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Abstract

Objects are represented differently in projection-based

sensors such as cameras depending on sensor resolution,

field of view, and distortion, leading to distorted physical

and geometric properties. As a result, sensor data process-

ing depend on these properties. With the large variations

of sensors on the market, an equivariant representation and

suitable processing are necessary to become independent of

the sensor used. In this work, we propose an extension of

conventional image data by an additional channel in which

the associated projection properties are encoded. Further-

more, we introduce a SensorConv layer as an extension to

the conventional convolution layer. SensorConv enable us-

ing projection properties in convolutional neural networks.

To that end, we propose an architecture for using the Sen-

sorConv layer in the Detectron2 [21] framework. We col-

lected a dataset of equirectangular images for our experi-

ments with the CARLA [3] simulator. To analyze multiple

sensor models (i.e., sensor intrinsic), we created an aug-

mentation method to emulate a high variability of sensors

from the collected equirectangular panoramas. In our ex-

periment, we show that our method can generalize better

across different camera sensors.

1. Introduction

This work is motivated by the fact that a wide variety of sen-

sors, all with different characteristics such as field of view,

resolution, and lens distortion, are integrated into a large

amount of products. The functionalities and capabilities of

these products heavily rely on the sensors used. This means

that new sensors will be continuously integrated into new

products as they become available. Transferring a machine

learning model for, e.g. semantic segmentation created on

the data of a single sensor to another sensor is not trivial.

In this work, we focus primarily on the transfer to sensors

with other geometric properties (e.g., field of view, resolu-

tion, mounting angle) and do not consider other influences

like the mounting position of a sensor. An important ap-

plication for machine learning is scene understanding with

autonomous vehicles.

In autonomous driving, perception modules usually con-

sist of data-driven models based on sensor data. However,

these models might be biased toward the sensor used for

data acquisition. This bias can seriously impair the per-

ception model’s transferability to new sensor setups, which

continuously occur due to the market’s competitive nature.

For example, the industry uses fish-eye or wide-angle

cameras in modern vehicles. However, in the research com-

munity, modern perception algorithms are developed and

tested on datasets like Cityscapes [1], KITTI [5], etc., which

use perspective cameras. This leads to a discrepancy be-

tween academic research and industrial development.

1.1. Definition: Sensor Equivariance

Figure 1. Concept of sensor equivariance.

As shown in Fig. 1, we want feature extractor Θ to work

robustly, regardless of the camera used. Transformations H

are suitable methods to simulate versatile data concerning

the sensor used. H can be used to transform an image I
with intriniscs K1, or its features F , into the representation

of a novel sensor Î , with intrinsic K2, or F̂ , respectively.

Note that we use the linear matrix notation H to formulate
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a transformation for simplicity. However, H can also con-

tain the transformation of nonlinear intrinsic. If a method

Θ achieves equivariance, the extracted features F should

also be transformable to novel sensors, making Θ symmet-

ric and equivariant to transformations regarding combina-

tions of shifting, rotations, and scaling. Generally speaking,

a scale equivariance for a function Θ is always desirable,

since it can extract useful features in many computer vision

applications. Equivariances in shift and rotation are also

important. However, they are usually solved in standard

methods for Θ (e.g., convolutions or convolutional layers

in neural networks). Therefore, we prioritize scale equiv-

ariance in our work as important for many computer vision

tasks, from object detection and segmentation to monocular

3D perception.

1.2. Related Work

For image data, there is some preliminary work, address-

ing the sensor equivariance formulation stated in subsec-

tion 1.1: Liu et al. introduce CoordConv [13], as a solution

for the coordinate transform problem. The convolution it-

self is spatial invariant. However, for some tasks, spatial

variance might be needed. In object detection, for exam-

ple, the coordinate transform problem arises from process-

ing features in pixel space and output bounding boxes in

Cartesian space. A CoordConv layer is a simple extension

of the standard convolutional layer. It has the same func-

tional signature as a convolutional layer, but utilizes extra

channels for the incoming representation. These channels

contain hard-coded coordinates, the most basic version of

which is one channel for the u coordinate and one for the

v coordinate. The authors claim that the CoordConv layer

keeps the properties of few parameters and efficient com-

putation from convolutions but allows the network to learn

if spatial variance or invariance is needed for learning the

task. This is useful for coordinating transform-based tasks

where regular convolutions can fail. However, when chang-

ing an image’s FOV or resolution, the u and v coordinates

should change accordingly and be reversible. This is not

the case for CoordConv and, therefore, disagrees with the

equivariance condition formulated in subsection 1.1.

