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A. Appendix
In this supplementary material, we provide more details
of synthetic-NEBI configurations in section A.1, and addi-
tional details of the post processing for real-NEBI in sec-
tion A.2. In section A.3, we present more examples of syn-
/real-NEBI dataset. In section A.4, we measure the test ora-
cle of Frame Selection Network(FSN) to confirm how much
performance improvement is possible. We also test our FSN
in public benchmark in section A.5. In section A.6, we show
additional qualitative results.

A.1. Detailed configurations of synthetic-NEBI

In this section, we explain the detailed configurations of
generating the synthetic dataset, especially synthesizing
motion blur and injecting noise. Following [1, 3], we con-
vert images to RAW images through inverse gamma com-
pression, inverse white balance, and inverse color conver-
sion, and then synthesize motion blur and Poisson-Gaussian
noise.

For the motion blur synthesis, we utilize gyro sensor data
acquired from the Samsung Galaxy S22. Specifically, con-
sidering a burst of 14 images taken with different exposure
times (varying from 0.01s to 0.14s, increasing at intervals of
0.01s), we randomly sample consecutive gyro sensor values
matching each image’s exposure. For example, we sample a
sequence of 2 consecutive gyro measurements for exposure
times such as 0.01s, 0.02s with 4 samples, ..., 0.14s with 28
samples. Subsequently, we interpolate these values eight-
fold to create a smooth blur trajectory and then calculate
homography. Finally, we obtain the blurred image by warp-
ing the ground truth sharp images corresponding to each
burst using the previously derived homography and subse-
quently averaging them.

After synthesizing motion blur, we inject Poisson-
Gaussian noise into the burst images. We model noise in
an image as:

Bnoisy = (B +Nshot) +Nread

where B is a blurred image from the previous step and
Bnoisy is a noise injected image. Nshot and Nread are shot
noise and read noise, respectively. We use the Poisson noise
and Gaussian noise model for the shot noise and read noise
as follows:

(B +Nshot) ∼ P
(
Bphoton

λshot

)
λshot (1)

Nread ∼ N (0, λread) (2)

where Bphoton is the number of photons in the blurred im-
age. λshot and λread are shot noise (i.e., a mean of Poisson
distribution P) and read noise parameters (i.e., a variance of
Gaussian distribution N ), respectively. We calibrated shot
and read noise parameters across a range of ISO settings,
from ISO 100 to 12800.

To generate noises of arbitrary ISO values, we model the
linear relationships of ISO values, shot noise, and read noise
parameters, similar to [3]. We first randomly sample an ISO
value of the shortest exposure frame (i.e., 0.01 seconds in
synthetic-NEBI) as:

ISO0.01 ∼ U(100, 12800) (3)

where U is a uniform distribution, and ISO0.01 is an ISO
value of the shortest exposure frame. According to the ex-
posure ratio of the burst images, we compute the ISO values
of other frames as follows:

ISOs =
0.01

s
· ISO0.01 (4)

where ∀s ∈ {0.02, . . . , 0.14}. ISOs is an ISO value of the
frame corresponding to the exposure s. Then, we use a lin-
ear model between the ISO values and the shot noise pa-
rameters as follows:

λ̂s
shot = 9.2857ee−07× ISOs + 8.1006e−05 (5)

where λ̂s
shot is a computed shot noise parameter of each

frame in the synthesized burst images. The multiplier and
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(a) Camera 1 (b) Camera 2 (c) After Alignment of (b)

(d) Close-up view of (a) (e) Close-up view of (b) (f) Close-up view of (c)

Figure 1. Result of photometric alignment. (a) and (b) are im-
ages captured with two camera modules. (c) shows the photomet-
ric alignment result of (b). As shown in (d) and (e), color differ-
ences exist before the alignment. (f) shows our photometric align-
ment significantly reduces the differences.

intercept are estimated from the calibrated shot and read
noise parameters using the linear regression.

We also estimated the linear relationship between the
shot and read noise following [3]. We model read noise pa-
rameters as:

log(λ̂s
read) = 2.2282× log(λ̂s

shot) + 0.45982 (6)

where λ̂s
read is a read noise parameter of the frame in the

burst images. Finally, for each set of burst images, we ran-
domly sampled ISO values, shot, and read noise parameters
and then synthesized noise on blurred burst images using
Eq.(1) and Eq.(2).

With the proposed blur and noise synthesis, we synthe-
sized non-uniformly exposed 14 burst frames, which have
varying amounts of blur and noise. The first frame in the
burst sequence has the shortest exposure, resulting in less
blur but more noise. Conversely, the last frame exhibits
more blur but is less noisy. The burst frames are 1-channel
RAW images and the corresponding ground-truth images
are 3-channel raw-RGB images without mosaicing applied.
We utilize the sharp frames of the GoPro dataset [8] to syn-
thesize our dataset. Finally, we synthesize a total of 2,750
burst sets, and each burst set consists of 14 burst frames
and their corresponding ground-truth frames. The shape of
each burst frame and ground-truth frame is 4× 80× 80 and
3× 640× 640, respectively.

