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1. Teams and Methods

In this supplementary material, we briefly describe the par-
ticipating teams and their proposed methods in the NTIRE
2024 Restore Any Image Model (RAIM) in the Wild Chal-
lenge.

1.1. Team MiAlgo

Team MiAlgo proposed a Wavelet UNet with a Hybrid
Transformer and CNN model optimized by adversarial
training to tackle the real-world image restoration task.

1.1.1 Generator model

As shown in Fig. 1, the model is based on the MWRCAN
[8]. The model uses a UNet architecture that employs Harr
wavelet transforms and inverse transforms for 2× down-
sampling and upsampling. The major convolution modules
consist of N Resblocks, where N is 8 in this case. The
channels of the Resblocks are marked in the diagram, and
there is also a residual connection in each downsample or
upsample block, they omitted these connections for the sake
of diagrammatical clarity.

Self-attention in transformers enables the network to
identify self-similar features throughout the entire image,
thereby enhancing its semantic recognition capabilities.
However, the attention structure becomes increasingly time-
consuming as the feature size grows, rendering it impracti-
cal for high-resolution image restoration tasks. To strike a
balance between performance and efficiency, the team inte-
grated RESATT structures into the middle block of UNet.
RESATT comprises N basic blocks, each consisting of a
res-block followed by a single-head self-attention block.

The UNET produces a 3-channel image called out1. To
enhance the quality of the restored image, they incorporate a
refinement module based on the EMVD[16] approach. This
module helps to recover important details that may have
been lost during the restoration process. The refinement
module takes in the LR image and out1 as inputs and pro-
duces a single-channel fusion weight, denoted by α. The fi-
nal output image is obtained by blending the LR image and
out1 using α, i.e., HR = (1− α)LR+ αout1. The refine-
ment module is lightweight, comprising only three convo-
lutional layers with a maximum of 16 channels. Despite its
simplicity, it is capable of capturing details that are crucial
for the final output image.

The team still insists on using GAN models for general
restoration because they have found that diffusion models
can lead to unacceptable distortions in text and regular tex-
tures. The model has approximately 341MB parameters
and takes up 7GB of GPU memory and 180ms to infer a
512×512×3 image on a computer with a 4090GPU.

1.1.2 Image degradation

The official competition only provided 100 pairs of train-
ing data, as well as 200 images without ground truth in the
validation/test phase. They found that the degradation level
of the provided 100 pairs of training data is only consistent
with 100 images in phase 2, which is relatively mild. The
other images in Phase 2 and Phase 3 have a heavier blurring.

Based on the analysis presented, the team developed two
GAN degradation models that introduce varying levels of
blurring. They enlarge the generator in [19] by doubling
the channels, as the degradation model. The first model was
trained with the ESRGAN [28] training method and con-
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Figure 1. The overall pipeline of the solution proposed by team MiAlgo.

sisted of 100 pairs of training sets, with high-resolution im-
ages serving as input to the degradation GAN model and
low-resolution images as ground truth. This model intro-
duced a weak level of blurring.

For the second model, they fine-tuned the weak degrada-
tion model using the approach outlined in Ref [19]. They
trained this model in an unpaired manner, using 50 high-
blurring images from phase 2 as unpaired GT and 1000
high-resolution input images from similar scenes as un-
paired input. This model introduced a higher level of blur-
ring compared to the first model. When using the sec-
ond degradation model, they utilize a human segmentation
model and a text segmentation model to segment out the
human images with heights ¡300 pixels and the text with
heights ¡50 pixels. These segments are then replaced with
the degradation results from the first degradation model.
This strategy helps to reduce the gap between the input and
ground truth for small human images and text, and the team
has found that this trick improves the fidelity of the results
in these regions.

1.1.3 GAN training

The team has an internal ultra-high-definition dataset con-
sisting of approximately 10,000 images. The main scenes
include common animals and plants, Chinese and English
text, as well as some common urban and rural scenes, which
can cover the typical shooting scenarios of mobile phones.
They used the two aforementioned degraded GAN models
to degrade these images, resulting in a dataset of 20,000
training pairs.

