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Abstract

Depth estimation from single perspective image has re-
ceived significant attention in the past decade, whereas the
same task applied to single panoramic image remains com-
paratively under-explored. Most existing depth estimation
models for panoramic images imitate models proposed for
perspective images, which take RGB images as input and
output depth directly. However, as demonstrated by our ex-
periments, model performance drops significantly when the
training and testing datasets greatly differ, since they over-
fit the training data. To address this issue, we propose a
novel method, referred to as the Background-guided Net-
work (BGDNet), for more robust and accurate depth esti-
mation from indoor panoramic images. Different from ex-
isting models, our proposed BGDNet first infers the back-
ground depth, namely from walls, floor and ceiling, via
background masks, room layout and camera model. The
background depth is then used to guide and improve the out-
put foreground depth. We perform within dataset as well as
cross-domain experiments on two benchmark datasets. The
results show that BGDNet outperforms the state-of-the-art
baselines, and is more robust to overfitting issues, with su-
perior generalization across datasets.

1. Introduction
Depth estimation is a classic computer vision task with
wide-ranging applications, including autonomous driv-
ing, 3D reconstruction, and simultaneous localization and
mapping (SLAM). Most existing work on single image-
based depth estimation focus on perspective images, while
panoramic images remain under-explored. Panoramic im-
ages can capture more scene information with a wider
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Field of View (FoV) than perspective images, and have
become more popular and accessible with the availability
of 360° cameras. Recently, research on panoramic images
has attracted increasing attention from both industry and
academia.

Current state-of-the-art (SOTA) deep learning-based
models designed for single panoramic image depth esti-
mation, adopt an end-to-end network structure, similar to
the depth estimation models developed for perspective im-
ages. In these end-to-end models, the network takes an
RGB image as input and directly outputs the depth pre-
diction [1, 19]. Although different methods have been
proposed focusing mainly on the distortion problem of
panoramic images [13, 17, 20, 22], they still suffer from se-
vere overfitting when the training and test sets differ signifi-
cantly. Depth estimation is a pixel-wise regression task, and
the network is prone to failure especially when unseen fore-
ground/furniture or room layout variations appear in test-
ing scenarios. Existing panoramic image datasets for depth
estimation are either rendered from Computer-Aided De-
sign (CAD) models [23] or collected from a small number
of buildings (around tens of buildings) and/or cover limited
types of rooms in the real world [2, 3, 16]. Thus, when a
model trained on these datasets is used in real-world appli-
cations, where testing data is highly likely to be dissimilar
to training data, the overfitting problem gets emphasized.

In order to address the aforementioned issues, we pro-
pose a novel method, referred to as the background-guided
network (BGDNet) for panoramic image depth estimation.
Different from the conventional methods of directly estimat-
ing each pixel depth from RGB images, our method first in-
fers the background depth through segmented background
masks and the panoramic camera model. The pipeline of
the proposed BGDNet is shown in Fig. 1. we leverage
the Segment Anything Model (SAM) [10] in one of the
branches to obtain raw segmentation masks of the scene.
Since SAM has been trained on 11 million images and over
1B masks, it has strong generalizability to broader test-
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Figure 1. The pipeline of our approach. Instead of letting the
network perform depth estimation directly on the whole image,
our method first estimates the background depth, and then uses it
to guide the final prediction of the panorama depth map.

ing scenarios. Then, our method takes SAM masks as in-
put and extracts the background (floor, ceiling, and wall)
masks. In a second branch, we use HorizonNet [18] to ob-
tain the room layout, specified by ceiling-wall and floor-
wall boundaries. Compared to depth estimation directly
from RGB images, which requires performing regression
on each pixel, room layout estimation is relatively easier
and more robust to variations in test images. Given the
background mask and the room layout, our proposed ap-
proach directly computes the background depth by using
the panoramic camera model. The computed background
depth and RGB image are fed into a network to predict the
depth for the whole image. During testing, we replace a
part of network output with depth from Background depth
map obtained from SAM and HorizonNet, to further im-
prove our method performance. Our experiments on differ-
ent datasets show that our proposed model provides better
and more stable results than four SOTA baselines in terms
of commonly used metrics, such as Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE). The main
contributions of this work are:
• We provide a motivation for our approach by analyzing

the overfitting problem of the existing methods with a set
of experiments.