A.2. Post-processing for real-NEBI

Despite the sophisticated hardware design of the dual-
camera system, geometric misalignment may occur be-
tween the two camera modules. Due to the optical spectrum
differences of the beam splitter and ND filter, photometric

(a) Before Geometric Alignment (b) After Geometric Alignment

(c) Close-up view of (a) (d) Close-up view of (b) 

Figure 2. Result of geometric alignment. (a) and (b) show stereo-
anaglyph images, where the first burst frame and its corresponding
ground-truth frame are visualized in red and cyan, respectively.
(c) shows red and cyan lights are not aligned due to misalignment
between the two frames. As shown in (d), red and cyan lights are
better aligned after the geometric alignment.

misalignment may also occur. So, we adopt post-processing
to acquire more accurate ground truth images.

First, we demosaic 14 burst frames and ground-truth
frames captured in the RAW format using a demosaicing
algorithm of Malvar et al. [7]. Then, we apply photomet-
ric and geometric alignment to the ground truth images. For
the photometric alignment, we capture a static scene with a
color chart using two camera modules and obtain two refer-
ence images, as done in [9]. We estimate a 3× 3 matrix that
matches the values of the color chart captured with one of
the camera modules to the other. The matrix is computed by
solving a least-squares problem. Then, all ground-truth im-
ages are corrected using the estimated matrix. Figure 1(a)-
(b) show noticeable color differences between images be-
fore photometric alignment. After the photometric align-
ment, these color differences are substantially reduced, as
shown in Figure 1(c).

For the geometric alignment, we estimated the homogra-
phy matrix from the first burst frame and the correspond-
ing ground-truth frame. The two frames are simultane-
ously captured with the same exposure time and different
gain values, so they have the same contents but different
amounts of noise. We use the enhanced correlation coef-
ficient method [5] for estimating the homography matrix,
and we found the method performs well even with different
amounts of noise. For each burst set, we estimated a ho-
mography matrix and applied the matrix to a ground truth
image. Figure 2(d) shows a result of geometric alignment,
where the red and cyan lights are better aligned after the
geometric alignment.

After the alignment, the burst frames are down-sampled



Model Frame selection PSNR↑ SSIM↑ LPIPS↓

BIPNet [4]
33.774 0.920 0.108

✓ 33.878 0.922 0.106
oracle 34.180 0.926 0.101

Deep-sr [1]
33.516 0.917 0.117

✓ 33.872 0.921 0.107
oracle 34.140 0.924 0.099

Deep-rep [2]
34.059 0.925 0.103

✓ 34.313 0.928 0.099
oracle 34.539 0.931 0.094

Table 1. Oracle performance on synthetic-NEBI. We train the
models from scratch on the synthetic-NEBI. The term ‘oracle’ de-
notes the oracle performance, and ‘✓’ denotes the results of the
model with FSN. The best score is highlighted in bold. This result
shows that FSN improves the enhancement quality.

(i.e., ×1/4) using linear interpolation for the input of the
enhancement pipeline. The down-sampled burst frames are
mosaicked and saved in the RGGB format. Finally, we col-
lect a total of 96 burst sets, and each burst set consists of
14 burst frames and their corresponding 14 ground-truth
frames. The shape of each burst frame and ground-truth
frame is 4× 148× 238 and 3× 1184× 1904, respectively.

A.3. Additional synthetic-/real-NEBI visualization

Figures 3 and 4 present additional examples from the
synthetic-NEBI and real-NEBI datasets, respectively. Both
datasets consist of burst sequences with non-uniform expo-
sure conditions. The frames with shorter exposure are likely
to have more noise, while those with longer exposure are
likely to exhibit more blur.

A.4. Oracle performance of Frame Selection Net-
work

In Tables 1 and 2, we provide a comprehensive performance
analysis, including the oracle performance, of the previous
burst super-resolution networks, BIPNet [4], Deep-sr [1],
and Deep-rep [2], on the synthetic-NEBI dataset and real-
NEBI dataset. The oracle performance represents the aver-
age performance when only the optimal base frame is cho-
sen. To obtain the oracle performance, we forward each of
the 14 burst frames once as a base frame and then evaluate
by comparison with its corresponding ground-truth. There
is a substantial gap between the oracle performance and
each baseline using individual existing models. This dis-
crepancy underscores the pivotal role that the choice of the
base frame plays in determining the quality of the final out-
put. Our proposed approach, FSN, consistently surpasses
the performance of each baseline.

