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Abstract

We present a novel holistic deep-learning approach for
multi-task learning from a single indoor panoramic im-
age. Our framework, named MultiPanoWise, extends vi-
sion transformers to jointly infer multiple pixel-wise sig-
nals, such as depth, normals, and semantic segmentation,
as well as signals from intrinsic decomposition, such as re-
flectance and shading. Our solution leverages a specific ar-
chitecture combining a transformer-based encoder-decoder
with multiple heads, by introducing, in particular, a novel
context adjustment approach, to enforce knowledge distilla-
tion between the various signals. Moreover, at training time
we introduce a hybrid loss scalarization method based on
an augmented Chebychev/hypervolume scheme. We illus-
trate the capabilities of the proposed architecture on public-
domain synthetic and real-world datasets. We demonstrate
performance improvements with respect to the most recent
methods specifically designed for single tasks, like, for ex-
ample, individual depth estimation or semantic segmenta-
tion. To our knowledge, this is the first architecture capa-
ble of achieving state-of-the-art performance on the joint
extraction of heterogeneous signals from single indoor om-
nidirectional images.

1. Introduction

Spherical cameras offer cost-effective and efficient
means to swiftly capture the complete surroundings around

Figure 1. Our MultiPanoWise architecture can provide high accu-
racy joint dense predictions from single panoramic images. Top:
example of multiple inferences obtained with MultiPanoWise on
a single synthetic RGB from Structured3D [44]. From top to bot-
tom, left to right, the RGB input, depth prediction, semantic in-
ference, color-coded normals, reflectance, and shading. Bottom
left: radar plot comparing the performance of joint prediction of
MultiPanoWise with respect to the state-of-the-art single predic-
tion for different signals on Structured3D dataset [44]. Bottom
right: the performance obtained with different values of the hyper-
parameter α (see Sec. 3.2) compared to the state-of-the-art on real-
world Stanford2D3D dataset [2]. For α = 0.5 the model trained
by MultiPanoWise can reach state-of-the-art performance for both
semantic and depth prediction. For the accurate numerical values
associated with these plots, we refer readers to Tab. 1,2 and 3.
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the capture position in a single shot. The captured
panoramic image, also called 360◦, omnidirectional, or
surround-view image, provides a wealth of information, and
is especially suited to be exploited for designing or experi-
encing indoor environments. In particular, 360◦ views en-
able designers and developers to create more engaging and
realistic environments, facilitate a deeper understanding of
spatial layouts, enhance the visualization of potential design
modifications, and let users experience virtual spaces more
interactively and comprehensively [17, 21, 22].

Image-based design methods are gaining traction in both
design and digital content creation, driven by their ability
to deliver rich and immersive experiences. These methods,
however, depend heavily on accurately estimating various
types of information, such as depth signals for understand-
ing spatial relationships, semantic segmentation for differ-
entiating between object types, and material properties for
realistic lighting effects and the seamless insertion of vir-
tual objects. Accurate information estimation is crucial for
creating believable and interactive digital environments, en-
hancing the realism and utility of virtual spaces for users.

Despite significant advances in image-based design tech-
nologies, a notable gap remains in multi-task inference sys-
tems tailored for indoor panoramic images. Previous meth-
ods have shown proficiency in extracting singular signals
with remarkable accuracy [6, 26]. However, the complexity
of panoramic imagery, particularly in indoor environments,
demands a holistic approach that can concurrently process
and interpret multiple types of information. This lack of
integrated solutions presents a critical limitation, hindering
the full potential of panoramic images in applications re-
quiring comprehensive scene understanding and interaction.

