
DQ-HorizonNet: Enhancing Door Detection Accuracy in Panoramic Images via
Dynamic Quantization

Cing-Jia Lin1 Jheng-Wei Su 1 Kai-Wen Hsiao1 Ting-Yu Yen1 Chih-Yuan Yao2 Hung-Kuo Chu1

1National Tsing Hua University, Taiwan
2National Taiwan University of Science and Technology, Taiwan

Abstract

This paper introduces DQ-HorizonNet, a novel learning-
based methodology that incorporates vertical features to
enhance doors detection in indoor panoramic images.
Building upon HorizonNet, which excels in estimating 3D
indoor layouts from panoramic images using 1D vectors
to identify boundaries, we identify a key limitation: Hori-
zonNet’s dense, column-wise prediction output is ill-suited
for object detection tasks due to the need for complex
post-processing to separate true positives from numerous
false-positive predictions. DQ-HorizonNet innovatively ad-
dresses this issue through dynamic quantization, which
clusters column-wise outputs and assigns learning targets
dynamically, improving accuracy via a U-axis distance cost
matrix that evaluates the discrepancy between predictions
and actual data. Our model, tested on the extensive Zil-
low indoor dataset (ZInD), significantly outperforms ex-
isting methods, including the original HorizonNet and the
transformer-based DETR network, showcasing its superior
ability to accurately detect doors in panoramic indoor im-
agery.

The code can be found on https://github.com/
Lontoone/DQ-HorizonNet/.

1. Introduction

Door detection holds significance across diverse do-
mains, including robot navigation, human visual assistance,
and layout estimation, among others. However, detect-
ing doors within a single panoramic image poses numer-
ous challenges. These challenges encompass the diverse
states of doors (closed, open, or semi-open) and the inherent
distortion within panoramic images, rendering traditional
bounding box annotations inadequate.

Door detection has been a subject of research for numer-
ous years. Traditional approaches have relied on edge de-
tectors such as the Sobel filter or Canny edge detection to

extract features. However, these methods have been con-
strained by their representational capacity. Deep learning-
based methodologies have tackled this limitation by har-
nessing deep neural networks. These networks provide
a more robust and comprehensive representation of fea-
tures, markedly improving the effectiveness of door detec-
tion tasks.

Classic object detection networks include Faster-RCNN
[7], YOLO [14], and DETR [1]. These models excel in
general-purpose object detection. However, they are re-
stricted by the bounding box representation, which only al-
lows for rectangular shapes and cannot align distortions in
panoramic images. Moreover, the anchor-point strategy can
result in unequal sampling issues, given the higher pixel
density at the poles and sparser distribution at the equator
in equirectangular images. Specifically, training the DETR
model demands considerable effort. Lastly, these models
do not fully take advantage of the vertical features of doors,
which constitute a crucial aspect of door detection.

As shown in Figure 1, the characteristics of a perpendic-
ular frame provide rich information about a door. There-
fore, capturing the vertical features of a door is a crucial
aspect of door recognition [10, 11, 20]. HorizonNet, a deep
learning model with a height compression module that flat-
tens features into 1D vectors, has demonstrated significant
performance in estimating the layout of indoor panoramic
images. However, directly applying HorizonNet to the door
detection task will produce a dense column-wise prediction
followed by a post-processing step such as non-maximum
suppression to reduce false positives (see Figure 2).

Adapting a model originally designed for dense predic-
tions to a task that requires sparse predictions presents a
notable challenge, particularly regarding the assignment of
learning targets. For instance, when one side of a door
frame spans 5 columns in width, deciding which column’s
output should be used and back-propagated becomes a non-
trivial sampling problem.

