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Abstract

This supplementary material accompanies the CVPR main paper submission entitled ”IDENet: Implicit Degradation
Estimation Network for Efficient Blind Super Resolution”. It contains additional experiments, analyses and results that were
excluded from the main paper due to page limit constraints. In particular, we expanded the ablation study included in the
main paper by evaluating the importance of the patch size for model training, and the effects of blur kernel widths in the SR
process. We finally compounded the visual results included in the main paper with additional outcomes/comparisons with
existing models.

Figure 1. Performance of IDENet under various patch sizes at a scale factor of ×4. The solid lines refer to the PSNR (left y-axis), and the
dashed lines represent the SSIM (right y-axis).

1. Impact of Image Patch Size
We conducted an ablation study and explored the impact of various patch sizes on PSNR as shown in Figure 1. While the
patch size 64 × 64 achieved a higher PSNR (a gain of 0.04 dB concerning the 32 × 32 patch), it introduced computational
overhead, which, in our setup, results in 0.0045 more seconds for image inference and in additional 0.84GB of occupied
memory. The 32 × 32 patch size struck a balance on computational efforts and performance, hence making it the optimal
choice for our efficient approach.



Figure 2. Performance curve shows PNSR on different public benchmark datasets for scale factor ×4.’The kernel’s width (σ) is set from
1.8 to 3.2.

2. Impact of Blur Kernel Widths
In Figure 2, we report on the comparison between our approach and the state-of-the-art direct implicit blind SR competitor,
DASR [5]. In particular, we conducted an analysis on the impact of the different blur kernel widths that are used in the
Isotropic Gaussian kernel setting (i.e., the Gaussian8 kernels [3, 7]). We evaluated the performance of our approach and
DASR on the same benchmarks we used in the main paper, i.e., Set5 [2], Set14 [10], BSD100 [8], Urban100 [4], and
Manga109 [9]. Results show that our approach has significantly more stable performance than DASR when the blur kernel



Figure 3. Plot represents the computed L1 Distance between the estimated anisotropic and ground truth kernels for different methods.

Figure 4. Comparison of L1 (computed between ground truth kernels and estimated kernels) and Lk losses between DCLS, DANv2 and
IDENet(Ours). The results are computed for the DIV2KRK validation dataset.

width is increased. In particular, on average, our method loses less than 1 dB when the largest Gaussian8 [3, 7] kernel width
(i.e., 3.2) is considered. Differently, DASR sees a relevant performance drop (i.e., even more than 3 dB for the Manga109
dataset) when the same setting is considered. These results indicate that our approach can estimate the kernels efficiently
exploited by the deconvolution approach and the refinement module to generate the SR output.

3. Blur Kernel Estimation Quality
In Figure 7 of the main submission, we reported the quality and the average L1 distance between our estimated kernels and
the ground-truth ones. Figure 3 further analyzes such a result by showing more details about the quality of all the estimations
made by our method and existing state-of-the-art works. Results show that our IDENet performs remarkably well in kernel
estimation compared to DCLS and kernelGAN [1] with a notable difference in computed L1 distances (i.e.,0.0311 and 0.2008
respectively). Furthermore, it performs closely to DANv2 [6] exhibiting only a marginal L1 difference (i.e., of 0.0112).



3.1. Noisy values shown in the estimated kernels.

The noisy values are due to how we implicitly estimate the degradation kernels through our novel loss –without the need for
the ground truth degradation kernels. The implicit kernel loss term in (10) minimizes the difference between the GT LR image
and the downsampled GT HR image (filtered with the learnable kernel). This does not guarantee that the kernel is smooth:
the bilinear downsampling operator (denoted as ↓S) smooths neighboring values, thus canceling out the ”imperfections”
resulting from the noisy filter. To validate our hypothesis, we computed the results in Figure 4. This shows that, having
a kernel that is very similar to the ground truth (i.e., a low L1 distance between ground truth and estimated kernel) does
not guarantee that Lk shows the same behavior. Indeed, while our method has noisy values and a larger L1 with respect to
DANv2, it provides a better result than it when considering the estimated kernel for the degradation loss in (10), which, for
implicit SR, is the relevant term.

