
FisheyeBEVSeg: Surround View Fisheye Cameras based
Bird’s-Eye View Segmentation for Autonomous Driving

Senthil Yogamani*, David Unger†, Venkatraman Narayanan‡, Varun Ravi Kumar‡

Abstract

Semantic segmentation is an effective way to perform
scene understanding. Recently, segmentation in 3D Bird’s
Eye View (BEV) space has become popular as its directly
used by drive policy. However, there is limited work on
BEV segmentation for surround-view fisheye cameras, com-
monly used in commercial vehicles. As this task has no
real-world public dataset and existing synthetic datasets do
not handle amodal regions due to occlusion, we create a
synthetic dataset using the Cognata simulator comprising
diverse road types, weather, and lighting conditions. We
generalize the BEV segmentation to work with any cam-
era model; this is useful for mixing diverse cameras. We
implement a baseline by applying cylindrical rectification
on the fisheye images and using a standard LSS-based BEV
segmentation model. We demonstrate that we can achieve
better performance without undistortion, which has the ad-
verse effects of increased runtime due to pre-processing, re-
duced field-of-view, and resampling artifacts. Further, we
introduce a distortion-aware learnable BEV pooling strat-
egy that is more effective for the fisheye cameras. We ex-
tend the model with an occlusion reasoning module, which
is critical for estimating in BEV space. Qualitative per-
formance of FisheyeBEVSeg is showcased in the video at
https://youtu.be/HfTPwMabgS0.

1. Introduction
The semantic Bird’s Eye View (BEV) segmentation task
aims to rasterize the real world into a 2D grid, with each
cell containing semantic information regarding the cor-
responding real-world object. BEV grid generation has
emerged as a pivotal task in Automated Driving (AD) and
Robotics [1, 2]. Four wide-angle fisheye cameras are com-
monly used in AD systems for near-field sensing. However,
most academic research in AD focuses on pinhole cameras,
largely due to their prevalence in open-source datasets. Fur-
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thermore, fisheye cameras introduce substantial distortions
to the images, making it challenging to extend standard pin-
hole approaches. The literature in various fisheye percep-
tion tasks [3–8] indicate that special attention and design
are needed to handle the large radial distortion.

The work on Lift-Splat-Shoot (LSS) [9] forms the base-
line for generating a BEV map from standard pinhole cam-
eras using geometry. Many derivative works adapt LSS for
downstream AD tasks in the BEV space. This work pro-
poses a novel architecture that performs Semantic Segmen-
tation in BEV Space for fisheye cameras. Our main contri-
butions include:
• Creation of a fisheye BEV segmentation dataset with oc-

clusion masks using a commercial-grade simulator.
• Design of a novel distortion-aware learnable pooling

strategy using camera intrinsics for adaptation.
• Generalized framework for BEV semantic segmentation

from raw images supporting various camera models.
• A end-to-end multi-task model that provides semantic

classes and occlusion reasoning in ambiguous scenarios.

2. Method

This section presents our approach to learning bird’s-eye-
view representations of scenes from image data captured
by a surround fisheye camera rig. Our goal is, given four
surround-view fisheye images Xk ∈ R3×H×W each with
an extrinsic matrix Ek ∈ R3×4 and an intrinsic matrix
Ik ∈ R3×3, we seek to find a rasterized representation of
the scene in the BEV coordinate frame y ∈ RC×X×Y with
semantic information for each cell. The end-to-end archi-
tecture of FisheyeBEVSeg is outlined in Figure 2.

1. Fisheye Camera BEV features: First, similar to
the LSS [9] approach, we use the camera parameters to
project the image features from the image encoder into the
3D world. The camera parameters map the image feature
to the corresponding ray in the BEV map, while the esti-
mated depth determines the distance. For this to work in
fisheye cameras, we convert the camera features into a di-
rection vector for each feature projected into 3D space. The
camera features in pixel coordinates, u, v, are converted to
camera co-ordinates, x, y, using the camera intrinsic matrix
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NuScenes - Pinhole Cognata - Fisheye

Figure 1. The visualization of BEV Grid space from each cam-
era pixel. Left: NuScenes and Right: Cognata dataset.

(Ik). As depicted in Equation 1, using the Kannala-Brandt
model [10], we generate spherical angles (θ, φ) from the
camera coordinate features.

φ = arctan
(y
x

)
r =

√
x2 + y2

θ = p1.r + p2.r
2 + p3.r

3 + ...+ p9.r
9

(1)

We use a generic equation for radial distortion angle (θ)
here. Our method generalizes the inverse mappings of ra-
dial distortion models, such as Polynomial, UCM, eUCM,
Rectilinear, Stereographic, Double Sphere [11].

