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Abstract

Disconnectivity and distortion are the two problems
which must be coped with when processing 360 degrees
equirectangular images. In this paper, we propose a method
of estimating the depth of monocular panoramic image with
a teacher-student model fusing equirectangular and spher-
ical representations. In contrast with the existing methods
fusing an equirectangular representation with a cube map
representation or tangent representation, a spherical repre-
sentation is a better choice because a sampling on a sphere
is more uniform and can also cope with distortion more ef-
fectively. In this processing, a novel spherical convolution
kernel computing with sampling points on a sphere is devel-
oped to extract features from the spherical representation,
and then, a Segmentation Feature Fusion(SFF) methodol-
ogy is utilized to combine the features with ones extracted
from the equirectangular representation. In contrast with
the existing methods using a teacher-student model to ob-
tain a lighter model of depth estimation, we use a teacher-
student model to learn the latent features of depth images.
This results in a trained model which estimates the depth
map of an equirectangular image using not only the fea-
ture maps extracted from an input equirectangular image
but also the distilled knowledge learnt from the ground truth
of depth map of a training set. In experiments, the pro-
posed method is tested on several well-known 360 monocu-
lar depth estimation benchmark datasets, and outperforms
the existing methods for the most evaluation indexes.

1. Introduction

Wider field of view means richer visual information. Es-
timating the depth from a single 360° panoramic image
is an interesting topic, and until now a lot of researches
have reported on it [7, 21, 25, 30, 35, 42, 44]. Since a
360° panoramic image is usually represented as an Equi-
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Rectangular Projection(ERP)[29, 36], this problem is for-
mulated as the estimation of depth from a single ERP image
concretely.

However, when a 360° panoramic image is represented
as an ERP image, the problems of disconnectivity and dis-
tortion arise. While the disconnectivity can be solved easily
by padding the left side using the right side image, how to
coping with the distortion is tricky. In the existing meth-
ods, combining a cubemap representation [8] with an ERP
image is used cope with this problems [15, 32]. In compari-
son with the distortion increasing greatly as approaching to
poles of an ERP image, a cubemap representation is made
up of six square perspective images.

Although a cubemap representation of a 360° panoramic
image can improve the distortion of an ERP image effec-
tively, it has its own limitations. First, since a cubemap
representation is made up of six square perspective images,
padding operations is necessary when carrying out convo-
lution on the boundaries of each perspective image. Next,
theoretically, a cubemap representation is not a ideal one
for a 360° panoramic image to cope with image distortion
because a perspective image has its own distortion.

Similarly, tangent representation[10] is proposed to use
to cope with the distortion. Tangent representation repre-
sents the panoramic image with any number of perspective
images. However, due to the large number of views, there is
a significant amount of redundancy in many regions, and the
fusion processing of these repetitive regions will introduce
new issues[2].

It is known that an ideal representation for a 360°
panoramic image is a spherical image because the distor-
tion of a scene object does not change with its position
on a sphere. This isotropic property of a spherical image
makes it superior to other representations. Additionally, on
a sphere the problem of disconnectivity is eliminated com-
pletely. In this paper, we estimate the depth of a monoc-
ular panoramic image by fusing a spherical representation
with an ERP image. A spherical convolution method is also
developed, which enables a spherical convolution is carried
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out on sphere directly. Moreover, the feature maps extracted

by the spherical convolution is fused with those extracted

from the ERP image to achieve better performance than the
existing methods.

Additionally, the existing methods of estimating depth of
monocular panoramic image use the known ground truth of
depth map in loss function to update the parameters of neu-
ral network during the back-propagation process. On the
other hand, three dimensional structure of environments has
its own inherent characteristics, especially for indoor envi-
ronment having ceilings, floors and walls. Based on this
idea, we design a teacher-student model to learn the inher-
ent cues of depth images of training set. In this paper, we
train an encoder-decoder structure with depth image input
and depth image output to extract the inherent character-
istics of panoramic depth images first, and then using this
pretrained model as the teacher model to supervise the stu-
dent network learning. The experimental results show that
the accuracy of depth estimation is improved.