4. Perceptual Quality Measurement
We extended our evaluation considering the perceptual measure (LPIPS). Values in Table 1 demonstrate that while DASR
is trained on pixel, regression, perceptual, and adversarial losses, IDENet achieved better LPIPS results than DASR, with
comparable performance than explicit methods.

LPIPS↓
Estimation Type Methods Set5 Set14 BSD100 Urban100 Manga109

IKC 0.1607 0.2621 0.3456 0.2431 0.1342
DANv1 0.1483 0.2560 0.3326 0.2086 0.0924

Explicit BSR†† DANv2 0.1459 0.2497 0.3267 0.2030 0.0910
DCLS 0.1474 0.2515 0.3242 0.2000 0.0870

AdaTarget 0.1932 0.3121 0.4029 0.2518 0.1286
Implicit BSR††† DASR 0.2467 0.3035 0.3962 0.2931 0.2247

IDENet(Ours) 0.1523 0.2556 0.3384 0.2262 0.0999

Table 1. LPIPS comparison between SOTA method.

5. Large Scale Factors

6. Qualitative Results
In this section, we aim to provide more visualizations for comparing the state-of-the-art explicit method (i.e., DCLS [7]) and
state-of-the-art implicit method (i.e., DASR [5]) with our approach (i.e., IDENet). These visual comparisons are based on
different benchmark datasets and encompass varying kernel widths.

6.1. Isotropic Kernels

Figure 6-9 showcase the results of our method under different isotropic blur kernels with various widths. In Figure 6, our
approach successfully reconstructs the image, preserving details, colors, and textures. This achievement mirrors the compar-
ative visual quality attained by DCLS. In contrast, the image reconstructed by DASR exhibits noticeable blurriness. Figure 7
and Figure 8 further underscore the effectiveness of our proposed approach in achieving visually pleasant results. The restora-
tion of facial details in Img ’189080 (Figure 7) and preservation of shapes and structures in Img ’025’ (Figure 8) demonstrate
the excellence of our method. In Figure 9, we also report on a sample case where low PSNR/SSIM values are achieved by
different methods. Our approach excels in reconstructing and preserving details within the image. Conversely, DASR tends
to smooth out these details. The visual comparisons across different blur kernels highlight the robust performance of our
approach in image reconstruction and preservation of image visual features, showcasing notable advantages over our direct
DASR [5] state-of-the-art competitor.

6.2. Anisotropic Kernels

Anisotropic kernels are diverse and complicated kernels. Figure 10-13 Showcase the visual quality of our approach in recon-
structing images that are degraded by such anisotropic kernels. The visuals result in Figure 10-12 highlight the effectiveness
of our method in maintaining the visual appeal of images, hence achieving comparable performance to that of DCLS despite
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Figure 5. Visual comparison on image ’monarch’ from Set14 dataset on different scale factors.

such a method using ground-truth kernel information. Figure 13 shows the results of an image being reconstructed with
low PSNR/SSIM. The LR version of such Img ’007’ sample contains very few details that none of the existing methods is
able to exploit towards the generation of a high-quality SR image. This is particularly visible in the tree branches closer
to the camera. In such a case, our method achieves comparable results to DCLS, while DASR faces more challenges and
introduces noticeable blurriness. Overall, the visual evaluations across anistropic kernels emphasize the robust performance
of our efficient IDENet method, particularly in scenarios demanding precision in reconstructing intricate details and textures,
where it outperforms the state-of-the-art implicit blind SR approach, i.e., DASR [5].
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Figure 6. Img ’bird from set 5 dataset for ×4.’kernel width is 2.0.
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Figure 7. Img ’189080’ from BSDS100 dataset for ×4.’kernel width is 2.8.
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Figure 8. Img ’025’ from Urban100 dataset for ×4.’kernel width is 3.2.
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Figure 9. Img ’095’ from Urban100 dataset for ×4.’kernel width is 3.2.
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Figure 10. Img ’044’ from DIV2KRK dataset for ×4.’
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Figure 11. Img ’043’ from DIV2KRK dataset for ×4.’
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Figure 12. Img ’053’ from DIV2KRK dataset for ×4.’
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Figure 13. Img ’007’ from DIV2KRK dataset for ×4.’
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