Wang et al. [20][19] utilize the CoordConvs concept as

a component in an instance segmentation framework. The

authors argue that spatially variant convolutions are nec-

essary for instance segmentation. Furthermore, they con-

cluded that few CoordConvs layers within the backbone are

enough to achieve this.

Facil et al. teach camera-aware multi-scale convolutions

(CamConv) for depth estimation from image data [4] sup-

plied to a neural network. The method extends u- and v-

maps of the CoordConv by horizontal and vertical field-of-

view maps fovh and fovv , and center point shift maps ccx
and ccy . These maps are supplied to the neural network with

different resolutions and on different layers to allow the net-

work to learn and predict depth patterns that depend on the

camera calibration. The authors conclude that the neural

network supplied with the respective maps can generalize

over camera intrinsics and allow depth prediction networks

to be camera-independent. This work can be seen as the

work that is most closely related to our approach. Even if

this method can be adapted for image data in general, it uti-

lizes four additional channels exclusively designed for cam-

era sensors. CamConv are usually used in depth estimation

tasks. Their impact on tasks like object detection or seg-

mentation has not been analyzed yet. CamConv are used in

[9].

However, CamConv are designed for pinhole camera

models. They are incapable of modeling distortion, which

appears in fish-eye and wide-angle cameras to address the

requirements stated in subsection 1.1. CamConv must be

extended to a unified representation suitable for various sen-

sor models.

In [14], CamConv are extended to fish-eye cameras by

using the unified camera model (UCM) [18]. The exten-

sion to the UCM is done by using fovh and fovv from Cam-

Conv and distorting them based on the distortion parame-

ters of the camera model used. In addition, two channels

of normalized coordinates nx and ny are introduced, whose

values span linearly with respect to the image coordinates

between −1 and 1. In an experiment based on the Wood-

Scapes dataset [23], the authors show that their approach

is capable of generalizing over the fish-eye cameras used

in the WoodScape setup for self-supervised distance esti-

mation. However, the four fish-eye cameras used in Wood-

Scapes have very similar intrinsic parameters. Therefore,

no statement can be made about how well the approach gen-

eralizes across different sensors with different intrinsic pa-

rameters.

In [22], the authors propose the encoding of camera pa-

rameters as images of Fourier features for geometrical em-

beddings. The authors claim that Fourier features, as a

higher-dimensional encoding, are better suited for further

processing by neural networks. The benefits of this ap-

proach were demonstrated in [6] for the task of zero-shot

monocular depth estimation. The features use camera cen-

ters and viewing ray directions. A pinhole camera model

parameterizes both. Thus, the method is designed for pin-

hole cameras and, without modifications, is not capable of

handling fish-eye or wide-angle cameras. Fourier features

massively increase the channels used to encode the geomet-

ric sensor properties. With 3(F + 1) channels required, F

stands for the number of Fourier bands used.

1.3. Main Contributions

This work proposes a deflection metric for encoding projec-

tion properties to an image representation based on a pro-
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jection model of a sensor. The deflection metric is a one-

channel image that can resolve ambiguities in the projection

and homogenize the data from various sensors. We pro-

pose a SensorConv-Layer for combined processing of the

deflection metric and projected sensor data. We suggest us-

ing equirectangular images and propose an augmentation

method to emulate various sensor models. Furthermore, we

propose an experiment with statistical evaluation to analyze

the transferability to novel sensors, which we use to con-

firm the usability of our method on sensors with different

resolutions, fields of view, and lens distortions. For our ex-

perimental setup, we use the CARLA [3] simulator for data

generation. We publish the code for our data generation

pipeline used to acquire equirectangular images (see code).

2. Method

An image reflects reality ambiguously. For example, by

purely looking at an image, the scale of an object cannot be

determined. This ambiguity in scale and distortion of ob-

jects poses a major problem with the training of CNNs. We

aim to resolve these ambiguities with the proposed method

by adding knowledge, what we call deflection metric, about

the sensor used. In the following, we first define a deflection

metric, which encodes the projection properties of a sensor

such that it can be interpreted or processed by a CNN (see

subsection 2.1). Second, we show how the deflection met-

ric is provided to a state-of-the-art semantic segmentation

architecture (see subsection 2.3).