• We propose a novel network, BGDNet, which first in-
fers the background depth by strategic use of segmented
masks and room layout, and then uses the background
depth to guide the depth estimation. During testing, the
network performance is further improved with our pro-
posed Background Depth Replacement module.

• We perform within dataset and cross-domain experiments
on two different datasets. The results show that our
proposed BGDNet outperforms four SOTA baselines,
namely HRDFuse [1], HoHoNet [19], FCRN [11] and
OmniFusion [13], in terms of commonly used metrics.

• We perform a series of ablation studies to further show the
effectiveness of different components of our approach.
These studies also show that the inferred background
depth can indeed alleviate the overfitting problem.

2. Related Work
Depth Estimation from Single Perspective Images. An
early Convolutional Neural Network (CNN)-based depth
estimation work [7] employs two branches to perform depth
estimation from single perspective image. In one branch, a
series of convolutional layers are used to predict a coarse
depth map. Another branch uses the coarse depth map as
input and outputs a refined depth map. Since then, different
methods have been proposed using end-to-end deep learn-
ing for depth estimation. A CNN architecture is used in [6]
to perform depth prediction, surface normal estimation, and
semantic labeling. A two-streamed network is presented in
[12] to estimate fine-scaled depth maps. This method pre-
dicts depth and depth gradients, which are then fused to ob-
tain a detailed depth map. Other methods [9, 14] adopt Gen-
erative Adversarial Networks (GANs) for depth estimation.
Very recently, iDisc [15] was proposed to perform depth es-
timation by partitioning the scene into a set of parts sharing
similar features.

Depth Estimation from Single Panoramic Images. Bi-
fuse [21] uses features from equirectangular and cube map
projections for monocular 360° depth estimation. Different
from Bifuse, Unifuse [8] fuses the equirectangular and cube
map features only at the encoding stage, and claims that
equirectangular features are more important than cube map
features for depth prediction. HoHoNet [19] claims that col-
umn features play an important role in panoramic image
feature representation, and uses an approach based on pro-
posed Latent Horizontal Feature for depth estimation. Om-
niDepth [24] addresses the distortion problem in panoramic
images with row-wise rectangular filters. OmniFusion [13]
first transforms a panoramic image into less-distorted per-
spective patches, and then performs depth estimation on
each patch. The final output is obtained by merging each
patch’s output. A more recent, SOTA method, HRDFuse [1]
employs both CNNs and transformers to learn features from
equirectangular projection and tangent projection for final
depth estimation.

3. Motivation

Taking a single RGB image as input, the depth estimation
task requires the model to predict the distance of each pixel
to the camera. In this section, we first perform experiments
on the Replica dataset [16] to illustrate the overfitting prob-
lem of four different baseline depth estimation models. The
Replica dataset contains 3D indoor meshes collected from
the real-world, and 3554 panoramic images rendered from
these 3D meshes. As shown in Fig. 2, we use two different
test sets, Test Set 1 and Test Set 2, generated from Room 0
and Apartment 0, respectively. Data from the remaining
rooms (office, hotel, apartment, etc.) in the dataset are used
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Figure 2. Two different test sets are generated from Room 0
and Apartment 0, respectively. Room 0 is similar to several other
rooms in the training set, such as Room 1, in terms of foreground
and furniture layout. Yet, Apartment 0 is more different from
rooms in the training set.

for training. Room 0 is a single room that is similar to
several other rooms (which have been used to generate the
training images) in terms of foreground and furniture lay-
out. However, Apartment 0 contains multiple rooms, which
are different from most rooms used to generate the train-
ing set. Thus, Test Sets 1 and 2 constitute a good example
to measure the severity of overfitting, and evaluate gener-
alization ability by comparing the performance of different
well-trained models on these test sets.