To overcome such limitations, we introduce Multi-
PanoWise, a transformer-based holistic architecture for
multi-signal inference from indoor panoramic images. Our
approach is specifically targeted to exploit the unique char-
acteristics of indoor 360◦ imagery and to the inherent
consistency between various signals. To perform multi-
task dense prediction, we introduce a transformer-based
branched encoder-decoder architecture, where a common
encoder-decoder network feeds multiple heads for dense
estimation. The transformer-based encoder leverages the
PanoFormer [26] baseline to generate features. The decoder
progressively refines the encoded features through multiple
convolutional layers boosted by a panoramic-specific self-
attention mechanism [26] and feeds a set of convolution-
based heads for dense prediction of the various signals. On
top of this multi-head encoder-decoder architecture, we in-
tegrate the following main contributions:

• we introduce a context adjustment layer able to enforce
knowledge distillation between the encoder-decoder
and the various heads through skip connections stem-
ming from the encoding layers (Sec. 3.1). In this way,

the model can distill the relevant feature channels that
can help in refining the low-resolution signals gener-
ated by the multiple heads;

• for the first time in the multi-task dense prediction
domain, we introduce the usage of augmented hy-
pervolume loss scalarization methods [42], that have
proven to provide Pareto-optimal solutions in standard
multi-task problems. To this end, we propose a hy-
brid Chebychev/linear scalarization scheme depending
on a single parameter and able to pacify potentially
conflicting prediction tasks during the training stage,
without compromising the stability of gradients in the
learning process (Sec. 3.2) in a way to boost prediction
performance of multiple tasks concurrently (see Fig. 1
bottom).

Leveraging this architecture, MultiPanoWise can simul-
taneously process a single panoramic image to extract a
comprehensive array of signals (see Fig. 1 top). These
include geometric information represented as 16-bit depth
and color-coded normals, dense semantic segmentation
maps, and intrinsic decomposition signals distinguishing
reflectance (albedo) and shading. This capability signifi-
cantly improves processing efficiency and offers nuanced
insights into indoor environments crucial for many appli-
cations, from virtual staging to advanced rendering tech-
niques. We validated the proposed framework through com-
prehensive experiments on public domain real and synthetic
indoor panoramic datasets such as Stanford2D3D [2], and
Structured3D [44], where we obtained significant perfor-
mance improvements over existing state-of-the-art methods
tailored for individual signal inference. Finally, we show-
case the positive effects of the context adjustment and the
hybrid scalarization strategy through a dedicated ablation
study.

2. Related work
Our framework deals with multi-task learning in the

context of indoor panoramic images. For an extensive
overview of the related work in these topics, we refer inter-
ested readers to the surveys about scene reconstruction from
panoramic images [4, 23] and multi-task learning [43]. In
the following, we discuss the methods that are most closely
related to our work.

2.1. Inference from indoor omnidirectional images

Inferring geometric and physical signals from omnidi-
rectional images is a challenging problem that attracted the
computer vision community over the last few years. In gen-
eral, to deal properly with the spherical distortion induced
by equirectangular projection, various methods considering
reprojection in combination with Convolutional Neural Net-
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works have been considered. More specifically, various so-
lutions have been proposed for individual dense estimation
problems:
Depth estimation. The methods targeting depth estima-
tion dramatically reduced the distortion by considering the
conversion to sky-box representations. For example, Uni-
Fuse [8] and Bifuse [30] consider fusing features extracted
from equirectangular projection and features extracted from
cube maps at various stages of encoder-decoder architec-
tures. At the same time, M3PT [33] uses random masking
to process panoramas and sky-box depth patches simultane-
ously targeting panoramic depth completion. Other meth-
ods consider slicing the panoramic image along the ver-
tical direction by assuming that vertical lines are not dis-
torted by equirectangular projection and the acquisition is
mostly gravity-aligned [19, 20]. Other methods consider
tangent projection to extract multiple undistorted patches
that can be processed through standard methods commonly
used for perspective images, like 360MonoDepth [24] and
OmniFusion [12]. Very recently, vision transformers have
been exploited: PanoFormer [26] considers tangent projec-
tion (TP) to reduce the inherent distortion of omnidirec-
tional images and uses the TP patches as tokens for a vi-
sion transformer architecture, while HRDFuse [1] propose
a hybrid CNN-transformer architecture that integrates the
holistic contextual information from the original equirect-
angular projection together with the regional structural in-
formation extracted from the tangent projection, and Pan-
elNet [34] represents equirectangular projection (ERP) as
consecutive vertical panels with corresponding panel geom-
etry and uses it in a transformer for aggregating the local
information within a panel with the panel-wise global con-
text.
Semantic segmentation. Various architectures exploited
the advantages of vision transformer and attention mech-
anisms to infer semantic segmentation: various methods
consider extending high-performance segmentation trans-
former architectures to the spherical domain by incor-
porating geometric constraints, like Trans4Pass [38], or
Trans4Pass+ [39], and by proposing distortion-aware at-
tention (DA) attention schemes that capture the neighbor-
ing pixel distribution without using any geometric con-
straints [45]. Other methods instead consider multi-modal
image modalities for improving segmentation, like the us-
age of depth signal, normal signal, or thermal signals: for
example, AMBDRNet [40] consider fusing the thermal fea-
tures with RGB images through bidirectional image-to-
image translation, while CMX [37] considers cross-modal
fusion with a transformer architecture in the context of per-
spective images, and the same concept is applied to indoor
panoramic images by SFSS-MMSI [6] through the appli-
cation of RGB, depth and normal signal in the context of
Trans4Pass network. We consider a similar strategy for our