To develop a high-quality image restoration model for
phase 2 quantitative measures, they utilized a GAN model

trained on 10,000 degraded training pairs from the ini-
tial degradation model. The Generator’s learning rate was
set to 1e-5, with a batch size of 24 and a patch size
of 512. The team began training with only L2 loss for
∼10,000 iterations, then fixed the loss to include L2 +
1 ∗ PerceptualLoss + 0.1 ∗ GANLoss for an additional
140,000 iterations. They then fine-tuned the model for
∼20,000 iterations with L2+0.1∗PerceptualLoss+0.01∗
GANLoss+4 ∗LPIPS and a lower learning rate of 1e-6
on the official training set (100 pairs) to achieve a slightly
higher quantitative score. The discriminator setting is the
same as RealESRGAN [27].

For phase 3, the team continued fine-tuning the model
for approximately 100,000 iterations using loss = L2 +
0.1 ∗PerceptualLoss+0.01 ∗GANLoss+4 ∗LPIPS,
with a learning rate of 1e − 5. They used a mixed dataset
with 80% strong degradation and 20% weak degradation
by adjusting the training file list ratio. Finally, they crop
each training image into 512 × 512 patches and select the
top 10 patches with the higher NIQE score for each image.
They continued fine-tuning the model on this subset with
a learning rate of 1e − 6 for ∼50,000 iterations. Higher
NIQE patches generally have richer textures and they found
that fine-tuning the model on this subset resulted in better
image details.

1.2. Team Xhs-IAG

Team Xhs-IAG proposed method by combining SUPIR and
DeSRRA, which achieves good generative performance and
simultaneously acceptable stability on fidelity.

1.2.1 Detailed Method Description for Phase2



1 window s ize = 32 ,
2 embed dim =180 ,
3 d e p t h s = (6 , 6 , 6 , 6 , 6 , 6 ) ,
4 num heads =( 6 , 6 , 6 , 6 , 6 , 6 ) ,
5 m l p r a t i o = 4 . ,

The dataset they used is LSDIR[11]. During training,
they construct pairs with a resolution of 128x128. The
degradation hyperparameters are the same as those for real-
esrgan. They trained 92k iterations with batch size=12 (3
for one GPU, total 4 GPUs) in stage-1 and Adam’s learning
rate is 1e-4.

In the second stage of training, the team added adver-
sarial loss and perceptual loss, and instead of using lsdir,
they only used 100 paired images provided by the official
competition. The results show that the degradation distribu-
tion of the official evaluation data is close to that of the 100
images. The specific loss function coefficients are shown
below. They trained for a total of 140k iterations in the sec-
ond stage, with a batch size of 12. The learning rate for
Adam is 5e-5.

1 d i s c r i m i n a t o r = d i c t (
2 t y p e = ’ U N e t D i s c r i m i n a t o r W i t h S p e c t r a l N o r m ’ ,
3 i n c h a n n e l s =3 ,
4 m i d c h a n n e l s =64 ,
5 s k i p c o n n e c t i o n =True ) ,
6 p i x e l l o s s = d i c t ( t y p e = ’ L1Loss ’ , l o s s w e i g h t

= 1 . 0 , r e d u c t i o n = ’ mean ’ ) ,
7 p e r c e p t u a l l o s s = d i c t (
8 t y p e = ’ P e r c e p t u a l L o s s ’ ,
9 l a y e r w e i g h t s ={

10 ’ 2 ’ : 0 . 1 ,
11 ’ 7 ’ : 0 . 1 ,
12 ’ 16 ’ : 1 . 0 ,
13 ’ 25 ’ : 1 . 0 ,
14 ’ 34 ’ : 1 . 0 ,
15 } ,
16 v g g t y p e = ’ vgg19 ’ ,
17 p e r c e p t u a l w e i g h t = 1 . 0 ,
18 s t y l e w e i g h t =0 ,
19 norm img= F a l s e ) ,
20 g a n l o s s = d i c t (
21 t y p e = ’GANLoss ’ ,
22 g a n t y p e = ’ v a n i l l a ’ ,
23 l o s s w e i g h t =5e −2 ,
24 r e a l l a b e l v a l = 1 . 0 ,
25 f a k e l a b e l v a l =0) ,

There is nothing special about the test. For an image, just
input it directly into the trained model.