The performances of four different benchmarks on Test
Set 1 and Test Set 2 are listed in Table 1. We use three
established metrics, namely Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and δ1 value to evalu-
ate the performance. As can be seen, the performance of
all the benchmark approaches drops significantly on Test
Set 2 compared to Test Set 1. Taking the SOTA method
HRDFuse [1] as an example, the MAE value increases by
298% from 0.0584 to 0.2325. A similar trend is observed
with the other metrics as well. This is a typical problem for
real-world applications, since it is difficult to ensure that the
training set spans all possible variations in layout and room
type, as well as furniture type and arrangement. As a result,
pixel-wise depth estimation is prone to overfit to a given
training set, leading to significant performance degradation
for uncovered test scenarios.

Method Set MAE↓ RMSE ↓ δ1↑

FCRN[11] Test Set 1 0.0755 0.1758 0.9718
Test Set 2 0.2851 0.4586 0.6229

HoHoNet[19] Test Set 1 0.0588 0.1653 0.986
Test Set 2 0.2295 0.3925 0.7893

OmniFusion[13] Test Set 1 0.1242 0.2526 0.9608
Test Set 2 0.2761 0.5125 0.6917

HRDFuse[1] Test Set 1 0.0584 0.1695 0.9889
Test Set 2 0.2325 0.4108 0.7469

Table 1. Performance of several benchmark models on two dif-
ferent test sets. Performance of all baselines degrade significantly
when they are tested on Test Set 2, which is more different than
anything in the training data, compared to Test Set 1.

4. Proposed Method
To address the aforementioned issue, we propose

Background-guided Network (BGDNet). The pipeline of
our proposed method is shown in Fig. 3. Our method first
estimates the background depth DBg by our proposed back-
ground depth estimation module. Then, with the guidance
of background depth, our method performs depth estima-
tion task on the whole image. Finally, a background depth
replacement module is designed to further improve the per-
formance by replacing network output with an accurate part
of DBg.

4.1. Background Depth Estimation Module

We now explain how we directly compute the background
depth with panoramic camera model. We assume known
camera height, which can easily be obtained during image
capture [4].

4.1.1 Background Segmentation

In a panoramic image, the background, which is composed
of ceiling, floor, and wall, occupies a significant portion
of the image. The backgrounds of indoor scenes are usu-
ally composed of horizontal or vertical planes. Thus, their
depths can be directly computed from background masks
with the panoramic camera model. In order to segment
the background region in a panoramic image, we adopt the
Segment Anything Model (SAM)[10]. We employ SAM,
since it was trained on 11 million images, and with over 1B
masks, giving the model the ability to provide stable predic-
tion under various test scenarios.

However, SAM can only output masks without labels. To
solve this problem, we first feed an RGB image into SAM
to obtain raw masks. In panoramic images of indoor scenes,
the floor and ceiling cover a significant portion of the image
and are bordered by the bottom and top image boundaries,
respectively. Based on this observation, we iterate through
each of the SAM output masks and mark a mask as a ‘poten-
tial floor mask’ if it contains at least f -many pixels, that are
on or at most d-pixels away from the bottom image bound-
ary. We set f = W/6 and d=20 pixels in our experiments,
where W denotes the image width. Then, we designate the
potential floor mask with the largest area as the final floor
mask. We obtain the ceiling mask in a similar way, this time
using the top image boundary. Subsequently, we go over the
remaining masks, and classify a mask as a wall mask if it
satisfies one of the following conditions:
• The mask connects to both floor and ceiling masks.
• The mask only connects to the floor or ceiling mask, but

it crosses the horizon line of the image.
Although some large furniture items, such as refriger-

ators, may also satisfy these conditions, our Background
Depth Estimation Module, introduced in Sec. 4.1, is appli-
cable to them, since such large furniture items are typically