2.1. Deflection Metric

α

C

P

u

v

e

u
I

Figure 2. Deflection Metric α: Calculated as an angle between

the optical axis, defined by a sensor’s origin C and a principal

point P , and a pixel u⃗ = [u, v, 1]T [15].

With the deflection metric, as shown in Figure 2, we

propose a method to encode the geometric characteristics

of a sensor alongside its data. We use a deflection image

Iα, which encodes an inclination angle α in every pixel as

a one-channel image. α provides a consistent relation be-

tween a projected 3D point and the position of this 3D point

in relation to the sensor and is, therefore, compatible among

sensors with different characteristics. The deflection metric

α is an angle between the optical axis, defined by a sensor’s

origin C and a principal point P , and a pixel u⃗ = [u, v, 1]T .

The deflection metric α for a pixel position u⃗ can be deter-

mined based on a parameterized sensor model. With K as

a sensor intrinsic matrix. The calculation is shown here ex-

emplary for the pinhole camera model. Based on the image

coordinates, α of a pixel u⃗ with respect to the projection

center P can be determined:

α(u⃗) = arctan







√
√
√
√

[
K

−1u⃗
]T [

K
−1u⃗

]
− 1

︸ ︷︷ ︸

d(u⃗)







(1)

All the same values of the deflection metric α are arranged

on a contour e (see dashed circle in Figure 2). The de-

flection image Iα is a one-channel image in which every

pixel u⃗ is aligned with the data image I . This increases the

information content of each pixel by the geometric sensor

properties. The deflection image Iα can be processed with

the sensor data by convolutional layers of a CNN. The de-

flection image is not invariant to translation, rotation, and

scale. However, since the convolutional layers of CNNs are

learned, a CNN can decide whether to utilize this additional

information in the learning process.

Figure 3. Definition of a rotation angle β form Iα.

Using simple convolution filters, a angle β can be deter-

mined from α. From Iα and the curvature of α in its pixel

neighborhood Iβ and β can be derived by building the gra-

dient direction ∇α, as shown in Figure 3. This can be done

utilizing simple convolution operations, i. e. Scharr [17].

The Scharr filter might be beneficial due to numerical preci-

sion and rotational symmetry. Since these are convolutional

filters, a CNN can learn the calculation of Iβ and β implic-
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itly, if needed. α and β together uniquely define a viewing

ray. With a range measure r (e.g., from a LiDAR sensor or

implicitly learned from geometric priors), a unique metric

3D point can be defined. Thus, form the deflection image

Iα and a range image Ir an 3D measure can be defined.

2.2. SensorConv Layer

Since many computer vision methods are based on convo-

lution operations, we propose using the SensorConv Layer

(see Fig. 4). SensorConv can enforce a sensor equivariant

processing and resolve ambiguities by extending convolu-

tion layers with projection properties of the deflection met-

ric α. Similar to CamConv and CoordConvs, SensorConv

are additional inputs. A learnable convolutional layer can

decide if the additional information is applicable or can be

discarded. Hence, it does not break the conventional prop-

erties of convolution operations.

Figure 4. SensorConv Layer.

2.3. Backbone Architecture
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Figure 5. Backbone Architecture: The deflection metric is in-

jected before every pyramid stage. ↓ 2 denotes a down-sample op-

eration, ↑ 2 denotes an up-sample operation,
⊕

denotes a channel

wise concatenation.

An existing backbone meta-architecture is modified to

inject the deflection metric into the model at the input and

selected locations. Based on the findings in [20][19], as

described in subsection 1.2, we decided to use a ResNet50-

FPN [7, 12]. The modification to the ResNet-FPN is shown

in Figure 5. At the input stage, the deflection image Iα is

concatenated with a three-channel image I , resulting in an

input shape of h×w×4. The image input is processed top-

down in five down-sampling stages. Each stage halves the

height h and width w. This is done for the image data us-

ing strided convolutions, followed by a residual block (C1
to C5). The deflection image Iα is down-sampled in par-

allel and concatenated to the features of the stages C1 to

C5. This ensures that the feature map can be used in ev-

ery stage. After the injection, a 1 × 1 convolution fuses

the stage features with the deflection metric. This allows

the network to keep or discard the deflection metric for a

particular stage. The feature maps are up-sampled from the

bottom up prior to a fusion with the pristine feature map

from the respective stages. The fusion is performed by

channel-wise concatenating the feature maps and a subse-

quent 3 × 3-convolution for anti-aliasing, as with common

FPN architectures. This results in pyramid stages Pi with

the respective shapes (h/2i)× (w/2i)× 256 (i denotes the

stage index). The pyramid stages are then fed into a seman-

tic segmentation head, as described in [10].