Model Frame selection PSNR↑ SSIM↑ LPIPS↓

BIPNet [4]
33.957 0.904 0.143

✓ 34.367 0.901 0.157
oracle 35.650 0.912 0.142

Deep-sr [1]
31.084 0.908 0.180

✓ 31.149 0.907 0.180
oracle 33.095 0.926 0.163

Deep-rep [2]
31.089 0.911 0.174

✓ 31.308 0.904 0.194
oracle 33.047 0.929 0.163

Table 2. Oracle performance on real-NEBI. We use the models
pretrained on the synthetic-NEBI dataset. The term ‘oracle’ de-
notes the oracle performance, and ‘✓’ denotes the results of the
models with FSN. The best score is highlighted in bold. This re-
sult shows that FSN improves the enhancement quality.

A.5. Frame Selection Network on public bench-
mark

We also examine the impact of FSN on public benchmarks.
Bhat et al. [1] provide a synthetic and a real burst dataset
named SyntheticBurstSR and RealBurstSR, respectively.
For BurstSR, we evaluate each baseline, the three exist-
ing burst super-resolution models [1, 2, 4] as the same as
above, with and without our FSN. In this experiments, we
set the number of CMA blocks, denoted as L, as 4. Table 3
demonstrates the impact of FSN on a public benchmark.
FSN improves the performance compared to the baselines;
however, the gain on the public benchmark is marginal than
on the NEBI dataset. These differences may arise since the
public benchmark captures scenes with uniform exposure
time settings, whereas our NEBI dataset assumes dynamic
exposure times. Figure 5 vividly illustrates the disparities
between the public benchmark and NEBI dataset. In the
synthetic-NEBI dataset, where we assume a non-uniform
exposure setting, we utilize a video dataset [8] and synthe-
size gyro blur, making the motion more noticeable, while
the SyntheticBurstSR [1] exhibits minimal motion. Addi-
tionally, the NEBI dataset features a wide range of noise
levels, whereas SyntheticBurstSR maintains a narrow range
of noise levels. For the real dataset, the real-NEBI dataset
captures scenes with large motion and dynamic noise for
simulating non-uniform exposures; RealBurstSR [1] ex-
hibits small motion and similar noise levels between frames.
Since the FSN is designed to consider motion information
and the complementary characteristics of diverse exposure
frames, the performance improvement may not be signifi-
cant on the public benchmarks.

A.6. Additional Qualitative results

Figures 6 and 7 show qualitative results on the synthetic-
NEBI and real-NEBI datasets, respectively. For example, in
the second row of Figure 6, a man’s eye appears closed and



Benchmark Model Frame selection PSNR↑

SyntheticBurstSR [1]

BIPNet [4] 40.673
✓ 40.732

Deep-sr [1] 38.330
✓ 38.341

Deep-rep [2] 40.181
✓ 40.183

RealBurstSR [1]

BIPNet [4] 47.870
✓ 47.870

Deep-sr [1] 47.699
✓ 47.737

Deep-rep [2] 48.315
✓ 48.321

Table 3. Results on public benchmark. We train FSN on the pro-
vided pretrained model. ‘✓’ denotes the results with the FSN and
the proposed loss functions on top of the baseline model.

blurry in the original BIPNet result, while applying the FSN
results in a clearer and more open eye. Similarly, in the third
row, the woman on the right in the yellow box has some ar-
tifacts on her face in the Deep-sr results. However, when
the FSN selects the base frame well, the artifacts disappear.
In the last row, the woman in the yellow box has a blurry
mouth in the results of Deep-rep. In contrast, with the addi-
tion of the FSN, the woman’s mouth is clearer. In Figure 7,
the FSN opts to choose a less noisy frame as the base. This
strategic choice consistently yields clear output by integrat-
ing all frames well based on the chosen base frame.

A.7. Details about Auto-Exposure model

The common traditional approach for AE is to measure op-
timal exposure based on entropy. Following previous meth-
ods [10, 11], we select the base frame with the maximum
entropy calculated based on the image’s histogram. Specif-
ically, the entropy ei for i-th burst frame is calculated as
follows:

nb =
∑

x∈H,y∈W

δ(Ii(x, y)− b), (7)

p(b) =
nb∑B
j=0 nj

, (8)

ei = −
B∑

j=0

p(j) log p(j), (9)

where δ is the discrete Dirac delta function, B is the number
of bins of a histogram and I(x, y) is the pixel intensity of
the i-th image corresponding to the (x, y) coordinate. Af-
ter calculating the entropy for all frames in burst shots, we
select the frame with the highest entropy value as the base
frame.