1274



RGB Image

SAM

HorizonNet

Background Depth Estimation Module
DS

DH

DBg

ResNet

ResNet
Feature
Fusion

F1RGB

F2RGB

F3RGB

F4RGB

F1Bg

F2Bg

F3Bg

F4Bg

F1

F2

F3
F4

Decoder

H1Bg H4Bg

H1F
PN

DC

Replace

P

HBg

HF

H

H4F

Ar
An

Depth Prediction Module

Background Depth
Replacement Module

Figure 3. The pipeline of the proposed Background-guided Network (BGDNet). The RGB image is firstly fed into the background depth
estimation module to obtain the background depth map DS and DH respectively. Then, taking advantage of DS and DH , we obtain DBg .
The RGB image and DBg are sent to two separate backbones, and their features are fused to perform the prediction to obtain PN . Then,
we average the depth of DS and DH in the area Ar wherein their difference is less a threshold, to obtain DC . The depth value in Ar of
network prediction PN is replaced with corresponding value in DC , to obtain the final prediction P.

RGB Image SAM Mask Our Background Mask

Figure 4. Left: Input RGB images, mid: masks outputs by SAM,
right: background masks obtained by our method. As examples
show, our background segmentation module can segment ceilings,
floors, and most of the walls successfully.

P

P

O

Floor

H

θ
D

Figure 5. For any point P on the floor, the distance D from camera
O to P can be calculated from the camera height H and angle θ.
composed of planes. The segmentation pipeline and results
are shown in Fig. 4, where different colors on the walls rep-
resent different masks classified as wall segments.

4.1.2 Floor Point Depth Estimation

Given any point P on the floor, the longitude and latitude
angle of point P can be inferred based on its image coor-
dinates. Then, angle θ, shown in Fig. 5, can be calculated
as described in detail in [18]. Since we assume the cam-
era height H is known, the absolute depth D of P could be
calculated as D = H

cos(θ) .

4.1.3 Ceiling Point Depth Estimation

To calculate the depth of ceiling points, we first need to in-
fer the distance from the camera to the ceiling plane. Once
we have this distance, we can calculate the depth of any
point on the ceiling similarly to how we obtain floor point
depth. In Sec. 4.1.1, we described how to segment the wall
masks. For all wall masks that connect to both the ceiling
and floor masks, we scan through all the pixel columns in
that mask. Fig. 6 shows a sample pixel column AB con-
necting to both ceiling and floor masks, where A and B are
on the wall-ceiling and wall-floor boundary, respectively.
Angles ϕ1 and ϕ2 are obtained from the pixel coordinates
of points A and B. Given the camera height BC, we can
first calculate OC as OC = BC

tan(ϕ2)
, and then the ceiling

distance as AC = OC · tan(ϕ1). In a panoramic image, we
can compute multiple ceiling distances from multiple pixel
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columns, connecting to both floor and ceiling masks. In this
case, we take the median of these inferred ceiling distances
as the final distance value from the camera to the ceiling
plane. Once we obtain the ceiling distance, the ceiling point
depth could be inferred similarly to how we obtain the floor
point depth, described in Sec. 4.1.2.

A

B

A

B

O
Φ1
Φ2

C

Ceiling
Distance

Camera
Height

C

Figure 6. AC is the distance between the camera horizon point
and ceiling. Since the image coordinates of A and C are known,
angles ϕ1 and ϕ2 can be inferred by their longitude and latitude
angles.

4.1.4 Wall Point Depth Estimation

Wall masks connect to either the floor, the ceiling, or both.
In Sections 4.1.2 and 4.1.3, we described how to obtain the
depth of each point on the floor and ceiling, respectively,
and the connection points, such as A and B shown in Fig. 6.
Given this information, we can infer the depth of each point
on the pixel columns of all wall masks, based on the as-
sumption that the wall is perpendicular to the ceiling and
floor. For example, with known lengths of OA, OC and
OB (Fig. 6), we can easily calculate the distance from any
point on line AB to camera O.

4.1.5 Combined Background Depth Estimation

Since we now have the inferred depths of the wall, ceiling,
and floor, based on the masks output of SAM, one can sim-
ply merge them into the background depth map DS of the
panoramic image (as shown in the top branch of Fig. 7).
However, although SAM provides great segmentation out-
put for most parts, the wall-ceiling and wall-floor bound-
ary pixel coordinates, such as Points A and B shown in
Fig. 6, may still suffer from errors according to our experi-
ment outputs. These errors propagate into the calculation of
the distance from the camera to the ceiling, and can further
cause inaccurate estimation of the depth of ceiling points
and ceiling-connected wall points.