The techniques employed to sample and assign learning
targets for each prediction can significantly influence the
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Figure 1. Doors typically feature prominent vertical lines. The
vertical side of a door frame exhibits strong characteristics, unlike
the horizontal side, which is significantly affected by distortion.

training process and the model’s performance. Therefore, it
is imperative to implement a customized grouping method
to tackle this challenge effectively. In this work, we in-
troduce DQ-HorizonNet, a novel deep neural network that
incorporates vertical features and a dynamic quantization
strategy to enhance the accuracy of door detection. This
approach involves grouping the column output through a
maximum filter and assigning the learning target according
to a cost matrix. This matrix computes the U-axis distance
between the predictions and the ground truths.

We carried out a thorough analysis to evaluate the perfor-
mance of DQ-HorizonNet using the extensive Zillow Indoor
Dataset (ZInD). The findings reveal that our approach sur-
passes other competing models, such as the original Hori-
zonNet and the transformer-based DETR network, by a sig-
nificant margin in terms of door detection capabilities.

In summary, we make the following contributions.

• We highlight the unique challenges in door detection
within panoramic images, including diverse door states
and image distortions.

• We introduce a new deep learning model DQ-
HorizonNet which incorporates vertical features and
a dynamic quantization strategy to accurately detect
doors in panoramic images.

• We propose a customized grouping method to assign
learning targets in scenarios that require sparse predic-
tions, addressing a notable challenge in adapting mod-
els designed for dense predictions.

• DQ-HorizonNet presents superior performance com-
pared to competing models in door detection tasks.

Figure 2. The issue of false positives on small doors. The lines
depict the output of directly applying HorizonNet to door detec-
tion. However, several overlapping boxes were not successfully
trimmed by non-maximum suppression, indicating a need for fur-
ther tuning in the non-maximum suppression trimming threshold.

2. Related Work

2.1. Optimization-based approach.

The door frame offers valuable structural cues, as the
presence of two adjacent vertical edges signifies a higher
likelihood of a door [2, 6, 10, 11, 15]. Some further employ
corner detection along with edge detection to maximize in-
formation derived from the relationships between edges and
corners of a door [12, 20].

From traditional approaches, the vertical characteristics
of doors have been found to provide essential information
for door detection. However, reducing false positives re-
mains a challenge. Therefore, a classifier is employed to
address this issue. In this work, we employ a column-wise
classifier to identify the location of a door on the u-axis of
the image.

2.2. Learning-based approach.

In recent years, deep learning models have been ex-
tensively utilized in object detection tasks. Anchor-based
approaches such as Faster-RCNN [7] and YOLO [14], as
well as transformer-based models such as DETR [1], have
demonstrated impressive performance in object detection
of general purpose. However, bounding box annotations
may not be sufficiently precise for panoramic images, as
panoramic distortion can significantly distort the objects.

Therefore, SphereNet [4] proposes to project the CNN
kernel onto a sphere. This technique is designed to manage
distortions and maintain a uniform sampling area. How-
ever, Chou et al. [3] compared the performance of a stan-
dard convolution kernel with a spherical convolution, and it
was found that the standard convolution kernel outperforms
the spherical convolution.
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Figure 3. Network architecture. The upper part adheres to the HorizonNet architecture. We incorporate a single linear layer as the
classification head and another linear layer for corner point regression. During training, the output logits from the classification are
subjected to a maximum filter. Subsequently, k-groups with the highest logits are selected. A cost function, which calculates the U-axis
distance, is employed to determine the appropriate column of corner point regression to match with the ground truth.

Feature compression Effectively addressing panoramic
distortion presents a multifaceted challenge. Unlike the
multiview approach [16] or the multi-projection strategy
[19], HorizonNet is an approach to estimating the 3D room
layout from a single panoramic image. It flattens the ex-
tracted features into 1D vectors and feeds them into a Re-
current Neural Network (RNN) to maintain output consis-
tency across the image. HorizonNet represents room layout
as three 1D vectors that encode, at each image column, the
boundary positions of floor-wall and ceiling-wall, and the
existence of wall-wall boundary.