A.8. Implementation Details

Following the previous super-resolution methods [1, 2, 4]
we use the number of the input burst frames as N = 14
and the scale factor ×4. We train the super-resolution net-
work using the first frame of the input burst frames as a
baseframe. To acquire a ground-truth base frame index, we
identified the frame in each burst that yields the highest per-
formance on trained models. Specifically, for each burst,
by designating each frame as the base frame, we generate
predictions and compute the PSNR values against the cor-
responding ground-truth high-resolution image. The frame
index associated with the highest PSNR value is determined
as the ground-truth index. Our FSN uses L = 2, a batch size
of 32, and the AdamW optimizer [6] for training.

References
[1] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Deep burst super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9209–9218, 2021. 1, 3, 4, 8, 9, 10

[2] Goutam Bhat, Martin Danelljan, Fisher Yu, Luc Van Gool,
and Radu Timofte. Deep reparametrization of multi-frame
super-resolution and denoising. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2460–2470, 2021. 3, 4, 9, 10

[3] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019. 1, 2

[4] Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fa-
had Shahbaz Khan, and Ming-Hsuan Yang. Burst im-
age restoration and enhancement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5759–5768, 2022. 3, 4, 9, 10

[5] Georgios D Evangelidis and Emmanouil Z Psarakis. Para-
metric image alignment using enhanced correlation coeffi-
cient maximization. IEEE transactions on pattern analysis
and machine intelligence, 30(10):1858–1865, 2008. 2

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[7] Henrique S Malvar, Li-wei He, and Ross Cutler. High-
quality linear interpolation for demosaicing of bayer-
patterned color images. In 2004 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, pages
iii–485. IEEE, 2004. 2

[8] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In CVPR, 2017. 2, 3

[9] Jaesung Rim, Geonung Kim, Jungeon Kim, Junyong Lee,
Seungyong Lee, and Sunghyun Cho. Realistic blur syn-
thesis for learning image deblurring. arXiv preprint
arXiv:2202.08771, 2022. 2

[10] SaiKiran Tedla, Beixuan Yang, and Michael S Brown. Exam-
ining autoexposure for challenging scenes. In Proceedings



of the IEEE/CVF International Conference on Computer Vi-
sion, pages 13076–13085, 2023. 4

[11] Chi Zhang, Zheng You, and Shijie Yu. An automatic ex-
posure algorithm based on information entropy. In Sixth
International Symposium on Instrumentation and Control
Technology: Signal Analysis, Measurement Theory, Photo-
Electronic Technology, and Artificial Intelligence, pages
152–156. SPIE, 2006. 4



Burst input frames
Ground-truthExposure time

Figure 3. Visualization of the synthetic-NEBI dataset. The left four columns display a subset of 14 input bursts, while the rightmost
column presents the ground-truth image corresponding to the first input frame. From the left to the right in burst, the exposure time
increases. For a better view, we visualize the images with the same size. Note that the burst frames simulate being shot with a gradually
increasing exposure time.



Burst input frames
Ground-truthExposure time

Figure 4. Visualization of the real-NEBI dataset. The left four columns display a subset of 14 input bursts, while the rightmost column
presents the ground-truth image corresponding to the first input frame. From the left to the right in burst, the exposure time increases. For a
better view, we visualize the images with the same size. Note that the burst frames simulate being shot with a gradually increasing exposure
time.
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Figure 5. Comparison of NEBI and public benchmark. The two datasets (a) and (b) are synthetic datasets, and the two datasets (c) and
(d) are real datasets. Comparing (a) and (b), synthetic-NEBI exhibits more dynamic motion, blur, and noise than SyntheticBurstSR [1].
Similarly, (c) and (d) highlight the differences between the two real datasets. The real-NEBI features significant motion and blur with
dynamic noise, whereas RealBurstSR [1] has minimal motion and similar noise between frames.
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Figure 6. Qualitative comparison on synthetic-NEBI. We conduct a comparative analysis between the results obtained by applying three
previous methods individually—(a) BIPNet [4], (b) Deep-sr [1], and (c) Deep-rep [2]—and the FSN. ‘Baseline’ denotes the results when
the previous methods are applied individually, while ‘Baseline + FSN’ indicates the integration of the FSN on top of the baseline in a
plug-and-play manner. The FSN demonstrates notable improvements by effectively merging complementary information from multiple
frames, thereby enhancing high-frequency image details. In contrast, the existing burst models (a), (b), and (c) tend to predict images with
artifacts or blur. Best viewed when zoomed in.
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Figure 7. Qualitative comparison on synthetic-NEBI. We present the results of three previous methods—(a) BIPNet [4], (b) Deep-sr [1],
and (c) Deep-rep [2]—with the FSN. ’Baseline + FSN’ indicates the integration of the FSN on top of the baseline in a plug-and-play
manner. The FSN selects a frame with less noise than the 1st frame well, resulting in improved visual quality. Best viewed when zoomed
in.
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