To solve this problem, we adopt HorizonNet to pre-
dict wall-ceiling and wall-floor boundary pixel locations.
As shown in the bottom branch of Fig. 7, taking RGB
image as input, HorizonNet outputs wall-floor and wall-
ceiling boundaries of the room. Then, based on the output
of HorizonNet, we could further obtain the empty room’s
background mask. Based on the background mask, the
empty room background depth DH is obtained. DS leaves

empty/undefined pixels in the foreground depth area but
has more errors on the ceiling and ceiling-connected wall
area. DH has a more accurate estimation of the ceiling
and ceiling-connected wall, but has a much greater error in
the area taken by furniture. To obtain the inferred back-
ground depth map DBg, we take the background depth
value from DH directly, but leave the foreground depth
value as zero/empty. We explain how we make use of DBg

with more detail in section 4.2, and visualize their error re-
spectively in the supplementary material.

RGB Image

SAM Masks SAM Background Masks Background Depth DS

Room Layout Empty Room
Background Mask

Empty Room
Background Depth DH

SAM

HorizonNet

Figure 7. The upper branch shows the background depth DS ob-
tained from SAM outputs, while the bottom branch shows the
empty room background depth DH obtained through HorizonNet.

4.2. Depth Prediction Module

With the background depth map DBg and RGB image, a
depth prediction module is proposed to predict the depth
for the whole image. By incorporating the features of the
background depth map, we aim to reduce the burden on the
network and mitigate the overfitting problem when testing
cases differ significantly from the training dataset.

As shown in Fig. 3, the RGB image and DBg are fed
into two separate ResNet backbones, to obtain a series of
feature maps FRGB

i and FBg
i , where i ∈ {1, 2, 3, 4}. Then,

FRGB
i and FBg

i are fused by the Iterative Attentional Fea-
ture Fusion (IAFF) [5]. The structure of IAFF is shown in
Fig 8. FRGB

i and FBg
i are first fused by summation to ob-

tain F sum
1 ∈ RB×C×H×W , where B, C, H , W denote the

batch size, channel number, feature map height and width,
respectively. Then, F sum

1 is fed into two branches. In the
left branch, it is processed by a series of convolutional lay-
ers and an adaptive average pooling and is squeezed into a
feature vector F glo

1 ∈ RB×C×1×1 to represent a global fea-
ture. In the right branch, convolutional layers are applied
to F sum

1 , to obtain the local feature F loc
1 ∈ RB×C×H×W ,

which has the same size as F sum
1 . We sum up global fea-

ture F glo
1 and local feature F loc

1 , and obtain the attention
weight map F att

1 with the sigmoid function. With the atten-
tion map, we obtain the first round fused feature F sum

2 by
F sum
2 = FRGB

i · F att
1 + FBg

i · (1 − F att
1 ). Then F sum

2
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Figure 8. FRGB
i and FBg

i are fused with attention mechanism to
obtain the fused feature Fi.

is used as input to the second round of feature fusion with
attention mechanism to obtain the final fused feature Fi.

According to the experiments in [19], latent horizontal
features have shown success in several panoramic image-
related tasks, considering both accuracy and speed. For this
reason, once we have Fi and FBg

i , we compress them into
latent horizontal features HF

i and HBg
i to represent features

in different receptive fields. Then, we concatenate all of
them and feed them into a decoder to restore the depth map
PN . The decoder pipeline is the same as HoHoNet [19].
Once we have PN , the L1 loss can be calculated for the
network training.