2.4. Data Augmentation

Figure 6. Data Augmentation: We create diverse camera models

and sensor rotations from equirectangular images.

Sensor equivariance is a generalization problem; one

needs a lot of variable data to consider such a problem.

With our method, we provide an inductive bias on the sen-

sor model used. Thus, we need data from different sen-

sor types with differences in resolution, field of view, and

non-linear distortion to allow our method to generalize over

different sensor models. To the best of our knowledge, no

data set satisfies these conditions. Therefore, we have de-

veloped a concept to emulate such data. For this, we start

with equirectangular panoramic images. We assume that

for these images, a pixel-accurate ground truth exists for the

task under consideration. We emulate cameras with differ-

ent intrinsic parameters and perspectives from the equirect-

angular images (as shown in Fig 6). For our implementation
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we used the OmniCV-lib [16] and used the unified camera

model (UCM) [18] which has five parameters (fx, fy , cx,

cy , and γ), for the intrinsics and is able to model various

cameras from pinhole, over wide angle, to fish eye. The

UCM projection model for 3D points x⃗ = [x, y, z]
T

is de-

fined as:
[
u
v

]

=

[

fx
x

γd+(1−γ)z

fy
y

γd+(1−γ)z

]

+

[
cx
cy

]

(2)

With cx and cy as the center point, fy , and fy as the fo-

cal length, and γ ∈ [0, 1] as a distortion parameter. The

value of d =
√

x2 + y2 + z2 is the norm of the 3D points.

From an equirectangular image, the 3D points x⃗ are not

given directly. However, since we know that the pixel in

an equirectangular image spans a mapping of pixels (ue,ve)

to an angular coordinate system [ue, ve, 1]
T

→ [ϕ, θ, 1]
T

with ϕ ∈ [−π, π] and θ ∈ [−π/2, π/2] we can apply a pro-

jection matrix K
−1
e to obtain the angles ϕ and θ from pixels

ue and ve in an equirectangular image:




ϕ
θ
1



 =





△ϕ 0 −cϕ
0 △θ −cθ
0 0 1





︸ ︷︷ ︸

K
−1

e





ue

ve
1



 (3)

The parameters of K−1
e are defined by the height h and the

width w of the equirectangular image. With △ϕ = 2π/w
and △θ = π/h, as well as the center shifts cϕ = π and

cθ = π/2. Form ϕ and θ the normalized 3D coordinates

can be computed:




x
y
z



 =





sin(θ)cos(ϕ)
sin(θ)sin(ϕ)

cos(θ)



 (4)

We also enable a rotation R of x⃗ to get a variation of view-

ing angles. This gives us eight degrees of freedom for our

augmentation approach. From the projection model in Equ.

2 we can build the deflection metric α and the deflection im-

age Iα, as described in Sec. 2.1, for the augmented images.

3. Experiment

For our experimental setup, we use data generated by the

CARLA simulator as we will describe in subsection 3.1. In

this work, we focus on semantic segmentation as an impor-

tant task in computer vision and autonomous driving. We

compare our work against five baselines described in sub-

section 3.2. To test the significance of our approach, we

perform a statistical test in subsection 3.4

3.1. Dataset

For this work, we want to consider the sensor equivari-

ance in isolation. Therefore, we use the CARLA simula-

tor to generate a data set to augment different sensor mod-

els. We created a simulation pipeline in CARLA to obtain

360° panoramas. This allows us to consider the properties

of a sensor equivariant model independent of other influ-

ences, such as domain shifts. The code for our data gener-

ation pipeline is publicly available (see code). Our pipeline

generates equirectangular RGB images and equirectangu-

lar ground truth images for semantic segmentation, instance

segmentation, and depth (or range, to be exact). Further-

more, we include 3D annotations like 3D cuboids of vehi-

cles and VRUs and 3D human key points. Thus, the dataset

can be used for object detection, semantic segmentation, in-

stance segmentation, monocular depth estimation, monoc-

ular 6 DoF pose estimation, and human pose estimation

(2D/3D). However, in this work, we focus on semantic seg-

mentation.