To evaluate the proposed approach, we conducted
experiments on the 3D60[43], Matterport3D[6], and
Stanford2D3D[3] datasets. The results demonstrate
that our method surpasses existing approaches on the
Matterport3D[6] and Stanford2D3D[3] datasets and
achieves competitive performance on the 3D60[43] dataset.
In summary, the contributions of this paper are as follows:
e In contrast with the existing methods fusing an ERP

representation with a cubemap representation or a tan-
gent representation, a Segmentation Feature Fusion(SFF)
methodology is designed to combine spherical represen-
tation with the equirectangular representation to improve
the performance of depth estimation.

* To realize the spherical representation, we design a new
spherical kernel to carry out spherical convolution on a
sphere, which solves the problems of disconnectivity and
distortion of an ERP image effectively.

e We propose an encoder-decoder network to exploit the
inherent cues of depth images of training set and super-
vise the backbone network learning in a distilled knowl-
edge way. Our proposed teacher-student model is differ-
ent from the existing methods which only use depth map
as ground truth in the loss function of the network output
at training phase.

2. Related Work
2.1. Monocular 360 depth estimation

Monocular 360 depth estimation is an extension of monoc-
ular depth estimation that focuses on predicting depth infor-
mation in a 360-degree panoramic view by utilizing a single
image as input. For example, Zioulis et al. [44] explored
the spherical view synthesis to learn monocular 360-degree
depth via a self-supervised method. Panodepth[21] builds

a two-stage pipeline for omnidirectional monocular depth
estimation. Spheredepth[35] predicts the depth directly on
the spherical mesh without projection preprocessing and
achieved a good results. To address the spherical distor-
tion in ERP images, Chen et al. [7] employed deformable
convolution to adapt the sampling grids in response to ge-
ometric distortions within panoramic images. Moreover,
Acdnet[42] adaptively combines convolution kernels with
varying dilations to expand the receptive field. Tateno et
al. [30] devised a distortion-aware deformable convolution
filter for testing purposes, a filter that can be trained using
conventional perspective images. Differently, Slicenet[25]
represents the scene as compact vertical slices of a sphere
and predict depth with convolution layers. These meth-
ods have demonstrated the feasibility of applying convolu-
tion directly on ERP images to eliminate distortions. Re-
cently, there has been a growing interest in utilizing fusion-
based approaches to cope with the distortion. Bifuse[32]
proposed to effectively combines the cubemap and ERP
features from both the encoder and decoder stages. Fur-
thermore, Unifuse[15] proposed a new framework for fus-
ing features from different projections: ERP and Cubemap
and demonstrate that the ERP features are more impor-
tant for final ERP format depth prediction tasks.Differently,
Glpanodepth[4] designed a Cubemap Vision Transformers
to extract distortion-free global features from the panorama
and fuse them at multiple scales. For tangent patches
based fusion methods, Omnifusion[22] proposed to esti-
mate the depth from tangent patches and fuse the tangent
patches to an ERP image. PanelNet[39] introduce Lo-
cal2Global Transformer, which aggregates local informa-
tion within a panel and panel-wise global context. over-
head. Panoformer[26] introduced a panoramic transformer
designed to exploit tangent patches within the spherical do-
main. HRDfuse[2] combined CNN and transformer to learn
the holistic contextual information from the ERP and tan-
gent patches and adopts a classification model for depth
value prediction. EGformer[40] propose an equirectangu-
lar geometry-biased transformer. In contrast with the clos-
est researches[2, 15, 32], we propose a novel approach that
fuses ERP and spherical representations. This integration
can mitigate the defectives caused by ERP representation
most effectively.

2.2. Spherical convolution

Spherical convolution is characterized by capturing and pre-
serving the spatial information from panoramic images. Re-
cently, Su et al. [20] designed a Kernel Transformer to
transfer the convolution kernels from perspective images to
ERP images. Li et al. [19] proposed to use spherical con-
volution to deal with the problem of weight sharing fail-
ure caused by video projection distortion. Wu et al. [34]
employed spherical convolution to distill spatial-temporal
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Figure 1. Overview of our network

360 information. Perraudin et al. [24] presented a spher-
ical CNN that constructed by representing the sphere as a
graph, and utilized the graph-based representation to define
the standard CNN operations. These methods have pro-
vided evidence for the effectiveness of spherical convolu-
tions in processing information from panoramic image. Yu
et al. [38] design a distortion-aware Transformer to modu-
late ERP distortions continuously and self-adaptively. Lee
etal. [17] proposed to utilizes a spherical polyhedron to rep-
resent omni-directional views to minimizes the variance of
the spatial resolving power on the sphere surface.