architecture, but we exploit the concept of multi-modal fu-
sion inherent in the multi-task learning of various signals,
following the intuition of the existence of a significant cor-
relation between the semantic signal and other signals, like
normal and albedo, as shown by Baslamisli et al. [3].
Intrinsic image decomposition. Physically-based inverse
rendering methods consider methods for extracting material
and shading information. In general, these methods con-
sider a pre-extraction technique to isolate specific illumina-
tion information in the form of spherical Gaussians, that can
be used together with spherical warping to exploit this in-
formation in the context of relighting or rendering [13], or
for extracting accurate reflectance information [31].

While all previous methods show accurate reconstruc-
tion of single signals, to our knowledge there is a lack of
multi-task networks able to extract heterogeneous geomet-
ric, physical, and semantic information: we obtain this by
leveraging a multi-decoder transformer-based architecture
and multi-modal fusion during learning through context ad-
justment and hybrid loss scalarization in a way to exploit
the correlation between the concurrently extracted signals.

2.2. Multi-task learning in panoramic images

Multi-task learning methods try to develop machine
learning models that can perform concurrently multiple dif-
ferent tasks [28]. In various cases, they proved to offer
advantages in terms of data efficiency, model convergence,
and reduced model overfitting. In general multi-task setting
presents many optimization challenges, making it difficult
to realize large efficiency gains compared to learning tasks
independently: to alleviate this issue, some methods pro-
pose loss weighting schemes [9], gradient projection strate-
gies [35], or multi-objective optimization, with the overall
objective of finding Pareto optimal solutions [25,41]. In this
work we consider multi-task learning for dense prediction
using standard encoder-decoder architectures: according to
a recent taxonomy [28], the various methods can be subdi-
vided into two main categories, based on where the interac-
tions between the various tasks happen, i.e., locations in the
architecture where information are exchanged or shared be-
tween tasks. Encoder-focused architectures share the task
information in the encoder stage, before processing them
with a set of independent task-specific decoders. In this cat-
egory, Multi-Task Attention Networks (MTAN) [15] use a
shared backbone network in conjunction with task-specific
attention modules in the encoder and each task-specific at-
tention module selects features from the general pool by
applying a soft attention mask. Similarly, branched MTL
networks [5] try to learn the hierarchical encoding struc-
tures inherent in images through ramifications starting with
many shared layers, after which different tasks branch out
into their sequence of layers. On the other side, some re-
cent methods exchange information during the decoding

1313



Figure 2. MultiPanoWise: The proposed architecture is built upon the PanoFormer architecture [26] We strictly adhere to their architectural
design and various components in the encoder and decoder blocks. Additionally, we introduce a context adjustment layer to refine the raw
semantic, albedo, and shading outputs. The raw semantic, albedo, and shading, along with the low-level features extracted from the stem,
are fused and passed to the context adjustment layer to enhance the quality of semantic, albedo, and shading outputs.