We created the dataset in CARLA 9.14 [3] and used six

cameras to stitch the equirectangular panoramas at a reso-

lution of 2048 × 4096, as shown in Fig. 8. Using the aug-

mentation pipeline as described in Sec 2.4, we can create

a vast amount of images with various camera models and

distortions from the equirectangular panoramas. We simu-

lated a total of 25k equirectangular panoramas with various

conditions (traffic, weather, and maps) and used 20k of the

frames for training and 5k of the frames for testing.

Figure 8. CARLA Panorama Dataset. From top: color image,

bottom: semantic segmentation.

3.2. Baselines and Implementation Details

For our experiment, we use five baselines in total. The

Cityscapes baseline is the first and the most rigorous base-

line. We use the Cityscapes baseline to demonstrate the

limitations of a method that’s trained exclusively on the data

of a single camera sensor. For the Cityscapes baseline, we
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Figure 7. Qualitative results for the considered semantic segmentation methods at different camera configurations.

used a Resnet50-FPN network, trained on the Cityscapes

dataset [1], and retrained it on data of our dataset, for a

fair comparison. However, we only emulated a sensor with

the intrinsic values of the camera used in the Cityscapes

dataset while allowing the sensor to rotate. We expect this

baseline to overfit on the sensor used, resulting in a strong

bias when tested on data from different sensors. Our sec-

ond baseline, denoted as Base, is a vanilla Resnet50-FPN

trained from scratch on our dataset. For the augmenta-

tion, we allow arbitrary rotations of the sensor, horizontal

and vertical resolutions from the intervals w ∈ [320, 1080]
and h ∈ [320, 1080], a focal length from the interval f ∈

[100mm, 3000mm], and a distortion γ ∈ [0, 1]. With Base,

we want to examine how well the network architecture can

generalize with data from many sensors. With Base*, we

use the same setup as in Base but pre-trained on the COCO

dataset [11]. Base* serves as a baseline for transfer learn-

ing. With CoordConv [13] and CamConv [4], we use two

convolutional representations that serve as strong baselines

due to the similarity to our proposed methods. For both, we

incorporate the modified convolutional layers at the same

stages as we incorporate our proposed SensorConv layers

to a Resnet50-FPN (see subsection 2.3. SensorConv, Co-

ordConv, and CamConv are trained from scratch.

3.3. Setup

We use the mIoU and the IoU of the pedestrian class, to

evaluate the semantic segmentation. We use the IoU of the

pedestrian class exemplary for smaller objects. We gener-

ated 81 test sets with different sensor intrinsics from our

equirectangular test data for our evaluation. During the test,

we turned off the rotation in our augmentation method to get

only forward-facing sensors. We use forward-facing sen-

sors exclusively for testing, to primarily address the differ-

ences in sensor intrinsics and not differences in extrinsics

such as rotations. We conducted a statistical analysis based

on the significance ranking described in [2] and used Au-

torank [8] to generate critical distance diagrams. We further

use box and swarm plots to visualize the median and spread

of the IoU across the various sensors. The statistical anal-

ysis was conducted for the six considered models with 81

paired samples. We use 5% as the family-wise significance

level of the tests. An equivariant solution must perform well

on data from all 81 considered emulated cameras. With the

significance test, we can make statements about this. Since

each frame in a unique test set is captured by the same em-

ulated camera, a test set can be seen as a paired population

by statistical means.

3.4. Results

123456

SensorConv
Base*

CoordConv CamConv
Base
Cityscapes

CD

123456

SensorConv
Base*
Base CamConv

CoordConv
Cityscapes

CD

Figure 9. Critical difference (CD) diagrams for mIoU (Top) and

IoU-pedestrian (Bottom). CD diagrams show the mean ranks of

each model tested on different sensor resolutions. The higher the

rank (further to the left), the better the model’s performance. A

line indicates no significant difference among the models crossed

by that particular line.

We display relative results as critical distance diagrams

in Fig. 9 and absolute values as box plots in Fig. 10. An

ranking can be seen from the critical distance diagram (Fig.