1.2.2 Overall Approach

In recent years, the diffusion method has achieved remark-
able results in the field of image generation, and many meth-
ods have recently explored its application in the field of im-
age restoration. Due to the unavailability of data for phase
3 of this competition, the distribution of degradation may
differ from phase 2. To increase the generalization ability

of our solution, the team use SUPIR[35] as our baseline
model.

SUPIR is trained on 20 million images and has good
modeling of the distribution of natural images. It sup-
ports multiple parameters such as positive prompt, negative
prompt, and Classifier free guidance scale to adjust the en-
hanced results. Due to the short competition time and the
lack of open-source training code for SUPIR, they did not
perform any training fine-tuning on SUPIR, but based on its
RGB results. To obtain preliminary RGB results, most offi-
cial default configurations have not been changed. Only the
parameters listed in the table 1 are different from the default
parameters.

Although the results generated by diffusion can be natu-
ral in most scenes, fidelity issues may arise in some small
texture scenes, such as text, patterns, and architectural lines.
Especially in the field of photography, this distortion may
be unacceptable to professionals, and even worse than not
being processed. To alleviate this issue, as shown in fig-
ure 2, they will perform another fusion process based on
the SUPIR results to obtain the final result. The input of
the fusion module includes the SUPIR result, the original
image, and a 0/1 mask. To obtain this 0/1 mask, they used
the DeSRA[33] method. For the sake of fidelity, the fusion
module will perform a lighter enhancement on the area with
a value of 1 in the mask (e.g., using GAN-based methods),
while the area with a value of 0 will be kept as unchanged as
possible(i.e., using SUPIR’s result). They introduce our fu-
sion module and DeSRA method in sections 1.2.3 and 1.2.6
in detail, respectively.

Table 1. Modified config parameters for SUPIR inference

config default ours

positive prompt Cinematic, High
Contrast, highly de-
tailed, taken using
a Canon EOS R
camera, hyperdetailed
photo-realistic max-
imum detail, 32k,
Color Grading, ultra
HD, Extreme metic-
ulous detailing, skin
pore detailing, hyper
sharpness, perfect
without deformations.

Cinematic, High
Contrast, highly de-
tailed, taken using
a Canon EOS R
camera, hyperdetailed
photo-realistic max-
imum detail, 32k,
Color Grading, ultra
HD, extremely metic-
ulous detailing, skin
pore detailing, hyper
sharpness, perfect
without deformations,
window glass is very
clean

edm steps 50 100

sdxl ckpt sd xl base 1.0 0.9vae Juggernaut-
XL v9 RunDiffusionPhoto v2

s cfg 4.0 2.0
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Figure 2. Overall Pipeline of the solution of team Xhs-IAG.

1.2.3 Fusion Network

1.2.4 Architecture

To ensure the authenticity of the results from diffusion-
based models, their fusion module performs fine-tuning
based on a binary mask. Specifically, the model takes
in three components during inference: the output from
SUPIR, the original image, and a binary mask. Areas,
where the mask is zero, indicate that the results from SUPIR
are already optimal and do not necessitate any modifica-
tions, so they will keep this area. Conversely, regions where
the mask is one suggest that the results require re-generation
to maintain fidelity. They will replace this area with the cor-
responding LR part to input the model.

