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1. Experiment settings
1.1. Classifier training

We discuss in detail the hyperparameters utilized for train-
ing different classifier models in our study. For Cclean, we
use pre-trained models provided by MMCV [1]. We con-
duct training for Cadapt and Cdeg models spanning 100
epochs, utilizing the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.001 and weight decay
set to 1e − 4. Furthermore, we apply a multi-step learning
rate scheduler with milestones at epochs 50 and 75, adjust-
ing the learning rate by 0.1 at each milestone.

For the training of distilled classifiers, i.e., DCadapt and
DCdeg , we initially train all individual teacher networks
(Teacher) on known degradations for 50 epochs. We also
employ the SGD optimizer with identical settings as afore-
mentioned, along with a multi-step learning rate scheduler
set at epochs 15, 30, and 45, where each of these milestones
sees an adjustment of the learning rate by a factor of 0.1.
Subsequently, we train the student network with an iden-
tical optimizer and learning rate scheduler as the teacher
network. We initialize teacher and student networks with
Cclean pre-trained weights. To ensure a fair comparison
between the training of C and DC classifiers, we set the
number of epochs for C classifiers to match the combined
epochs of the two-stage training process for both the teacher
and student (DC) classifiers. Hyperparameter settings for
all classifiers training are the same as discussed above over
all datasets or backbones discussed in this study. Since we
take inspiration from FusionDistill [2] for our distilled clas-

Table 1. Hyperparameter tuning of parameter α on the Imagenet
dataset.

Loss Weights DCadapt DCdeg

α = 1 72.80 81.67
α = 10 72.81 81.86
α = 20 72.79 81.98
α = 50 72.75 82.05
α = 100 72.75 82.02

sifier, hyperparameter settings are similar to theirs.

1.2. Loss Weights Tuning

As discussed in our study, we only have a single hyper-
parameter in our proposed method, i.e., α weight of the
consistency loss function. We optimize consistency loss
for synthetically prepared degraded and adapted images on
the Imagenet dataset separately for DCadapt and DCdeg as
shown in Table 1. Alpha values vary between 1 and 100,
given that the cosine similarity loss values are typically very
small. Optimal values of α = 50 for DCadapt and α = 10
for DCdeg .

2. Ablation Study: Experimental Results
2.1. Single Degradations

We provide additional experimental results for single degra-
dation, i.e., CIFAR-10-C [5] dataset on ResNet-18 [4] back-
bone as shown in Table 2 to support our claims further.
Expectedly, the Cclean method performs the worst follow-
ing DDA [3], given that both methods contain only clean
image classifiers. Still, Cclean performs well on some
degradations such as brightness, fog, and snow. On the
other hand Cdeg , DCdeg and DiffAUD outperforms Cclean

and DDA [3] on most of the degradations. Our proposed
method, DiffAUD, performs best for 10 out of 15 corrup-
tions and outperforms other methods. The performance
of ResNet-18 overall is quite similar to ResNet-50 on the
CIFAR-10-C dataset compared to the existing methods.

2.2. Sequential Degradations

Moreover, we provide the experimental results for se-
quential degradations on the CIFAR-10-SEQ-C dataset as
shown in Table 3. Similar to the Imagenet-SEQ-C dataset,
DiffAUD outperforms other existing methods. However,
known degradations-based methods outperform Cclean by
significantly improving compared to Imagenet-SEQ-C. For
example, Cdeg DCdeg improves the performance by about
24%-25% on ResNet-18 and subsequently by about 23%
over all degradations. In addition, we can see roughly

Table 2. Classification accuracy for CIFAR-10-C dataset with different corruptions averaged over all severities on ResNet-18 backbone.

Method bright contrast defocus elastic fog frost gauss glass impulse jpeg motion pixel shot snow zoom mean
Cclean 93.53 78.89 83.93 85.33 88.69 79.40 51.42 53.16 56.59 80.71 78.68 77.94 62.88 82.91 80.32 75.62
Cdeg 91.09 82.22 90.07 86.15 87.62 86.95 87.81 77.69 83.99 88.18 85.24 87.29 88.99 85.60 88.48 86.49
DCdeg 91.48 84.24 90.82 86.56 88.48 87.41 87.91 76.17 83.95 88.17 86.25 86.80 89.15 85.89 89.36 86.84
DDA [3] 89.35 68.91 86.15 84.44 77.07 80.24 80.88 78.38 80.95 84.28 82.77 84.91 82.83 82.66 84.30 81.87
Ours 90.87 82.08 90.81 87.40 86.81 86.46 88.67 82.50 86.30 88.66 87.18 88.73 89.62 86.23 89.65 87.46



Table 3. Classification accuracy for CIFAR-10-SEQ-C sequential degradation dataset with different severity levels on ResNet-18 and
ResNet-50 backbones.

Method ResNet-18 ResNet-50
weak medium strong mean weak medium strong mean

Cclean 76.49 54.37 41.09 57.32 78.77 57.86 43.67 60.10
Cdeg 89.08 82.92 74.50 82.17 89.60 84.05 75.56 83.07
DCdeg 89.19 82.57 73.43 81.73 89.59 83.42 74.19 82.40
DDA [3] 83.70 79.42 76.12 79.75 84.05 79.79 76.11 79.98
Ours 89.30 85.53 80.48 85.10 90.13 85.95 80.71 85.60

5% improvement from DiffAUD comparison to DDA. It
demonstrates that the known degradation methods signifi-
cantly help improve the performance of sequential degrada-
tions. At the same time, please note that the single degrada-
tions part of the training of the classifiers is the same degra-
dations applied in the sequential degradations, i.e., JPEG,
GBlur, and AWGN. It shows that even if we apply single
degradations on images for training, it can still provide ro-
bustness against unknown sequential degradations.

3. Sample training images
To show images utilized for training in our study, we show
a few sample images in Figures 1 to 3. All sample fig-
ures include clean images, and pairs of their correspond-

ing known degraded and adapted images from the diffusion
model. Diffusion models adapt AWGN degradation images
appropriately to the clean image domain; sometimes, the
adapted images look sharper than the original clean image.
On the other hand, images degraded with GBlur and JPEG
are not perfect. JPEG compressed image adaptation quality
is not so bad in case of low severity; however, with higher
severity, adapted images lose some details, such as the eyes
of the bird in Figure 1 for JPEG quality factor of 20. More-
over, the diffusion model struggles to adapt the images from
GBlur degraded images even with low severities. It demon-
strates the need for specialized classifiers, as we proposed
in DiffAUD, to classify imperfect adapted images from the
diffusion models.

Figure 1. Sample figure of a bird with different known training degradations and severity levels.



Figure 2. Sample figure of a butterfly with different known training degradations and severity levels.

Figure 3. Sample figure of a panda with different known training degradations and severity levels.
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