stage: they normally employ a multi-task network to make
initial task predictions, and then exploit the features from
these initial predictions to refine each task output through
knowledge distillation strategies [29,46]. Very recently, Mt-
Former [32] uses a vision transformer in which multiple
tasks share the same transformer encoder and transformer
decoder, and lightweight branches are introduced to harvest
task-specific outputs, in a way to increase the MTL perfor-
mance and reduce the time-space complexity. Similarly,
Lopes et al. [16] consider pair-wise cross-task exchange
through correlation-guided attention and self-attention for
addressing multi-task learning in the context of indoor and
outdoor semantic and geometric estimation from perspec-
tive images. In our method, we follow a similar strat-
egy but we add a context adjustment layer based on skip
connections to enforce signal refinement. For what con-
cerns the multi-task training, we follow recent trends in loss
scalarization [42], and we apply a hybrid linear/Chebychev
scheme based on a single parameter. For what concerns the
application of MTL to panoramic images, there is a lack of
literature references: Li et al. [13] developed a multi-branch
encoder-decoder architecture based on ResNet for inference
of geometry and shading properties from single images, to
perform inverse rendering, that we include in or compari-
son. Instead, we propose a transformer-based architecture,
and we apply it for estimating heterogeneous signals, in-
cluding the semantics. To the best of our knowledge, this
is the first time vision transformers have been investigated

to perform accurate multiple-dense predictions from single
omnidirectional images.

3. Methods
We introduce MultiPanoWise, a multi-task learning

model designed for panoramic images (an overview is
shown in figure 2). We build our architecture upon the
foundation laid by PanoFormer transformer [26], integrat-
ing a pixel-level patch division strategy for local feature
enhancement, a relative position embedding method for
improved positional information, and a panoramic self-
attention mechanism to capture crucial panoramic struc-
tures essential for diverse signals. From the architectural
perspective, we retain similar components starting from an
input stem with a 3×3 convolution layer, followed by an
encoder and a decoder, each comprising four hierarchical
stages encompassing position embedding, two PST blocks,
and a convolution layer. In addition, we augment the de-
coder with multiple heads to facilitate the generation of var-
ious signals. Moreover, we introduce a novel context ad-
justment module aimed at enhancing semantic segmenta-
tion and intrinsic decomposition signals such as reflectance
and shading (described in section 3.1). The convolution lay-
ers within the encoder employ 4×4 kernels for dimension
augmentation and down-sampling, while the decoder uti-
lizes 2×2 transposed convolution layers for dimension re-
duction and up-sampling. Circular padding is utilized for
all convolution layer padding operations.
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Figure 3. The detailed architecture of the context adjustment layer
featuring two convolutional blocks.

3.1. Context adjustment layer

To improve the accuracy and reliability in extracting se-
mantic, albedo, and shading information from the trans-
former model, we encounter a common challenge: the risk
of data loss, often leading to unwanted gaps and distortions,
especially at image edges. To address this challenge head-
on, we introduce an additional component: the integration
of a context adjustment layer as presented in figure 3. This
layer leverages the rich low-level features extracted from
the input stem layer, along with the raw semantic, albedo,
and shading outputs from the joint decoder.

Through a fusion process, the feature maps extracted
are seamlessly combined with the raw semantic maps from
the joint decoder, resulting in composite images that blend
high-resolution spatial details with semantic context seam-
lessly. This fusion process undergoes further refinement via
a two-step convolutional block, consisting of a 3x3 convolu-
tional layer followed by batch normalization and a Paramet-
ric Rectified Linear Unit (PReLU) activation function. This
refinement step enhances the quality of information ob-
tained from the raw semantic maps, yielding refined seman-
tic representations. Similar procedures are applied to both
reflectance and shading. This approach acts as a robust rem-
edy for the inherent limitations of raw semantic, reflectance,
and shading outputs. By effectively addressing distortions
and artifacts, our network not only corrects imperfections
but also preserves valuable data that might otherwise be
lost. The resulting signals exhibit higher precision, charac-
terized by sharper edges and enhanced fidelity (see Sec. 5).