HoHoNet [18] further refines this approach by using an
efficient height compression module to extract flattened fea-
tures and applying multi-head self-attention for refinement.
SliceNet [13] proposes a decoder mechanism to produce a
depth map with the same resolution as the input image. Re-
cent studies, such as Zheng et al. [21], have utilized a bi-
directional compression module that extracts compressed
horizontal and vertical representations from the input im-
age, thereby improving performance.

3. Methodology

3.1. Network architecture.

Figure 3 illustrates the network architecture of DQ-
HorizonNet. Our model leverages HorizonNet and
ResNet50 as the backbone, incorporating LSTM for se-
quence processing. Rather than using three 1D vectors, we
employ two linear layers for outputting classification logits
and performing corner points regression. Subsequently, a
maximum filter is applied to the classification logits to es-
tablish a quantified logits distribution. During the training
phase, we utilize a cost matrix to match the ground truth
with predicted corner points from the column set that has
the minimum total u-cost (U-axis distance cost matrix be-
tween predictions and ground truths).

Door representation. The column-wise classification en-
ables us to identify the u-axis coordinates for the starting
side of a door, which corresponds to the left side of the door-
frame. Once the door has been classified, we can annotate
it as shown in Figure 4. We denote 4 corner points of a door
as follows:

(ul, vlt, vlb, ur, vrt, vrb), (1)
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where lt represents the left top, lb represents the left bot-
tom, rt represents the right top, and rb represents the right
bottom. We interpret the image in terms of UV coordinates,
where the U axis corresponds to the X axis, and the V axis
corresponds to the Y axis.

Dynamic quantization. To convert the original column-
wise output to a fixed length and sample the output. Instead
of quantizing the output to a fixed number, we propose a dy-
namic quantization method that combines a maximum filter
and a group-based assignment. A maximum filter is a type
of morphological filter that replaces each pixel value of a
matrix with the maximum value of its neighborhood. It can
be used for enhancing significant values, smoothing, or re-
moving noise. Inspired by DETR, we can view the proba-
bility distribution as a set of groups after applying the maxi-
mum filter. Then we can compute the cost matrix composed
of ul distance. To find the optimal assignment of predicted
boxes to ground truth boxes, we use the Hungarian algo-
rithm, which is a method for solving the linear assignment
problem. During training, the ul distance is defined as fol-
low.

U = L1(
topK(F (ul, r), k)

N
, ûl), (2)

where F denotes maximum filter. r denotes filter kernel
size. U ∈ (k, k) is the matrix of L1 distance in u-axis be-
tween selected ul and ground truth ûl. k is equal to the
amount of ground truths. N denotes number of columns
which is 1024 in HorizonNet.We are finding a permutation
of k pairs of σ with the least u cost.

σ = argMin

k∑
i

U (3)

4. Results
4.1. Experimental settings.

Dataset. We conducted all the experiments in the Zillow
Indoor Dataset (ZInD) [5], which contains 67,448 indoor
panoramas. We exclude images with empty annotations and
follow the ZInD train-test split with respect to the annota-
tions for 49,880 images and 6,248 images.

Baselines. We compare our method with HorizonNet [17]
and DETR [1]. We use pretrained ResNet50 [8] as the back-
bone of HorizonNet and retain the LSTM [9] module as
part of the model. We modify the HorizonNet output head
to match ours, replacing the three 1D vectors with a clas-
sification output ∈ (1024, 1) and a box regression output
∈ (1024, 5). The Adam optimizer is used with a learn-
ing rate of 0.00035, β = (0.9, 0.999), and weight decay
= 0. We train HorizonNet for 100 epochs with a batch

Figure 4. An example of how classifier and regressor locate a
door. Top: This is an example of sparse columns of classification
probability. The brighter the column, the higher the probability of
the left side of a door being present. The value is an 1D vector
∈ (1, N) , where N is the column length. Bottom: As discussed in
Section 3.1, we annotate each door using six floating-point values.
The box regression output is represented as ∈ (5, N) because we
utilize the column index to locate the left side of a door.

size of 12 on four NVIDIA GTX 1080 Ti GPUs. Binary
Cross-Entropy Loss is used for classification output. L1
loss is used for door regression. The output of HorizonNet
is then post-processed with equirectangular projection and
non-maximum suppression with a IoU threshold of 25%.