2.3. Knowledge distillation

Knowledge distillation aims to enable the student model to
mimic the behavior and performance of the teacher model.
Knowledge distillation is first proposed by Hinton et al.
[12]. Tt is worth noting that Tung et al. [31] proposed
that semantically similar inputs tend to elicit similar acti-
vation patterns in a trained network. Moreover, Beyer et
al. [5] demonstrated that knowledge distillation can be a
powerful tool for reducing the size of large models with-
out compromising their performance. These methods pro-
vide ample evidence of the effectiveness of knowledge dis-
tillation, in the field of deep learning. Moreover, some
methods[1, 37, 41] have proved that the teacher-student
model learning at the latent feature level is a feasible and
effective approach. In this paper we propose a network
to exploit the inherent cues of depth images of training set
and supervise the backbone network learning in a distilled
knowledge way. Our proposed teacher-student model is dif-
ferent from the existing methods[13, 14, 33] which only use
depth map as ground truth in the loss function of the net-

work output at training phase.

3. Proposed Methods
3.1. Overview

The proposed framework introduces a novel approach for
monocular panoramic depth estimation. Fig. 1 shows
the framework, which incorporates an ERP-based teacher-
student model and employs spherical convolution for dis-
tortion elimination.

In our network, an ERP image serves as the input,
and the predicted depth is output. The encoder utilizes
a ConvNeXt-base pretrained model[23] to extract features
from the input with channel numbers of [128, 256, 512,
1024]. Similarly, the spherical convolution encoder ap-
plies the proposed spherical convolution method to extract
distortion-free high-dimensional features of corresponding
sizes and channels in shallow networks. Besides, a skip
connection structure (similar to UniFuse[15]) is applied to
enhance the interaction between the encoder and decoder
and enrich the high-dimensional information of the image.
Following an encoder-decoder architecture, the teacher net-
work takes the ground truth depth image as input. In con-
trast to conventional depth estimation methods, our frame-
work harnesses the benefits of knowledge distillation net-
works by employing a teacher network trained with ground
truth to extract the inherent characteristics of the depth im-
age.

In decoder stage, the interpolation-based upsampling
method is used to upsample the obtained features. Notably,
We utilize a sub-pixel convolution[27] for final upsampling
layers, which can minimize the impact of excessive manual
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Figure 2. (a) Generation process of spherical convolution ker-
nel. With a defined universal rotation matrix, spherical convolu-
tion kernels corresponding to different positions can be generated,
which greatly reduces the computational cost. (b) Visualizing con-
volution kernels at the poles and equator positions in ERP images,
which enable us to tackle distortion issues in distinct regions.

factors on the results and enhance the spatial details.

3.2. Spherical convolution

3.2.1 Spherical kernel

One crucial aspect of performing convolution on a sphere
is setting up the appropriate convolution kernel. Different
with planar convolutions, convolution on a spherical surface
possesses a distinctive characteristic: the kernels, whether
rectangular or Gaussian, do not undergo translation but in-
stead rotation on the sphere. Therefore, the problem of de-
fective rotational invariance of convolution kernels on the
sphere cannot be ignored. A sphere is inherently a perfectly
axis-symmetric shape, and it appears as a circle from any
viewpoint(See Fig. 2(a)). The existing methods can be clas-
sified as three approaches: 1. Using a conventional square
kernel for the generated plane tangent to the central point
of a spherical model. 2.using the points of a discrete spher-
ical image originating from a geodesic dome. 3. network
training for the offset of sampling points. Different from
them, our sampling is directly carried out on a sphere, which
eliminates the problems of disconnectivity and distortion in
contrast to an ERP image representation, results in a more
natural circular kernel in contrast to a square kernel applied
to a tangent plane, and a relatively more uniform sampling

in contrast to a discrete spherical image originated from a
geodesic dome. And more reliable compared to methods
that depend on network predictions. Inspired by conven-
tional feature point detection[18], we introduced a circu-
lar convolution kernels. In contrast to computing rectangu-
lar convolution kernels from tangent planes[9][38], circular
kernels align more closely with the essence of a sphere and
have the ability to extend beyond image boundaries. Any
point on the sphere can be considered as the center of an
infinite number of circles. Therefore, we choose a point on
the sphere and the closest outer circle around it as the con-
volution kernel(See Fig. 2(a)).