3.2. Multi-task hybrid scalarization

Multi-task dense prediction can be considered a multi-
objective optimization problem, in which the model needs
to recover multiple signals together from a single image,
and the different tasks are not necessarily aligned with each
other, meaning that improving the prediction of one task
might deteriorate the prediction of another task and vice
versa. Recent efforts provided various methods for combin-
ing the multiple objectives trying to come out with theoret-
ical solutions that are as optimal as possible [9, 25]. One of
the typical solutions consists of scalarization [9], i.e. com-
posing the various objective function in a single scalar func-

tion containing all tasks: given a vector of N tasks and the
corresponding objective functions L = [L1, ..,LN ], scalar
linearization involves a linear combination of the various
losses:

Llin =

N∑
k=1

wkLk, (1)

in which the weights are learnable [9], while other strategies
consider Chebychev/hypervolume scalarization

Lhyp = max
k∈[1,N ]

{wkLk}, (2)

that recently have been proven to converge to the Pareto
front [41, 42]. Moreover, various groups considered
augmenting hypervolume scalarization through regulariza-
tion [14]: our method follows a similar strategy by defining
a hybrid linear/hypervolume scalarization depending on a
single hyperparameter α, and the scalar objective function
is defined as follows:

Lhybrid = αLhyp + (1− α)Llin, (3)

with α ∈ [0, 1], in a way that our loss scheme can range
between a fully linear and fully Chebychev scalarization.

3.3. Task losses

For our multi-task dense prediction, we considered the
following task losses:

• depth, shading, normal, and reflectance estimation:
for all these tasks, we used the Berhu loss augmented
with gradient loss based on Sobel filters detection [19,
26]

Lx = Bβ(x, xgt)+Bβ(SHx, SHxgt)+Bβ(SV x, SV xgt),
(4)

where x ∈ [d, sh, n, r],

Bβ(x, xgt) =

{
∥x− xgt∥, if x < β
∥x−xgt∥2+β2

2β , if x ≥ β
, (5)

and SH , SD are the classical Sobel gradient filters.

• semantic segmentation: we considered cross-entropy
loss augmented with Dice loss

Ls = C(s, sgt) +D(s, sgt), (6)

where
C(s, sgt) = − log(sTgts), (7)

D(s, sgt) =

∑
sTgts

2
∑

sgt
, (8)

and s is the one-hot encoding of the original label im-
age s.
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Input Image Ground Truth MultiPanoWise PanoFormer
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Figure 4. Qualitative comparison with Panoformer [26] trained for single inference on synthetic data (Structured3D). We showcase the
inference for multiple signals (depth, albedo, normal, semantic and shading). For larger versions and zoomed insets, readers may check
the supplementary material.

Table 1. Performance comparison on Structured3d dataset

Methods Depth Semantic Albedo Shading Normal
MAE ↓ MRE ↓ σ1 ↑ mIoU ↑ MSE ↓ PSNR ↑ MSE ↓ MANE ↓

Li et. al [10] n/a n/a n/a n/a 0.073 n/a n/a 24.7
Guttikonda et. al [6] n/a n/a n/a 68.34 n/a n/a n/a n/a
Yun et. al [36] 0.034 0.028 0.981 n/a n/a n/a n/a n/a
Pintore et. al [18] 0.091 0.054 0.954 n/a n/a n/a n/a n/a
Shen et al [26] 0.087 0.049 0.937 64.47 0.030 20.9 0.0916 7.25
MultiPanoWise (Ours) 0.056 0.019 0.975 69.61 0.021 22.45 0.0795 5.94

Table 2. Performance comparison on Stanford2d3d dataset.

Methods
Depth Semantic

MAE ↓ MRE ↓ σ1 ↑ mIoU ↑
Ai et. al [1] 0.093 0.051 0.914 n/a
Li et. al [11] 0.165 0.084 0.929 n/a
Zhifeng et. al [27] n/a n/a n/a 54.3
Guttikonda et. al [6] n/a n/a n/a 52.87
Yu et. al [34] 0.152 0.083 0.924 46.3
Shen et al. [26] 0.086 0.050 0.934 51.2
MultiPanoWise (Ours) 0.065 0.038 0.945 54.6