4.3. Background Depth Replacement Module

As discussed in Sec. 3, depth estimation is a pixel-wise re-
gression task. Yet, networks trained on a certain dataset may
have poor performance when applied in real-world scenar-
ios. To address this issue, we replace a part of depth val-
ues in PN with the values obtained from initial background
depth maps DS and DH , since they are more robust to vari-
ations in test data. Specifically, if the difference of a pixel’s
depth on DS and DH is less than a threshold α, we con-
clude that DS and DH are in agreement, and we average
their depth values to obtain a confident depth map DC . As
shown in Fig. 3, the depth value in the grey area Ar of DC

is used directly in the final prediction. As for the black area
An, where DS and DH are in disagreement, we use the net-
work output PN in the final prediction. In this paper, we set

threshold α as 0.42.

5. Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness and generalizability of our network.
We have used the Replica and Structured3D datasets, and all
models are evaluated with error measured in meters. Please
note that these datasets have been selected, since they (i)
provide full access for both academic and non-academic
use; and (ii) allow for evaluating the cross-domain perfor-
mance, one being a real-world and the other being a syn-
thetic dataset.
• Replica dataset is captured using an RGB-D capture rig

with an IR projector from real-world indoor scenes. We
render 3554 images from these 3D models by setting the
camera in random positions on the floor.

• Structured3D contains 196K rendered panoramic im-
ages and corresponding depth labels, which covers 12835
rooms from 3500 scenes. Each room is created manually
using CAD models of furniture, which are in real-world
dimensions and used in real production.
To evaluate robustness to the variations between training

and testing sets and across different domains, we conducted
experiments with three settings: (1) training on Replica and
testing on Replica, (2) training on Structured3D and test-
ing on Replica, and (3) training on Replica and testing on
Structured3D. We did not perform an experiment with train-
ing and testing on Structured3D due to the high similarity
between the training and testing splits. The similarly high
performance of different baselines on this dataset does not
indicate an overfitting issue, and does not allow evaluating
their generalization ability.

5.1. Training and Testing on Replica

We perform a comparison with four SOTA baselines in
terms of commonly used metrics for depth estimation. The
results are summarized Tab. 2. As can be seen, HRD-
Fuse [1] (CVPR 2023) and HoHoNet [19] (CVPR 2021)
provide very similar performance. Our BGDNet signifi-
cantly outperforms all the baselines in terms of all the met-
rics. Taking MAE as an example, our proposed method out-
performs HRDFuse and HoHoNet by 21.62% and 27.59%,
respectively. To qualitatively show the superiority of our
method, we visualize the predicted depth map error of
HRDFuse, HoHoNet and our BGDNet in Fig 9. A signifi-
cant portion of the HoHoNet and HRDFuse depth error map
is filled with red color, indicating that the error in these ar-
eas is high. Compared to these baselines, our method has
better depth estimation in most areas, thanks to estimating
the depth of the background, which is composed of planes
and occupies a significant area, and using it for guidance,
rather than relying on a network that overfits specific train-
ing datasets.
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Figure 9. Qualitative results of predicted depth errors between HRDFuse, HoHoNet, and our method. Our approach shows generally
smaller errors, particularly in the floor, ceiling, and wall regions, when compared to the benchmark methods.

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
FCRN[11] 0.2871 0.4531 0.1511 0.6211 0.8891 0.9581

OmniFusion[13] 0.2721 0.5041 0.1571 0.6961 0.8911 0.9421
HoHoNet[19] 0.2141 0.3701 0.1441 0.8081 0.9261 0.9551
HRDFuse[1] 0.2171 0.3891 0.1421 0.7711 0.9221 0.9541

BGDNet (Ours) 0.1678 0.3456 0.1334 0.8554 0.9365 0.9624

Table 2. Experiment results when training and testing are both
performed on the Replica dataset,