9). The Cityscapes configuration is ranked the lowest. In

Fig. 9, one can also see that the mIoU of the Cityscapes

configuration is by far the lowest. This confirms our hy-

pothesis that a model trained only on data from a fixed cam-

era configuration does not generalize well. In other words,

there is a bias towards the sensor used. The Base configu-
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Figure 10. Box and Swarmplot for mIoU (Top) and IoU-pedestrian

(Bottom) over the tested camera configurations. Each colored

point marks the IoU of the test set with a certain camera configu-

ration.

ration ranks the second lowest when considering the mIoU.

This points to a lack of generalizability. However, Base

configuration ranks third for the pedestrian IoU, showing

better performance for smaller objects. The CamConv and

CoordConv configurations are ranked third and fourth for

the mIoU with no significant differences. Such similarity

is surprising since CamConv is an extension of CoordConv.

While CoordConv allows only a spacial equivariance, Cam-

Conv should allow a spacial and scale equivariance. Cam-

Conv include CoordConv in two of the four channels. We

suspect that when using the CamConv, the channels con-

taining the FOV are ignored by the model, and thus, effec-

tively, only the CoordConv is used. This may be because

CamConv are designed for pinhole cameras, and nonlinear-

ities due to lens distortions are not considered by CamConv.

The model thus learns that the FOV channels are untrust-

worthy for substantial distortions and ignores them. How-

ever, the influence of distortion is not that large for smaller

objects like pedestrians. In the pedestrian IoU, a signifi-

cant difference can be seen between CamConv and Coord-

Conv. The Base* configuration ranks second for mIoU and

pedestrian-IoU. Base* represents a model based on a large

and variable data set. We see that such a model can provide

a strong foundation. We want to acknowledge that trans-

fer learning is a valid baseline. However, transfer learning

requires a holistic data basis. Depending on the domain un-

der consideration, it is difficult to obtain such a data basis.

A significant difference remains compared to the highest

ranked SensorConv in mIoU. This demonstrates the effi-

ciency of our SensorConv-Layer and the deflection metric.

In Fig. 10 we observe that for IoU-pedestrian SensorConv

performs better on average, compared to Base*. However,

we can’t find a significant difference in the IoU-pedestrian

due to a large spread across different sensors. Furthermore,

we display the impact of certain sensor parameters on the

evaluation by the color coding in Fig. 10. We colored each

camera configuration based on the focal length (blue color

channel), the resolution (green color channel), and the dis-

tortion (red color channel) in the swarm plot. From Fig.

10, we see that pinhole configurations (green points) work

best across all considered methods. All considered methods

perform worse on wide-angle and fish-eye configurations

(magenta points). In Fig. 7, qualitative results can be seen.

4. Broader Impact and Limitation

In the considered experiment, our approach outlines a solid

procedure towards a sensor equivariant solution for the

problem of semantic segmentation with diverse camera

models. Our key finding is that for a sensor equivariant so-

lution it is insufficient to record data with a single camera.

Variant data from employing multiple sensors is mandatory

to avoid a sensor bias. Likewise, our experiment shows that

using only large and variable data is insufficient due to the

infamous bias-variance tradeoff. Our model architecture

composed of the deflection metric and SensorConv-Layer,

together with the use of panoramic images and our pro-

posed augmentation method, gives a sound solution. How-

ever, due to the use of simulated data, our experimental

setup has to be seen as a proof of concept. An evaluation

based on real data must be made. In this work we have

focused on sensor intrinsics. We cannot state how well our

approach generalizes across different sensor mounting posi-

tions. Furthermore, using equirectangular panoramic cam-

eras is currently not a focus in self-driving research, which

questions a solid data basis at scale. However, with map-

ping approaches like Google Street View, a large and holis-

tic data pool of equirectangular images can be utilized to

scale our approach.
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5. Conclusion

This paper presents a novel framework towards the creation

of sensor equivariant solutions. We evaluated our approach

in an experimental setup on the task of semantic segmenta-

tion and compared it with selected baselines. Our approach

achieves better segmentation results than the baselines and

shows advanced generalization potential despite its simplic-

ity. We are confident that in scenarios where computer

vision methods need to generalize across different camera

sensors, while the sensor intrinsic properties are given, our

SensorConv layer will be helpful.
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