4. Experiment setup

Datasets. In our experimentation, we assess the efficacy
of our proposed approach using two indoor panoramic
datasets: Structured3D (synthetic) and Stanford2D3D (real-
world). The Structured3D dataset comprises 21,835
panoramic images, each meticulously annotated with de-
tailed semantic, depth, normal, reflectance, and shading in-
formation. However, due to corrupted or incomplete an-
notations in some images, we meticulously cleaned the
dataset, resulting in a final set of 17,434 images. Given
the absence of an official dataset split, we adopt the split
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outlined in [6] for model training and testing.
In contrast, the Stanford2D3D dataset contains 1,411

panoramic images, annotated with detailed semantic, nor-
mal, and depth information. For our experiments, we re-
serve area 5 for testing, while utilizing the remainder of
the dataset for model training. Notably, we exclude the
normal annotations from our consideration due to misalign-
ment with the Structured3D dataset. Aligning these anno-
tations necessitates extensive preprocessing and camera an-
gle adjustments, making it impractical for our experimental
setup. Therefore, we solely focus on the depth and semantic
tasks for this dataset.
Implementation details. We implemented our method us-
ing PyTorch 2.1.2 and trained it on 8 Nvidia RTX 4090
GPUs. The Adam optimizer was employed with an ini-
tial learning rate of 1e−4, and the batch size was set to
two. Images were resized to 512x1024 for both the train-
ing and testing phases. Initially, our model underwent
training on the Structured3D dataset, chosen for its ex-
tensive size and diverse data representation. This training
phase spanned 50 epochs, during which a multitask loss
function was applied through simple addition scalarization.
Subsequently, to refine the model’s performance, we con-
ducted fine-tuning using our hybrid scalarization scheme
for an additional 20 epochs. Subsequently, we utilized the
pre-trained model and fine-tuned it on the Stanford2D3D
dataset for 20 epochs. During training, we applied various
augmentations, including flipping, yaw rolling, and color
adjustments such as brightness, contrast, and saturation set
to 0.2, while hue was set to 0.1. It’s important to note
that augmentation was only applied to the Stanford2D3D
dataset. While the weights and the hyperparameters are all
learnable, this may cause strong gradient instabilities during
the learning process. From our preliminary experiments,
we realized that the range of the various objective functions
was uniform, hence we fixed wk = 1 for the remaining ex-
periments, and the hyperparameter α = 1

2 . Moreover, in
Sec. 5.3 we report on an ablation study where we show how
different values of α lead to different performance.
Evaluation Metrics. In our study, which involves multi-
tasking, we have employed various evaluation metrics tai-
lored to each task. For depth estimation, we have utilized
three standard evaluation metrics commonly employed in
the field: mean absolute error (MAE), mean square relative
error (MRE), and the first threshold percentage, denoted as
σ1. In the context of semantic segmentation, we have cal-
culated the Mean Intersection Over Union (mIoU). As for
shading analysis, our evaluation includes the Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE).
When assessing albedo, we have considered the MAE,
RMSE, and Peak Signal-to-Noise Ratio (PSNR). For color-
coded normal surface estimation, the evaluation entails
RMSE and Mean Angular Error (MAN).

5. Results
In this section, we provide a comprehensive evaluation

of our Multi-Task model across various tasks in the 360D
panoramic image, utilizing both synthetic and real-world
datasets. We begin by comparing our results with recent
studies focusing on single tasks. Furthermore, we delve into
a detailed comparison with Panoformer [26], serving as a
baseline, across multiple tasks to underscore the advantages
of joint learning and context adjustment layers.

5.1. Structured3D

Depth. We employed metrics such as MAE, MRE, and
σ1.25 to assess the performance of our depth estimation. Ta-
ble 1 showcases a quantitative comparison against the cur-
rent state-of-the-art monocular panoramic depth estimation
solutions. Our model outperforms the baseline across all
metrics, demonstrating competitive performance compared
to the current state-of-the-art. Particularly noteworthy is our
achievement of 0.019, 0.056, and 0.975 for MRE, MAE,
and σ1.25, respectively. Moreover, our MultiPanoWise gen-
erates depth maps with enhanced accuracy, structure corre-
lation, and semantic boundaries, as evidenced by the visual
comparisons with Panoformer [26] in Figure 4.
Semantic. Similarly, we conducted a quantitative compar-
ison of semantic segmentation results, as shown in Table
1. MultiPanoWise surpasses the current state-of-the-art by
achieving a commendable mIoU of 69.61%. Notably, our
model produces more accurate results compared to the base-
line, as illustrated in Figure 4.
Normal. For normal estimation, we utilized Mean Angular
Error as the validation metric. Our model achieved a MANE
of 5.94, significantly outperforming previous work [10] and
improving upon the baseline. Visual comparisons in Figure
4 highlight the superior accuracy of our MultiPanoWise in
generating normal surfaces.
Albedo. Validation of albedo estimation was performed us-
ing MSE and PSNR. Our model demonstrates superior per-
formance compared to both previous work and the baseline,
achieving a PSNR of 22.45 and an MSE of 0.021, as in-
dicated in Table 1. Visual inspection in Figure 4 further
confirms the accuracy of our model in generating material
colors.
Shading. While MSE was employed for performance mea-
surement in shading estimation, no previous work was
available for direct comparison. Our model achieved an
MSE of 0.079, showcasing significantly improved color
shading accuracy compared to the baseline’s MSE of 0.916.
Visual comparisons in Figure 4 underscore the superiority
of our MultiPanoWise in generating accurate color shading.