5.2. Training on Structured3D, Testing on Replica

In this experiment, we train the model on the Structured3D
and test it on the Replica dataset. The Structured3D dataset
consists of images rendered from manually created CAD
models with consistent lighting and camera position (at the
center of the room). The Replica dataset, on the other hand,
contains images rendered with varying lighting and camera
positions, using 3D meshes from real-world rooms. Thus,
the difference between training and testing images is much
larger than the one in Sec. 5.1, and the models are be-
ing tested on more challenging data than the training set.
The results are shown in Tab. 3. Compared to Tab. 2, per-
formances of all baselines degrade to various degrees in
Tab. 3. Taking MAE as an example, the error of HRD-
Fuse increases from 0.2171 to 0.2731, and HoHoNet ex-
periences an error increase from 0.2141 to 0.3511. These
baselines perform pixel-wise depth estimation solely based
on RGB images. Consequently, due to the significant vari-
ations in image lighting, room layout, and camera position,
these models have an unstable performance. In contrast,
our method adopts a different approach by first estimating
the depth of the background, which comprises a significant
portion of images. The background depth estimation is per-
formed using SAM and HorizonNet, which exhibit better
stability and adaptability for various testing scenarios. Af-

terwards, the final prediction is made with the guidance of
the estimated background depth. It can be seen that our
method’s MAE value in Tab. 3 is even less than the one in
Tab. 2.

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
FCRN[11] 0.3621 0.5471 0.2081 0.5411 0.7611 0.8621

OmniFusion[13] 0.2851 0.4421 0.1251 0.6971 0.9291 0.9661
HoHoNet[19] 0.3511 0.5231 0.2241 0.5691 0.7811 0.8701
HRDFuse[1] 0.2731 0.4101 0.1371 0.6971 0.9041 0.9501

BGDNet 0.1632 0.3495 0.1062 0.8613 0.9434 0.9707

Table 3. Experiment result when training on Strucutred3D dataset
with testing on Replica dataset

5.3. Training on Replica, Testing on Structured3D
In this experiment, we conduct training on images ren-
dered from the Replica dataset, and evaluate the models
on the Structured3D dataset. While the images rendered
from the Replica dataset exhibit variations in lighting and
camera positions, the Structured3D dataset presents a much
larger number of scenes and rooms compared to the Replica
dataset. The results are shown in Tab. 4. Again, compared
to Tab. 2, performances of all baselines degrade. The rea-
son behind this is that the testing images, generated from a
much larger variety of rooms compared to the training set,
contain foreground objects and furniture layouts that have
never appeared in the training set, posing a significant chal-
lenge for the deep learning-based prediction task. As a re-
sult, there is a significant drop in accuracy when it comes to
predicting foreground objects. However, despite the consid-
erable differences between the foregrounds of the training
and testing sets, our proposed background depth estimation
module can consistently and accurately predict the depth of
the background, which includes the walls, ceiling, and floor.
Thanks to this, our proposed method, which performs depth
estimation based on background depth output, outperforms
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baseline models by significant margins.

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
FCRN[11] 0.3431 0.5061 0.1501 0.6121 0.8421 0.9331

OmniFusion[13] 0.2981 0.4951 0.1411 0.6921 0.8831 0.9501
HoHoNet[19] 0.2721 0.4341 0.1271 0.6991 0.9011 0.9621
HRDFuse[1] 0.2451 0.4061 0.1201 0.7561 0.9161 0.9631

BGDNet 0.1656 0.349 0.1001 0.8366 0.9377 0.9731

Table 4. Experiment results when training on Replica and testing
on Structured3D dataset.

6. Ablation Studies
We perform a series of ablation studies to further show the
effectiveness of our proposed method. The training and test-
ing are all performed on the Replica dataset.

6.1. Performance without Replacement Module

As explained in Sec. 4.3, we replace a part of the net-
work prediction with depth from DBg. To demonstrate that
our network provides better depth prediction than baselines,
we evaluate the performance of BGDNet without depth re-
placement. The results in Tab. 5 show that the depth map di-
rectly output by BGDNet, without any replacement, still has
better performance than the SOTA baselines. This shows
that our proposed pipeline, which involves DBg as the in-
put to the network, improves the network itself for the depth
estimation task. With replacement component, the perfor-
mance of our proposed method improves further.