In light of the above, the fusion module operates akin
to an image inpainting task[38, 39], with the key difference
that the masked areas are not entirely devoid of information;
instead, they contain low-quality images that are awaiting
enhancement. In the training process, the team continue to
follow the Real-ESRGAN strategy to generate paired (LR,
GT) on the LSDIR dataset. As illustrated in the figure3,
their model backbone continues to employ SRFormer[43]
(consistent with Phase 2), with the only change being the in-
puts. At this point, the input will encompass the LR, mask,
as well as the GT and LR combinations derived from the
mask. In the inference process, the GT depicted in Figure3
should be substituted with the outcomes yielded by SUPIR.

For the mask used during training, they generate it ran-
domly following the method outlined in STTN[38], while
during testing, they utilize the DeSRA[33] approach to ob-
tain the mask. Regarding the DeSRA method, it will be
introduced later.

Given that the inputs already contain regions of high
quality, the loss function must be correspondingly modified
to account for this. Similar to image inpainting tasks[39],
the loss function encompasses hole loss, valid loss, percep-
tual loss, and adversarial loss. Notably, for the generated

LR

LR*Mask + (1-Mask)*GT 

Mask
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Figure 3. Fusion module of the solution of team Xhs-IAG.

fake image, the discriminator employs the technique of us-
ing soft labels when calculating the least square loss[39],
rather than the hard labels of 0 and 1. This design allows
the discriminator to better discern potential mask areas.

1.2.5 Training Details

The team used SrFormer[43] as the backbone, the specific
parameters are shown in the following code.

1 window s ize = 24 ,
2 embed dim = 360 ,
3 d e p t h s = (6 , 6 , 6 , 6 , 6 ) ,
4 num heads = (6 , 6 , 6 , 6 , 6 ) ,
5 m l p r a t i o =3

The dataset they used is LSDIR[11]. During training,
the team constructed pairs with a resolution of 144x144.
The degradation hyperparameters are the same as those for
real-esrgan. They trained 172k iterations with batch size=8
(2 for one GPU, total 4 GPUs) and Adam’s learning rate
is 1e-4. The specific loss function coefficients are shown
below.

1 v a l i d l o s s = d i c t ( t y p e = ’ V a l i d l o s s ’ ,
l o s s w e i g h t = 0 . 3 ) ,

2 h o l e l o s s = d i c t ( t y p e = ’ H o l e l o s s ’ ,
l o s s w e i g h t = 0 . 0 1 ) ,

3 p e r c e p t u a l l o s s = d i c t (
4 t y p e = ’ P e r c e p t u a l L o s s ’ ,
5 v g g t y p e = ’ vgg19 ’ ,
6 l a y e r w e i g h t s ={
7 ’ 1 ’ : 1 . ,
8 ’ 6 ’ : 1 . ,



9 ’ 11 ’ : 1 . ,
10 ’ 20 ’ : 1 . ,
11 ’ 29 ’ : 1 . ,
12 } ,
13 l a y e r w e i g h t s s t y l e ={
14 ’ 8 ’ : 1 . ,
15 ’ 17 ’ : 1 . ,
16 ’ 26 ’ : 1 . ,
17 ’ 31 ’ : 1 . ,
18 } ,
19 p e r c e p t u a l w e i g h t = 0 . 2 ,
20 s t y l e w e i g h t =150 ,
21 norm img= F a l s e ,
22 ) ,
23 g a n l o s s = d i c t (
24 t y p e = ’GANLoss ’ ,
25 g a n t y p e = ’ l s g a n ’ ,
26 l o s s w e i g h t = 0 . 0 2 ,
27 r e a l l a b e l v a l = 1 . 0 ,
28 f a k e l a b e l v a l =0)

The generation of random masks during training can be
referenced at the specified line in the following GitHub
repository: STTN GitHub Repository.

1.2.6 DeSRA Method

With the fusion model in place, it is necessary to ascertain
the masks used during testing, specifically identifying the
regions where the diffusion results are distorted. A straight-
forward method involves manual annotation of masks, but
this approach is not only unfair in the context of competition
but also labor-intensive.