5.2. Stanford2D3D

For the Stanford2D3D dataset, we focused on depth es-
timation and semantic segmentation: we excluded normals
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Input Image Ground Truth MultiPanoWise PanoFormer

Depth

Semantic

Figure 5. Qualitative comparison with Panoformer [26] trained for single inference on real data (Stanford2d3d). We showcase the inference
for multiple signals (depth, semantic). For larger versions and zoomed insets, readers may check the supplementary material.

from this preliminary evaluation for camera orientation in-
consistencies that require further processing.
Depth. Table 2 presents a quantitative comparison with the
current state-of-the-art monocular panoramic depth estima-
tion methods. Our model achieved impressive results with
an MRE of 0.038, MAE of 0.065, and σ1 of 0.945, placing
first in the comparison.
Semantic. Table 2 outlines our model’s performance in
semantic segmentation, measured by mIoU. We attained a
notable mIoU of 54.6, surpassing previous state-of-the-art
methods. MultiPanoWise establishes a new best perfor-
mance with a 54.6 mIoU, outperforming the single infer-
ence baseline, which achieved 51.2. We showcase a quali-
tative comparison with PanoFormer [26] trained for single
inference in Fig. 5.

Table 3. Ablation on Stanford2d3d dataset.

Hybrid α Fusion Semantic(mIoU) Depth(MRE)
0 ✗ 51.5 0.086

0.5 ✗ 52.9 0.072
1 ✗ 51.8 0.068
0 ✓ 53.4 0.068

0.5 ✓ 54.6 0.065
1 ✓ 54.2 0.063

5.3. Ablation study

In our ablation study, we maintained consistent hyperpa-
rameters as defaults for all experiments, following the set-
tings outlined in Sec. 4. To assess the effectiveness of our
model, we conducted experiments using the Stanford2D3D
dataset. Given the proven effectiveness of the architectural
components of PanoFormer [26], which we utilized in our
model, our focus in the ablation study was on the context-
adjustment layer and hybrid loss, controlled by parameter
α (ranging from 0 for simple loss to 1 for full hypervolume
loss). We began by modifying the Panoformer architecture

to accommodate multitasking, achieved by adding multi-
ple heads to shared decoders. Initially, we trained Mul-
tiPanoWise both with and without the context-adjustment
layer on the Structured3D dataset, followed by fine-tuning
on the Stanford2D3D dataset.

Table 3 summarizes our findings. Incorporating the
context-adjustment layer results in an approximate 2.2% in-
crease in mIoU, indicating improved semantic segmentation
performance. Moreover, this addition also enhances depth
estimation performance. Furthermore, employing the hy-
brid Chebychev/linear scalarization scheme yields over 1%
improvement in mIoU, with a slight enhancement observed
in the Mean Relative Error (MRE) of depth estimation.

6. Conclusion
We presented a novel holistic architecture for multi-task

dense prediction on a single panoramic image representing
indoor environments. We showcased that the proposed ar-
chitecture can achieve state-of-the-art performance in typi-
cal dense prediction tasks of indoor panoramic images, like
geometry estimation, semantic segmentation, or intrinsic
image decomposition, by considering a context adjustment
layer and a hybrid loss scalarization strategy. We believe
that the proposed solution is general and might be applied
to other multi-task dense prediction domains. We plan to
extend it to more complex dense estimation problems, like
signal extraction for inverse rendering [47] and virtual stag-
ing purposes [7].
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