When performing convolutions on a sphere, it is neces-
sary to take into account the curvature and topological struc-
ture of the sphere, which increases the complexity of the
convolution process. With an increase in latitude spacing,
the impact will become more pronounced. However, by se-
lecting the closest outer circle as the convolution kernel, it
can preserve the geometric properties of the image and min-
imizing the boundary effects. A circle encompasses infinite
points, it is difficult for practical calculations. Consider-
ing that planar convolutions typically employ 3x3 convolu-
tion kernels, we select eight equidistant points on the circle,
along with the central point, as the spherical convolution
kernel, as depicted in Fig. 2(a). In contrast to traditional
discrete spherical sampling methods, which may sacrifice
local detail to ensure global coverage, our method indepen-
dently computes the convolution kernel for each point based
on its adjacent points. This approach eliminates the require-
ment for a global discrete grid, leading to higher precision
and making it more suitable for pixel-level prediction tasks.

Computing the coordinates(z,y, z) of all pixels of an
HxW ERP image projected onto a sphere, along with the
corresponding coordinates on the outer circle, is a complex
and time-consuming task. Therefore, we propose to define
a basic spherical pattern, as illustrated in Fig. 2(a). Specifi-
cally, the outer circle is chosen as the basic spherical pattern
at the North Pole of the sphere due to its unique geometric
properties with coordinates (0, 0, 1). An ERP image with
HxXW is projected onto a unit sphere(r = 1), the distance
between any two adjacent points on the equator is QW” Given
the uniqueness of the sphere and the aspect ratio of the ERP
image being 1:2, it follows that the distance between any
two points on any circle centered at the sphere’s center is
also ZW“ As shown in Fig. 2, in the X—Z view, let o denote
the distance between any point on the circle and the Z-axis
and « is QW” The coordinates of the basic spherical pattern
are as Eq. (1) shows:

p1 = (0,0,1)
p2,ps = (0.sin(a)r, £cos(a)r)

tsin(—)sin(a)r, cos( %)sm(a)r, cos(a)r) )

N

Pp3,p9 = ( (
pa,ps = (Lsin(a)r, 0, cos(a)r)
D5, 7 = (sz’n(%)sin(a)r, :tcos(%)sin(a)r, cos(a)r)
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where p; denotes the North Pole point: Mid , while
P2 - - pg represents the points forming the base-spherical
pattern Left, Left,,, Up, Right,,, Right, Rightqouwn,
Down and Le ft g,y respectively.

As Eq. (2) and Fig. 2(a) shows, by applying a same pro-
cedure of rotating the basic spherical pattern with a con-
sistent rotation matrix R, we can effectively reposition the
pattern on the sphere through spherical rotations. The em-
ployment of consistent rotation facilitates the generation of
the convolution kernel at different positions, while ensur-
ing that the distribution of points on the outer circle adheres
to the original distribution of the basic spherical pattern in
sphere. As shown in Fig. 2(b), the proposed spherical con-
volution kernel takes on different shapes in different regions

of the image.
/

141 P1
Ph b2

.| =R|. (2
Pé ye)

Where p1’, p2’- - - po’represents the nine points that make up
the spherical kernel: Mid', Left', Left.,’, Up', Right.,’,
Right', Rightyown', Down’, Leftiow,’. Note that the
process does not induce any deformation to the spherical
kernel.

3.2.2 Rotated matrix computation

It is imperative to ensure a consistent rotation pattern is used
when rotating from the North Pole point to a given point on
the sphere. Following Eq. (3), a point(z, y, z)on the sphere
can be represented by (6, ©):

0 = arccos (z) , ¢ = arctan2(y, x) 3)

where § € [0, 7] denotes the inclination between the pos-
itive half-axis of the Z-axis and a specific point, while
¢ € [0, 27) represents the azimuthal angle between the pro-
jection of the point on the X-Y plane and the positive half-
axis of the X-axis. Based on 6 and ¢, we could infer the
rotation matrix R for each point. The specific calculation
process of R can be found in the suppl. material. Utilizing
R within the proposed basic spherical pattern enables the
derivation of spherical convolution kernels that correspond
to any position on the sphere.