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
HoHoNet 0.2141 0.3701 0.1441 0.8081 0.9261 0.9551
HRDFuse 0.2171 0.3891 0.1421 0.7711 0.9221 0.9541

BGDNet w/o Repl. 0.2079 0.358 0.142 0.8161 0.9279 0.9562
BGDNet w/ Repl. 0.1678 0.3456 0.1334 0.8554 0.9365 0.9624

Table 5. The performance of our BGDNet with and without re-
placement module. Bold and underline show the best and second-
best performances.

6.2. Effectiveness of Background Guidance

As described in Sec. 4.3, the depth value in area Ar of DC ,
where DS and DH are in agreement, is used to replace the
corresponding area in PN and obtain final prediction. The
depth value corresponding to other areas An, where DS

and DH are in disagreement, the output of the network PN

is used for the final prediction. We investigate the perfor-
mance of our method in these two areas Ar and An, and
perform comparison with the SOTA baselines. The results
are shown in Tab. 6. As seen in Tab. 6 (a), the MAE of
our method on area Ar is half of HoHoNet and HRDFuse,
which indicates the robustness of DC to variations in test
cases. As shown in Tab. 6 (b), with the guidance from DBg

obtained from SAM and HorizonNet, our network also of-
fers better performance on area An, compared to networks,
which perform depth estimation by solely relying on RGB
images.

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
HoHoNet 0.1435 0.2024 0.0958 0.8667 0.9581 0.9741
HRDFuse 0.1471 0.2157 0.0986 0.8114 0.9541 0.9751
BGDNet 0.0718 0.1455 0.0680 0.9388 0.9741 0.9861

(a) Performance on Ar

Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑
HoHoNet 0.3260 0.5317 0.1856 0.7175 0.8771 0.9271
HRDFuse 0.3291 0.5651 0.1798 0.7095 0.8751 0.9241
BGDNet 0.3218 0.5231 0.1859 0.7235 0.8781 0.9261

(b) Performance on An

Table 6. (a) and (b) show the performance of HoHoNet, HRDFuse
and our method on area Ar and An respectively.

6.3. Effect of Different Training Data Size

In this section, we perform experiments on the Replica
dataset by using 50% and 100% of the training data to ob-
serve the stability of models. We compare BGDNet with
HoHoNet and HRDFuse, and show the results in Tab. 7.
Our method outperforms the baselines in these two set-
tings. Moreover, when 50% of training data are used, the
MAE values of HoHoNet and HRDFuse drop by 6.54% and
6.46%, respectively. However, our proposed method has a
variation of only 0.4% of the MAE value as the training
dataset size changes.

Training
Data Size Model MAE↓ RMSE↓ RMSE (log)↓ δ1↑ δ2↑ δ3↑

50%
HoHoNet 0.2291 0.3761 0.1551 0.7961 0.9191 0.9501
HRDFuse 0.2321 0.3881 0.1401 0.7701 0.9251 0.9581
BGDNet 0.1671 0.3441 0.1331 0.8581 0.9381 0.9621

100%
HoHoNet 0.2141 0.3701 0.1441 0.8081 0.9261 0.9551
HRDFuse 0.2171 0.3891 0.1421 0.7711 0.9221 0.9541
BGDNet 0.1678 0.3456 0.1334 0.8554 0.9365 0.9624

Table 7. Performance of BGDNet, HoHoNet and HRDFuse with
different training data sizes.

6.4. Other Experiments

We also performed experiments to show how the error from
DS obtained from SAM, and threshold value α affect the
final prediction. These results and the discussion are pre-
sented in the supplementary material.

7. Conclusion
In this paper, we have first performed experiments to ana-
lyze the performance of the existing panoramic depth es-
timation models when indoor testing scenes greatly dif-
fer from the training data, and showed their performance
significantly degrade indicating an overfitting problem. To
address this problem, we have presented a new approach,
BGDNet, which first estimates the room layout and the
background depth, and then estimates the scene depth with
guidance from background depth. Our proposed method
BGDNet provides more robust and improved depth estima-
tion, despite variances between training and testing cases.
We have performed within dataset and cross-domain experi-
ments on the Replica and Structured3D datasets, and shown
that our method consistently outperforms SOTA baselines
with significant margins in all experiments, and provides a
better cross-domain performance.
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