The team employ the methodology from DeSRA[33]
for identifying GAN artifacts, utilizing a combination of
structural similarity metrics and semantic segmentation out-
comes to generate masks. To be precise, they ascertain the
mask by contrasting the outputs from the GAN model with
those from the diffusion model. The GAN model utilized
in this process is the one that has been adequately trained
during Phase 2. This choice is motivated by the fact that,
despite the GAN model’s potential shortcomings in visual
quality, it excels in preserving fidelity in intricate details
such as text and textures. By adjusting the parameters, the
team strives to align the distribution of the masks with hu-
man visual perception. It is important to note that no special
parameters are used for any individual image; the same set
of parameters is applied consistently across all 50 images.

To enhance the accuracy of the segmentation, they have
utilized the Mask2Former model[6] for this task. Com-
pared to the SegFormer model[32] used in the original
DeSRA, Mask2Former represents a more advanced ap-
proach. Within the provided code, they have included
scripts for mask generation, which encompass all the pa-
rameters used, including the weights for semantic cate-
gories, contrast threshold, area threshold, and so on.

Figure 4. The three-stage pipeline of CGSD proposed by team So
Elegant.

1.3. Team So Elegant

The team proposed a Consistency-guided Stable Diffusion
method for Image Restoration.

As shown in Figure 4, the proposed Consistency Guided
Stable Diffusion (CGSD) model has three primary stages.
Stage 1 is based on a CNN-based restoration model Dif-
fIR [31] to remove diversified degradations. DiffIR uses the
powerful mapping capability of the diffusion model to esti-
mate a compact IR prior representation (IPR) to guide im-
age restoration, thereby improving the recovery efficiency
and stability of the diffusion model in image restoration. To
bridge the domain gap, the degradation of the given data is
used to customize the degradation distribution for training
[42], which improves the performance of the target test im-
ages while maintaining generalization performance. Addi-
tionally, BSRGAN [40] is used to simulate image degrada-
tion to generate pairs of data for training. And, virtual focus
blur is added to BSRGAN to better suit the target test im-
ages. For stage 2, Stable Diffusion (SD) [21] is leveraged to
refine the texture and details. To improve the fidelity of SD
model restoration, a Consistency-Guided Sampling Module
(CGS) is proposed to limit the generation. Specifically, the
CGS module takes the recovered image of stage 1 as the
consistent guidance in each decoding step and aligns the re-
covery results of each step with it:

xt−1 ← xt−1 + σt(xs1 − xt−1) (1)

where xt−1 and xs1 corresponds to the noise-free predicted
output at step t − 1 and the recovered Is1 latent. σt rep-
resents the weight of the guidance. The image structure is
determined in the early diffusion step, and the later stage
mainly generates high-frequency details. The final stage 3
is proposed to address the contexture distortion caused by
the diffusion model. The contextual information from Is1
guides the refined image Is2. Similar to [10], deformable
convolution[7] is employed to warp the details in Is2 to
match the fidelity of Is1. A problematic mask [33] M

https://github.com/researchmm/STTN/blob/master/core/utils.py#L125
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Figure 5. A visual representation of the solution proposed by
IIP IR.

located by a relative local variance distance from Is1 and
Is2 and semantic-aware thresholds are used as the addi-
tional condition. The method is implemented in Pytorch
and trained using 8x Nvidia V100 GPU for training. For
stage 1, the team first uses the original configuration from
DiffIR for training and then adjusts the learning rate to 5e-
5, batch size to 2, and trains 10K iterations at a resolution
of 512x512. For stage 2, they train the SD model using the
AdamW [13] optimizer with a learning rate of 1e-4 and a
batch size of 64 for 50K steps. For stage 3, they use a batch
size of 2 and a patch size of 1024x1024 for training. Adam
is used as the optimizer with a learning rate of 1e-4. And
they train the model for 20K iterations.