3.2.3 Separable spherical kernel convolution

For convolution, the network assigns unique weights to each
channel’s convolution kernel and accomplishes the convo-
lution by moving these kernels over the image. However,
on the sphere, convolution kernels are not translated but
instead rotated. Previous methods employed grids to im-
plement spherical convolution. While the grid-based ap-
proaches are constrained by the number of grids used, and
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Figure 3. The relative position of the spherical convolution kernel
for each pixel in the image is stored in the corresponding LUTs,
which in turn maps the ERP image to nine sub-images. Then, af-
ter group convolution and pixel-wise convolution, an RN *#xW
feature map is obtained.

may fail to achieve per-pixel division, which is detrimen-
tal for pixel-level tasks. To address this issue, we introduce
a per-pixel separable spherical kernel convolution method.
As shown in Fig. 3, We firstly maps spherical convolution
kernels, centered at each pixel on the image, to the same po-
sition in different images. Subsequently, we conduct group
convolution with a size of 1, where all pixels comprising the
kernel in the convolution process are grouped together. This
operation eliminates the need for additional padding to un-
derstand image boundaries. For the pixel-wise task, we be-
lieve that the introduced pixel-wise convolution strengthens
the sensitivity for our network to inter dependencies among
neighboring pixels on the sphere, enhancing the capacity of
the network to perceive structural information in panoramic
images.

specificly, we propose to use look-up tables(LUTSs) to
store the respective relative positions of the spherical con-
volution kernel at each point. For instance, LUT1 stores the
positions of p; (i.e., the *Mid’ point) for each pixel of the
image, which is the center of the proposed spherical convo-
lution kernel, and LUT?2 stores the relative positions of ps
(i.e., the *Left’ point) in the spherical convolution kernel
for each pixel of the image. With LUT2, we can obtain an
image that is entirely composed of p, from a given image
while maintaining the size of the original image. Similarly,
LUT3 to LUT9 represent the positions of p3 to pg in the
spherical convolution kernel (see Fig. 3).

As depicted in Fig. 3, once the LUTs are available,
a featureRV*H*W can be mapped to RV**XHXW gyb-
features from IM_1 to IM_9. Based on it, the group convolu-
tion with a kernel size of 1 can be employed to equivalently
replace the original kernel convolution. Finally, a pixel-
wise convolution is conducted to expand the channels in the

1266



spherical convolution, and a featurec RN1**W (where
N; can be arbitrarily set) can be obtained.

3.3. Segmentation feature fusion module

The feature fprp obtained through planar convolution ex-
hibits distortion at the poles, while the feature f,,;, ob-
tained through the proposed spherical convolution method
is distortion-free. The effectiveness and importance of pla-
nar convolution has been demonstrated in this task[15], re-
search on the reliability of spherical convolution in deeper
layers remains limited. To exploit the advantages of both
convolutions, we propose to integrate fg,, into fprp.
Given the minimal curvature near the equator in panoramic
images, the distortion in this region is negligible. There-
fore, planar convolution in this area is reasonable. In the
panoramic image domain, researchers typically assume sig-
nificant distortion in the upper and lower thirds, with al-
most no distortion in the central part. Leveraging the well-
established method of planar convolution enables effective
feature extraction from panoramic images, we preserve the
features extracted through planar convolution near the equa-
tor. This strategy enables us to fully harness the benefits of
planar convolution in extracting rich features from the im-
age while avoiding the potential adverse impact of spherical
convolution in deep layers. As shown in Fig. 1, we segment
fErp into three equal parts and discard the features at the
North and South poles, retaining the features in the middle
part (fErp—mia). To fuse fprp and fpn, We propose an
adaptive weight fusion scheme, where we perform adaptive
fusion on the two features to obtain an initial fused feature
f:

f=wo x ferp + w1 X fopn 4

where wg and w; are learnable parameters. Then, we prior-
itize fgrp as the primary carrier and perform a concatena-
tion operation between f and fgrp. Subsequently, a convo-
lution layer is used to achieve fusion and retain the feature
fERP—miq extracted near the equator. Lastly, a simple non-
linear activation is applied to obtain the final fused feature
frused.- The fused feature fr,scq effectively combines the
superior features extracted by frrp_miq near the equator
with the distortion-free features fs,p,.