We fine-tune the pretrained DETR model provided by
HuggingFace for 80 epochs. The output of the DETR model
is in the format of a list of bounding boxes, represented as
(cx, cy, width, height). Subsequently, we employ the same
equirectangular projection technique used in HorizonNet
to obtain the distorted door annotation and non-maximum
suppression with an IoU threshold of 25%. All baseline
comparisons are made against the same equirectangular-
projected ground truth annotations. We conducted an eval-
uation of DETR without employing an equirectangular pro-
jection. We noticed a minor decrease in the mIoU by ap-
proximately 1%. This can be attributed to the higher preva-
lence of smaller doors in the ZInD dataset, which are less
influenced by equirectangular distortion.

Evaluation metrics. We evaluate the performance of our
models using average precision (AP), precision, recall, and
mIoU. Precision (also known as positive predictive value) is
the ratio of correctly predicted positive observations to the
total predicted positives. Recall (also known as sensitivity
or true positive rate) is the ratio of correctly predicted pos-
itive observations to all the observations. They are defined
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Figure 5. Our method effectively reduces false positives, par-
ticularly in small doors.The x-axis represents the average ratio
of door size to image size at the pixel level for each image. The
y-axis represents the number of false positives. Our method yields
the fewest false positives when the door size ratio is close to zero.

Figure 6. Our method effectively improve accuracy particu-
larly in small doors.The x-axis represents the average ratio of
door size to image size at the pixel level for each image. The y-axis
represents the accuracy score, computed by dividing the number
of correct predictions by the total predictions. Our method excels
when the door size ratio approaches zero. As the size of the door
increases, DETR tends to produce either no predictions or numer-
ous false positives.

as :

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where ( TP ) is again the number of true positives,( FP ) is
the number of false positives and ( FN ) is the number of
false negatives. From the precision and recall, we observe
how non-maximum suppression affects our baseline mod-
els. Tuning the threshold of non-maximum suppression is a
trivial task, but it has a strong impact on the performance, as
it determines how many false positives can be filtered out.

Unlike the baseline models, our method does not re-
quire non-maximum suppression, as we already group the
columns by maximum filter.

Implementation details. We implemented our model in
PyTorch with the PyTorch Lightning framework on four
NVIDIA GTX 1080 Ti GPUs for 50 epochs. The resolu-
tion of the panoramas is resized to 1024 × 512. The Adam
optimizer is used with a learning rate of 0.00035, β = (0.9,
0.999), and weight decay = 0. The batch size is set to 12.

4.2. Equirectangular correction.

To better align the annotation with the actual door shape
in the panoramic image, we apply the equirectangular pro-
jection to the door annotation on both the ground truth and
the prediction. Then we use the projected annotation to
compute the IoU.

Equirectangular projection is a simple map projection
that maps the longitude and latitude of a spherical surface
to the horizontal and vertical coordinates of a flat plane. We
first map the UV coordinate to a continuous 3D spherical
space using the formula :

(x, y, z) = (cos(u)cos(v), cos(v)sin(u), sin(v)) (6)

And connect the corner points with linear interpolation.
Then we project each interpolated point back to UV coordi-
nate using formula:

(u, v) = (atan2(y, x), arcsin(
z√

x2 + y2 + z2
)) (7)

4.3. Comparison with baselines.

In Table 1, we present the evaluation results using the
ZInD testing dataset for our method and the baselines. We
compute mIoU only for true positives. Despite minor vari-
ations in mIoU, we noticed a substantial disparity in pre-
cision between our method and the original HorizonNet,
leading to a superior AP score for our approach. To further
elaborate, we illustrate the calculation of false positives in
Figure 5, demonstrating that our method significantly im-
proves quality and reduces the number of false positives,
especially in the context of small doors. In Table 2, we
observe that both HorizonNet and DETR tend to produce
multiple overlapping doors, particularly in small door cases,
and the non-maximum suppression is not efficient in remov-
ing them. Conversely, our method does not rely on non-
maximum suppression and results in fewer false positives
due to the quantization process and the implementation of a
group-based training strategy.