1.4. Team IIP IR

The team IIP IR has introduced an integrated framework
called Degradation-Aware Image Restoration(DAIR) based
on the FFTformer architecture introduced in [9] for phase
2. DAIR comprises three main components: Degradation
Kernel Estimation (DKE), Degradation Representation In-
jection (DRI), and FFTfromer. The team’s innovative ap-
proach, as illustrated in Figure 5a, has the potential to en-
hance existing models and improve overall performance.

To enable the model to process the degradation of the
images, they utilize a method to learn per-pixel degradation

HQ Image
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• Sinc filter
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• Quality
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Shuffle Index

Shuffle Index Shuffle Index
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Figure 6. Overview of the synthetic low-quality image generation
proposed by team DACLIP-IR.

convolution kernels similar to blur kernels, which can re-
construct LQ when convolved with HQ images. Unlike the
blur kernel, DKE does not constrain the reconstructed ker-
nel to have positive weights that sum to one, thus learning
richer degenerate representation.

To maximize the retention of degraded information for
image restoration models, the kernels estimated by DKE
will be embedded into the Spatially Adaptive representa-
tion and injected into U-Net architecture, which is pro-
cessed through a SPADE module [20]. The processing of
the SPADE module does not change the network structure,
thus DKE and DRI can be applied directly to any Unet-
based image restoration model.

In the training process, the team uses the method men-
tioned in [4] to generate paired data for pre-training the
model, improves its generalization ability and adaptability,
and finally fine-tunes the model using 100 pairs. While
L1 loss normally trained networks which usually produce
smooth/blurry results, they apply perception loss and GAN
loss constraints to reconstructed LQ and HQ for both the
pre-training phase and fine-tuning phase to increase the re-
alism of the image.

Figure 5b illustrates the pipeline of phase 3. The team
utilizes the model to refine the details of the pre-processed
images from phase 2. The images first undergo x2 upscaling
using HAT[5] to enrich the textures. The initial upscaling
phase effectively mitigates distortions of small-scale details
such as texts during the texture generation process leverag-
ing pre-trained diffusion priors. They employ StableSR[25]
with SD-Turbo, to further refine the upscaled images, pro-
ducing realistic textures in regions with severe degradations.
The refined images were then downscaled with LANCZOS
interpolation to obtain the final output.

1.5. Team DACLIP-IR

Team DACLIP-IR proposed a photo-realistic image restora-
tion method with enriched vision-language features.

The model is built upon the IR-SDE [15] and DACLIP-
UIR [14]. Since no training datasets are provided in this
challenge, the team chooses to generate LQ images using



a similar pipeline as in Real-ESRGAN [29] but with an
index-shuffling strategy, as shown in Figure 6. Based on
the synthetic dataset, they retrain DA-CLIP to enhance LQ
features by minimizing an ℓ1 distance between LQ embed-
dings and HQ embeddings. Then they incorporate the en-
hanced LQ embeddings into IR-SDE with cross-attention to
restore HQ images, similar to DA-CLIP [14]. In addition,
they propose a posterior sampling approach for IR-SDE that
improves both fidelity and perceptual performance. To fur-
ther improve the generalization ability, they first train the
model on the LSDIR dataset [11] and then finetune it on
a mixed dataset with both synthetic and real-world images
for phase two and phase three. Note that they use the same
model for phase two and phase three, but take the original
reverse-time SDE for phase three for better visual perfor-
mance (small noise makes the photo look more realistic).

Specific training details for phase two: The team adds
the paired validation dataset in phase one to further fine-
tune the model, which improves a lot across all metrics.

Specific training details for phase three: They use the
same model trained from phase two for phase three. To
make the image look non-smooth and oil-painted, they use
the original reverse-time SDE during inference.