3.4. teacher network

The proposed teacher-student network, as depicted in Fig. 1,
aims to incorporate more depth information into the net-
work by utilizing ground truth depth and compensating for
the shortcomings of spherical convolution in deep layers.
The teacher network takes the ground truth depth as
input, generating the latent features in the deepest layer,
which acts as guidance for the student model. By lever-
aging the inherent characteristics of the teacher model, we
can enrich the depth information contained in the latent fea-
tures of the student model, thereby improving the network’s

performance in depth estimation. It is important to note
that the teacher network is discarded during the final infer-
ence. During the training of the teacher model, we employ
the commonly used Burhu loss[16] as the loss function for
depth estimation tasks.

4. Experiments
4.1. Datesets, Metrics and Implimentation details

Datesets: In this paper, We conducted experiments on
three benchmark datasets that are widely used for this
tasks: 3D60[43], Matterport3D[6], and Stanford2D3D[3]
datasets. Stanford2D3D[3] and Matterport3D[6] are real-
world datasets. While 3D60[43] is composed of two syn-
thetic datasets: SUNCG[28] and SceneNet[11] and two
real-world datasets: Stanford2D3D and Matterport3D. Note
that there are some rendering issues[ 5] with the 3D60, and
some anomalies may occur in this task.

Metrics: Following previous work[2, 15], we adopt stan-
dard evaluation metrics for evaluation: Absolute Relative
Error (Abs Rel), Squared Relative Error (Sq Rel), Root
Mean Squared Error (RMSE), Root Mean Squared Error in
logarithmic space (RMSE(log)) and accuracy with a thresh-
old &;, where t € {1.25,1.25%,1.25%}.

Implimentation details: Our network was trained using
the Adam optimizer, a batch size of 1, and a learning rate
of 1 x 10~ on a TITAN RTX 24G. We trained our model
for only 30 epochs for Matterport3D[6], 3D60[43] and 20
epochs for Stanford2D3D[3]. Moreover, we adopt augmen-
tation techniques, random color adjustment, and left-right-
flipping, random yaw rotation in the training phase.

4.2. comparision with state of the art

Tab. 1 presents a comparative analysis between our method
and existing methods for depth estimation. Notably,
Some methods like HRDfuse[2] and Omnifuse[22] differ
from conventional depth estimation methods in terms of
data processing for the Stanford2D3D[3] and 3D60[43]
datasets. Specifically, the training data and testing data
have a maximum depth of 8 meters for these two datasets,
while traditional methods like unifuse[15] FCRN[16] and
SphereDepth[35] have a maximum depth of 10 meters. In
order to analyze the results more comprehensively and to
adequately compare our method with other methods, we
evaluated the two different depth estimation results(8m and
10m) for our method. For the Matterport3D dataset, all
existing methods have the same maximum depth value of
10. Here we clarify that due to the unavailability of pre-
trained models for some methods (e.g., Omnifuse does not
provide a pre-trained model for the Matterport3D dataset,
and Panoformer, PanelNet and HRDFuse does not provide
any pre-trained models), for fair comparisons, we collected
publicly available experimental data of competitors from
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Figure 4. Results of qualitative comparison on 3D60 (top), Matterport3D (middle) and Stanford2D3D (bottom).

the comparisons made by the latest SOTA depth estimation
model HRDfuse.

As Tab. 1 shows, Our method performs well com-
pared to SOTA methods[2, 15, 22, 26, 32, 35, 39] on sev-
eral benchmark datasets. On the Stanford2D3D dataset,
our method outperforms Unifuse by 17.5% (Abs Rel) and
1291% (RMSE), outperforms Omnifuse by 2.59%(Abs
Rel) and 13.6%(RMSE),our method outperforms Panlenet
by 0.082% (61) and 0.16% (d3), and outperforms HRD-
fuse by 0.972%(abs rel), 1.57% (RMSE) and 0.525%
(01). On the 3D60 dataset, our method outperforms Uni-
fuse by 22.96% (abs rel) and 16.66% (RMSE), outper-
forms Omnifuse by 9.14% (abs rel), outperforms ODE-
CNN by 23.22%(Abs Rel) and 2.43%(RMSE), and outper-
forms HRDfuse with 0.03% (6;), while also demonstrating
competitive results on other metrics with HRDFuse. Fur-
thermore, it is observed that the method introduced in this
paper achieves a slightly superior of accuracy in compari-
son to HRDFuse. On the Matterport3D dataset, our method
outperforms Unifuse by 18.38% (Abs Rel) and 12.37%
(RMSE), outperforms Omnifuse by 7% (Abs Rel), outper-
forms PanelNet by 0.485% (d3) and over 3% (RMSE), and
outperforms HRDfuse by 2.76% (Abs Rel), 29.46% (Sq
Rel), 0.841% (RMSE) and 0.61%(d3). In Fig. 4, since
HRDFuse does not provide any pre-trained models, we re-
trained the model to the official Settings for visualization,

