15.66 28.34 28.63 29.96 25.02 28.51 23.41 5.11
RAMiT (ours) 935K 20.50 26.20 19.34 18.74 28.18 31.12 25.74 23.61 20.39 18.32 26.67 25.17 28.07 21.76 28.32 24.14 3.93

Table F. Comparison of MAXIM [33] and RAMiT on low-light enhancement. The PSNR (dB) scores on 15 LOL [35] evaluation images
are reported. The numbers in the first row indicate the testing file (.png) names. Std.: standard-deviation.

HQ MAXIM RAMiT (ours)LQ HQ MAXIM RAMiT (ours)LQ

Outperforming by the Largest PSNR Margin (RAMiT is more accurate)

LOL eval15 111.png LOL eval15 493.png

The Smallest PSNR Margin between RAMiT and MAXIM

LOL eval15 055.png LOL eval15 780.png

Defeated by the Largest PSNR Margin (MAXIM is more accurate)

LOL eval15 023.png LOL eval15 669.png

Figure G. Visual comparisons of MAXIM [33] and RAMiT. Despite even fewer parameters, RAMiT can restore the extremely dark images
with better or matched accuracy compared to MAXIM. In the bottom row, the cases in which RAMiT is highly defeated by MAXIM are
provided as well.

(a) Comparison for LLE.

Method #Params LOL [35] VE-LOL-cap [22]
PSNR SSIM PSNR SSIM

URetinex-Net [36] 361K 21.33 0.8348 21.22 0.8593
RAMiT-slimLLE (ours) 358K 23.77 0.8379 28.38 0.8835

(b) Comparison for DR.

Method #Params Test100 [41] Rain100H [37]
PSNR SSIM PSNR SSIM

MPRNet [38] 3,637K 30.27 0.8970 30.41 0.8990
RAMiT (ours) 935K 30.44 0.9012 29.69 0.8775

Table G. Further comparisons for LLE and DR. (a) RAMiT-
slimLLE is still better than URetinex-Net. (b) We outperform
MPRNet on a benchmark dataset despite much fewer parameters.

lasted for 400 epochs. Similar to super-resolution, we re-
peated each datapoint 3.0, 14.006, and 1.8234 times for de-
noising, low-light enhancement, and deraining, respectively
(about 25, 000 datapoints were used per epoch). While we
obtained the synthetic or real-captured low and high quality
image pairs of low-light enhancement and deraining from
public sources2, the Additive White Gaussian Noise (AWGN)
for low quality noisy input images of denoising tasks was

2LOL and VE-LOL datasets can be found in this website1 and this
website2. Deraining Testsets and Rain13K can be publicly downloaded
in this google-drive1 and this google-drive2.

dim (C) 64

Overall depths [6, 4, 4, 6]

Architecture num heads [4, 4, 4, 4]
chsa head ratio (Lch/L) 25%

window size (M ) 8
Feed-Forward hidden ratio 2.0

Network (FFN) activation GELU [14]

MobiVari
exp factor 1.2

expand groups 4
activation LeakyReLU [26]

Dropout
attention map 0.0

attention project 0.0
drop path 0.0

Others

optimizer Adam [19] (β1 = 0.9, β2 = 0.99, ϵ = 10−8)
initialized learning rate 0.0004× 64/batch size

learning rate decay half (see paragraphs below)
batch size see paragraphs below

epoch / total datapoints 500 / 32M (SR), 400 / 10M (Others)

Table H. Implementation details of RAMiT. “depths” and “num
heads” count the number of D-RAMiT blocks ([K1,K2,K3,K4])
and multi-heads (L) in stage 1, 2, 3, 4. Correspondingly, the set-
ting of “chsa head ratio =25%” indicates that (Lsp, Lch) is placed
as [(3, 1), (3, 1), (3, 1), (3, 1)] in each stage.

generated by the following PyTorch-like code:

AWGN = torch.randn(*img hq.shape)*σ/255
img lq = img hq + AWGN,

where the random seed was set to 0 for the evaluation
process (in training, seed is not given to implement blind de-

https://daooshee.github.io/BMVC2018website
https://flyywh.github.io/IJCV2021LowLight_VELOL/
https://drive.google.com/drive/folders/1PDWggNh8ylevFmrjo-JEvlmqsDlWWvZs
https://drive.google.com/drive/folders/1Hnnlc5kI0v9_BtfMytC2LR5VpLAFZtVe


noising); img lq and img hq indicate low and high qual-
ity images; σ is noise level set to one among [15, 25, 50] for
testing or sampled uniformly between 0 ∼ 50 for training.

C. More Visual Comparisons
In the last six pages (P. 9–14 after References) of
this document, we provide additional visual compar-
isons of our RAMiT and other networks. These
visual results exhibit the effectiveness of our ap-
proach on super-resolution (Figs. H and I), denoising
(Figs. J and K), low-light enhancement (Fig. L), and derain-
ing (Fig. M).
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Figure H. Visual comparisons of super-resolution. LQ: Low-Quality input. HQ: High-Quality target.
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Figure I. Visual comparisons of super-resolution. LQ: Low-Quality input. HQ: High-Quality target.
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Figure J. Visual comparisons of denoising. LQ: Low-Quality input. HQ: High-Quality target.
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Figure K. Visual comparisons of denoising. LQ: Low-Quality input. HQ: High-Quality target.
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Figure L. Visual comparisons of low-light enhancement. LQ: Low-Quality input. HQ: High-Quality target.
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Figure M. Visual comparisons of deraining. LQ: Low-Quality input. HQ: High-Quality target.
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