1.6. Team TongJi-IPOE

Team TongJi-IPOE proposed a DRBFormer-StableSR fu-
sion Network for restoring any image model in the Wild.
Method. The overall architecture is shown in Figure 7. The
proposed network consists of two parts: DRBFormer image
restoration network and StableSR [26] image SR network.
DRBFormer uses Restormer Blocks as the backbone. In-
spired by [36], a multi-scale dynamic residual module DRB
is designed in the decoding network to better to better han-
dle the varying blur [23]. Considering that Diffusion priors
can improve the performance of restored images, the net-
work adopts the fusion method of Eq. (2) for image restora-
tion. Due to the randomness of the diffusion model, the
generated image may deviate from the real situation, so the
adjustable coefficient t was set to 0.9 in this competition.

Î = t ∗DRBFormer(Iblur) + (1− t) ∗ StableSR(Iblur)
(2)

where Î is the result of restoration, t ∈ [0, 1] is adjustable
coefficient and Iblur is blurryimage.
Training strategy. In total, four datasets are used including
DPDD[2], SIDD[1], GoPro[17] and NH-HAZE[3]. To train
the models with images, the training dataset is augmented
with random clipping. The details of the training steps are
as follows:

1. Pretraining on combined datasets. Ground truth
patches of size 128×128 are randomly cropped from
Ground truth images, and the mini-batch size is set to 8.

Figure 7. The overall architecture of the proposed method from
team TongJi-IPOE.

The model is trained by minimizing weighted L1 loss and
perceptual loss function with Adam optimizer. The initial
learning rate is set to 3×10−4 and the total number of iter-
ations is 392k.

2. Finetuning on combined datasets. For the model to
adapt to higher resolution image processing, crop the image
to 160×160,192×192,256×256,320×320,384×384, and
set the mini-batch size to [5,3,2,1,1]. The model is trained
by minimizing weighted L1 loss and perceptual loss func-
tion with Adam optimizer. The initial learning rate is set to
3×10−4 and adjusted by cosine annealing. The total num-
ber of iterations is 208k.

1.7. Team ImagePhoneix

Team ImagePhoneix adopted DiffIR [31] as the baseline
network, as shown in Figure 1. They froze the “stage 2”
of the DiffIR and fine-tune its “stage 1” network on the pro-
vided LR-HR image pairs.

Implementation details.
With provided image pairs, they first cropped them into

sub-images of the size 400×400 for accelerating I/O speed,
resulting in a total number of 2500 sub-images. To fine-tune
the pre-trained model, all the sub-images are cropped into
image patches with the size 256 × 256. They randomly
flipped and rotated the input images for data augmentation.
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Adam algorithm is adopted with β1 = 0.9 and β2 = 0.99
to update the model parameters. They set the initial learn-
ing rate and the total number of iterations to 1 × 10−4 and
1×105, respectively. However, the encoder is updated with
a different strategy, which updates the model parameters
of the encoder in 2.5 × 104 iterations and sets the initial
learning rate to 2 × 10−4. The learning rate of the encoder
is decay with a factor of 0.1 in the 1.5 × 104-th iteration.
Different from the encoder, the learning rate of the image
generator is decay with a factor of 0.5 at the 8.0 × 104-th
iteration.

In Phase II, the evaluation metric is a linear combina-
tion of the reconstruction and perceptual measurements. To
handle this issue, The team adopted a hybrid loss function
to fine-tune the model, which involves L1 loss, perceptual
loss based on VGG features Lvgg, adversarial loss LGAN,
and Kullback–Leibler divergence LKL. The total loss is de-
fined as L = λ1L1 + λ2Lvgg + λ3LGAN + λ4LKL, where
L1 loss measure the reconstruction error of the generated
images, Lvgg aims to improve the perceptual quality of im-
ages, LGAN and LKL measure the distribution distance be-
tween the generated images and the ground-truth images in
the spatial and latent spaces, respectively. λ1, λ2, λ3, and
λ4 are hyper-parameters to balance the distortion and per-
ceptual quality of images and set to 1.0 in this Phase.