and we qualitatively compare our method with UniFuse and
HRDFuse, and our method outperforms them. For more
clear samples of our method, please refer to the suppl. ma-
terial.

4.3. ablation study

4.3.1 ablation study of each component

We conducted a series of incremental experiments to as-
sess the effectiveness of each component, as illustrated in
Tab. 2. The ablation experiment was performed with max-
imum depth of 8 meters on the Stanford2D3D. We used
only the planar convolution method for depth estimation as
the baseline. Subsequently, we added the proposed spher-
ical convolution method, teacher network, and SFF mod-
ule sequentially. As shown in Tab. 2, the performance of
the planar convolution model was adversely affected by
distortion. With the introducing of proposed the spherical
convolution method, the performance improved by 6.21%
(Sq Rel). However, we only used a simple concatenation
method for fusion, which significantly reduced fusion ef-
fectiveness, while the performance has greatly improved by
11.24% (Sq Rel) since we utilized the SFF module. More-
over, we assessed the effectiveness of the teacher network
by incorporating it into the network without the SFF mod-
ule, resulting in a 3.3% (Sq Rel) improvement. Finally,
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Datasets Method |  AbsRel| | Sq Rel| | RMSE| | RMSE(log)| | o T | Gy T | 83 1
FCRN[16] - /0.1837 -7 - - /05774 -/ - - 70.7230 - 709207 - /09731
BiFuse with fusion[32] - 70.1209 - - - 04142 - - - /0.8660 - 109580 - /0.9860
UniFuse with fusion[15] - /01114 - - - /03691 - 702322 - 708711 - 10.9664 - 109882
OmniFusion (2-iter)[22] | 0.0950/ - 0.0491/ - 03474/ - 0.1599/ - 0.8988/ - 09769/ - 09924/ -
Standford2D3D PanoFormer*[26] - /0.1131 - /00723 - /03557 - /0.2454 - /0.8808 - /09623 - /09855
SphereDepth([35] - - - - - 104512 - - - 10.8666 - 10.9642 - 10.9863
PanelNet[39] - 7 - - ] - 02933/ - - 7 - 09242/ - 09796/ - 09915/ -
HRDFuse[2] 0.0935/ - 0.0508/ - 03106/ - 0.1422/ - 09140/ - 09798/ - 09927/ -
\ Ours | 0.0926/0.0940 | 0.0487/0.0541 | 0.3058/0.3269 | 0.1396/0.1417 | 0.9188/0.9143 | 0.9804/0.9808 | 0.9931/0.9921
Teacher Network 0.0086 /0.0093 | 0.0013/0.0021 | 0.0608/0.0758 | 0.0214/0.0270 | 0.9983/0.9971 | 0.9997/0.9994 | 0.9999 / 0.9998
FCRN[16] - /0.0699 - /0.2833 - - - - - /09532 - /0.9905 - /0.9966
BiFuse with fusion[32] - 70.0615 - - - 10.2440 - - - 10.9699 - 109927 - 10.9969
UniFuse with fusion[15] - 70.0466 -] - - 70.1968 - 700725 - /0.9835 - /0.9965 - /0.9987
OmniFusion (2-iter)[22] | 0.0430/ - 0.0114/ - 0.1808/ - 0.0735/ - 09859/ - 0.9969/ - 0.9989/ -
3D60 ODE-CNN[20] - 70.0467 - 100124 - /01728 - 70.0793 - /09814 - 10.9967 - /0.9889
SphereDepth([35] - 70.0550 - /0.1145 - /02364 - - - 7109743 - 709944 - 10.9978
HRDFuse[2] 0.0358/ - 0.0100/ - 0.1555/ - 0.0592/ - 0.9894/ - 09973/ - 0.9990/ -
Ours | 0.0394/0.0379 | 0.0101/0.0105 | 0.1560/0.1687 | 0.0604/0.0602 | 0.9897/0.9901 | 0.9975/0.9975 | 0.9990/0.9991
Teacher Network 0.0081/0.0051 | 0.0005/0.0004 | 0.0401/0.0380 | 0.0143/0.0054 | 0.9996/0.9996 | 0.9999/0.9999 | 0.9999 / 0.9999
FCRN[16] 0.2409 - 0.6704 B 0.7703 09174 0.9617
BiFuse with fusion[32] 0.2048 - 0.6259 - 0.8452 0.9319 0.9632
UniFuse with fusion[15] 0.1063 - 0.4941 0.1613 0.8897 0.9623 0.9831
OmniFusion (2-iter)*[22] 0.1007 0.0969 0.4435 0.1664 0.9143 0.9666 0.9844
Matterport3D PanoFormer*[26] 0.0904 0.0764 0.4470 0.1650 0.8816 0.9661 0.9878
SphereDepth([35] - - 0.5922 - 0.8620 0.9519 0.9770
PanelNet[39] - - 0.4528 - 0.9123 0.9703 0.9856
HRDFuse[2] 0.0967 0.0936 0.4433 0.1642 0.9162 0.9669 0.9844
| Ours \ 0.0941 \ 0.0723 \ 0.4396 \ 0.1402 \ 0.9110 \ 0.9712 \ 0.9904
\ Teacher Network \ 0.0186 \ 0.0049 \ 0.1262 \ 0.0162 \ 0.9954 \ 0.9991 \ 0.9997