4.4. Ablation study.

We compare our method with the fixed quantified Hori-
zonNet, which modifies the classification head output to
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Method AP@5 AP@50 AP@75 Precision@50 Recall@50 mIoU(%)
Ours 83.0 75.5 50.4 87.7 85.8 74.3

HorizonNet 74.3 66.9 39.4 76.8 87.8 74.8
DETR 61.7 23.1 5.0 42.8 52.7 50.1

Table 1. Quantitative result. AP@5 denotes the Average Precision at an Intersection over Union (IoU) threshold of 5%, relative to the
True Positive (TP) threshold, and so forth. Our method significantly outperforms others, primarily due to its effective reduction of false
positives. Additionally, it is evident that bounding box annotations lack sufficient accuracy for object detection in panoramic images, as
reflected by the AP75 metric of the DETR model.

Ours HorizonNet DETR

Table 2. Qualitative results.The figure depicts the predicted outcomes, denoted by a dotted red line, and the ground truth (GT), represented
by a green line. Both HorizonNet and DETR tend to exhibit a higher incidence of false positives. In contrast, our method effectively reduces
overlapping predictions, particularly in the context of small doors, thus decreasing the number of false positives.

∈ (1, n) and the door regression head to ∈ (5, n), where
n is a hyperparameter that controls the number of columns
of quantization as shown in figure Figure 7. At Table 3, we
empirically set n to 90 and observed a significant perfor-
mance gap at AP@75.This gap may attributed to the preci-
sion restriction caused by a reduced number of columns.

We also experiment with different maximum filter ker-
nel sizes to evaluate their effect on the result. We have ob-
served that setting kernel size to 100 results in faster con-
vergence and improved performance. It appears that the op-
timal value of kernel size may be correlated with the maxi-
mum density of target objects within the image.
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Method AP@5 AP@50 AP@75 mIoU(%)
Fixed quantization 75.9 65.8 37.0 67.8

Dynamic quantization 83 75.5 50.4 74.3

Table 3. Evaluation of fixed and dynamic strategies of quantization.

Figure 7. Visualization of quantizing n columns. Left: quantize
to n = 90 columns; Right: quantize to n = 40 columns. Red line
shows the quantized box annotation. Blue line shows the ground
truth box annotation. From the right image, we observe that lower
n leads to higher ul error, especially for smaller doors.

Kernel size(r) AP@5 AP@50 AP@75 mIoU(%)
0 82.6 49.4 18.3 60.8

29 83 75.5 50.4 74.3
100 84.8 76.5 52.1 75.5

Table 4. Different quantization kernel sizes. We experimented
with different maximum filter kernel sizes of 0, 29, and 100. When
kernel size set to 0 meaning not performing maximum filter.

5. Conclusions
In this paper, we conducted a concise review on door de-

tection. To better align the distorted ground truth, we pro-
pose an annotation method that employs column-wise clas-
sification of the U-axis. To mitigate the issue of false posi-
tives, we introduce a dynamic quantization strategy as an al-
ternative to non-maximum suppression. This strategy effec-
tively reduces false positives without the need for threshold
tuning. One limitation of our work is the assumption that
the pitch and roll angles of the camera are fixed at 0. This
method is primarily designed to detect vertically aligned ob-
jects. If this is not the case, calibrating the camera might
be necessary. In our future research, we may investigate
the impact of an uncalibrated camera on detection perfor-
mance. Concurrently, we aim to broaden our methodology
to encompass general-purpose object detection, moving be-
yond the scope of door detection, by further exploring the
potential of feature compression.
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