1.7.1 Phase III: Evaluation on Subjective Measure-
ments

In Phase III, the team aims to improve the perceptual qual-
ity of generated images. Instead of using perceptual loss
based on the VGG features, they adopt the robust distri-
bution loss [18] which minimizes the distribution distance
between the generated images and the ground-truth images
based on Fast Fourier transform (FFT). Given the generated
image x and the ground-truth image y, the robust distribu-
tion loss Lfreq is defined as follows:

Lfreq(x, y) = LWD(Ax,Ay) + λphaseLWD(Px,Py), (3)

whereAx = |F(x)| andAy = |F(y)| denote the frequency
spectrum of the images x and y via FFTF , respectively. Px

and Py represent the phase of F(x) and F(y), respectively.
LWD is the Wasserstein distance, and λphase is the hyper-
parameter that is set to 0.1 in the fine-tuning procedure.

1.8. Team HIT-IIL

The team HIT-IIL used the degradation process of
Real-ESRGAN [29] and replaced the backbone with
Restormer [37]. For phase 2, they only trained a Real-
ESRGAN x1plus model with an additional lpips loss. For
phase 3, they used the backbone of Restormer to train a new
x1model and averaged the results with weights 0.8 and 0.2,
respectively.

They use DF2K (DIV2K and Flickr2K) datasets to train
the model. For pre-processing, they use a multi-scale strat-
egy, i.e., they downsample HR images to obtain several
Ground-Truth images with different scales. They then crop
DF2K images into sub-images for faster IO and processing.

1.9. Team MARSHAL

1.9.1 Methods details

The team observed that the input images and evaluation cri-
teria of the two phases are different. The input images in
phase 2 have higher quality. The evaluation criteria for this
phase are based on reference evaluation indicators. The in-
put quality of phase 3 is relatively low, with a more serious
blur. This phase uses the method of manual scoring to select
images with better visual effects as the winners. Taking into
account the existing solutions, the team decided to adopt a
gan-based approach in phase 2 to obtain higher objective
indicator scores. In phase 3, a diffusion-based approach is
adopted to make the results more visually appealing.

1.9.2 Phase 2

The organizers provided 100 pairs of training images whose
input quality and imaging style are similar to the test set of
the first stage. Therefore, they chose DiffIR [31] for this
stage. It only uses the diffusion process to model the con-
dition branch, and the main network is trained using the
GAN loss, so it rarely destroys local details (such as text,
small faces), and can obtain a higher objective evaluation
index. They directly use the pre-trained model of DiffIR
and fine-tune it with the paired dataset provided by the or-
ganizer, so that the team can quickly obtain a good result.
The whole finetuning process continues 6.6 k iterations with
a batch size of 48. In addition, in the process of preparing
the dataset, they adopted a multi-scale downsampling strat-
egy, hoping that the model could gain knowledge of differ-
ent scales. The downsampling scales are set to 0.75, 0.5,
and 0.33, respectively.



Figure 9. The pipeline of the solution proposed by team MAR-
SHAL.

Figure 10. Comparison of resize strategies on small text scenarios
in the solution proposed by team MARSHAL.

1.9.3 Phase 3

In phase 3, the test set provided by the organizer has a sig-
nificant domain gap from the test set of phase 2, and the
degradation is more severe. The team thinks they cannot di-
rectly use the model that performs well in phase 2 to obtain
good visual results in the second stage, so they switched to
using the methods [24, 25, 30, 34] of the pre-training diffu-
sion model. As shown in Fig. 9, the team chooses the pop-
ular ControlNet [41] as the solution. Following [12], they
use pretrained VAE encoder as the image encoder. In terms
of training data, they choose LSDIR [11], which contains
tens of thousands of texture-rich images. As for data degra-
dation, to match the more severe degradation of the test set,
they choose realesrgan’s [29] degradation pipeline to syn-
thesize paired data. They train the model with a batch size
of 32 for 100k iterations. In the inference stage, the team
resizes the input to 2048 before feeding it into the model,
which aims to preserve small structures like texts as shown
in Fig. 10. The team also adopts the LRE strategy proposed
in [30] to improve fidelity. The pre-trained diffusion model
in this solution is SD2-base [22].
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