Table 1. Quantitative comparison with other methods. Red indicates that our method performs the best. -/-: On the left side of /, it indicates
that the dataset processing estimates a depth of 8 meters, while on the right side of /, it indicates that the dataset processing estimates
a depth of 10 meters. *:It indicates that due to the absence of a pre-trained model, its metrics are derived from the latest SOTA model,

HRDFuse[2].

Base | S-Conv | Teacher | SFF | AbsRel| | SqRell | RMSE| | & 1

v o | | | 01125 | 0.0599 | 03434 | 0.8870
v | v | | 0.1050 | 0.0564 | 0.3239 | 0.9066
v v | 0.0968 | 0.0546 | 0.3124 | 0.9084
v | v | v | 00986 | 00507 | 0.3131 | 09156
Vo ov | v | v | 00926 | 0.0487 | 03058 | 0.9188

Table 2. Ablation study for different combinations of independent
components.

when all components were used, the performance achieved
the maximum improvement of 23.00%(Sq Rel). The ex-
perimental results illustrate that each proposed component
plays a pivotal role in this task, notably elevating the overall
performance of the network.

4.3.2 weight of fusion

We performed ablation experiments on the weights of SFF
module, as presented in Tab. 3. We assigned fixed weight
ratios of 1:0, 0:1, and 0.5:0.5, in addition to using adap-
tive weights. The experimental results demonstrate that the
adaptive weights outperform the other three fixed weight
ratios. Overall, the results provide further evidence of the
effectiveness and reliability of the proposed SFF module.

ERP feature | Spherical feature | Abs Rel| | SqRell | RMSE} | 431

05 05 0.1045 | 0.0535 | 0.3112 | 0.9930
0 1 0.0928 | 0.0510 | 0.3059 | 0.9927
1 0 0.1011 | 0.0533 | 0.3139 | 0.9929

Adaptive weighting | 0.0926 | 0.0487 | 0.3058 | 0.9931

Table 3. The Ablation study on the weight of SFF module.

5. Conclusions and future work

In this paper, we propose a method of depth estimation of a
monocular panoramic image. To the best of our knowledge,
it is the first of fusing equirectangular and spherical repre-
sentations so as to mitigate the effect of the disconnectiv-
ity and distortion of ERP images, and supervise the student
network to learn the inherent cues of depth images of train-
ing set via a teacher-student model. The experiments shows
the effectiveness of the proposed method. Since depth es-
timation is a basic technique for image understanding, we
believe the proposed method can find a lot of applications,
such as visual surveillance, robot navigation and so on. It is
also our future work to do.
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