The BEV grid is generated by Splatting [9] the depth es-
timates with the direction vectors, (X,Y, Z). Unlike tradi-
tional cameras with a narrower field of view, fisheye lenses
capture a wide-angle view, resulting in significant overlap
between adjacent images. This overlap means that features
from multiple camera perspectives contribute to the same
areas in the BEV grid, as seen in Figure 1, creating a rich
and redundant source of information. The depth resolution
of the BEV grid in the figure has been altered for visual-
ization. This redundancy can be leveraged to enhance the
robustness and accuracy of the BEV representation, as fea-
tures from multiple viewpoints provide complementary in-
formation about the scene. Therefore, in the fisheye BEV
grid, the challenge lies in handling distortion and effectively
integrating and leveraging the overlapping features to con-
struct a comprehensive representation of the environment.
The architectural changes needed for Fisheye cameras are
explained in Section 3.

2. Distortion-aware Learnable Pooling: The BEV fea-
tures from each camera sensor are pooled into a single BEV
grid. Most current methods use the BEV Pooling [12] strat-
egy to associate the camera BEV features to the BEV grid
along with a symmetric function (e.g., mean, max, and sum)
to aggregate the features within each BEV grid. However,
the features in overlapping regions are treated equally and
do not contextualize the sensor parameters. Our experi-
ments showcased that it does not translate well to surround-
view fisheye cameras because of the non-linear scaling and
larger FOV. Also, symmetric aggregation is disadvanta-
geous when the surround fisheye cameras do not share the
same sensor configuration.

Hence, we convert the pooling function into a learnable

weighting function, shown in Equation 2, wherein we add
a learnable embedding Ek ∈ RC×X×Y per sensor while
incorporating the sensor’s intrinsic parameters Ik ∈ R3×3.
The BEV features from individual camera sensors are also
scaled with their mean µk. We found that using a learn-
able embedding in pooling the BEV features, enables the
network to focus on the right camera feature in overlapping
regions on BEV grid, thereby improving our overall results.

F total
bev =

N∑
k=1

Ik · (F k
bev − µk) + Ek (2)

3. Occlusion reasoning in BEV Segmentation: BEV
Segmentation task is designed to represent image informa-
tion in BEV space, focusing solely on grid cells perceivable
by vehicle cameras. Occluded areas should not contribute
to predictions to avoid speculative inference. This occlu-
sion reasoning is particularly crucial for near-field sensing
in urban driving and parking scenarios, where occlusion is
prevalent. To address this, we propose a novel multi-task
approach, which includes Occlusion reasoning, wherein the
model outputs an occlusion probability for each grid cell,
a feature included in our dataset. In synthetic engines, the
BEV camera records the class of the closest object, whereas
the desired semantic BEV labels must contain the class rel-
evant for the ego vehicle to navigate the world. This con-
trast leads to the misrepresentation of BEV semantic classes
when trees or bridges obstruct the BEV camera. On the con-
trary, there will also be label mismatches when objects are
occluded in the ego vehicle’s camera sensors but not in the
BEV camera.

To generate the occlusion map p(o), a circular kernel is
applied to the camera BEV features to count local pixel oc-
currences within grid cells. The occurrences are normalized
with a threshold (τ ) to derive an occlusion score p(o). When
vehicles are visible in multiple cameras, the entire vehicle is
designated as occupied and non-occluded in the BEV grid.
This allows the network to comprehend vehicle dimensions,
including occlusion effects. Figure 2 visualizes occluded ar-
eas as black regions. In practice, the occupancy probability
(p

′
(o) = 1 − p(o)) is used for ease of loss assignment and

visualization.

4. Fisheye BEV Segmentation: We incorporate a
multi-task head that makes classification and occupancy
predictions for each cell to circumvent fisheye camera op-
tics. However, we keep the model architecture of heads
unchanged from state-of-the-art BEV segmentation tech-
niques [12]. As illustrated in Equation 3, we use weighted
cross-entropy loss, based on [13], for training the classifi-
cation head. The occlusion head, depicted in Equation 4, is
trained using binary cross-entropy loss.

The classification loss is a function of occupancy proba-
bility (p(o)). The predicted (p(ci)) and ground truth (q(ci)
class-probabilities are weighted by αi. The next section, un-
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Figure 2. Block diagram of the proposed FisheyeBEVSeg algorithm, with distortion-aware BEV grid generation and multi-task semantic
and occlusion segmentation.

der ablation studies, explains the chosen weighting strategy
for training.

£semantic(p, q) = −p(o)
∑
ci∈C

αi · p(ci) · log q(ci) (3)

£occ(p(o), p(ô)) = −[p(o)·log p(ô)+(1−p(o)·log 1− p(ô)]
(4)

Where p(o) is the occupancy probability predicted by the
occupancy head and p(ô) ∈ {0, 1} is the ground truth oc-
cupancy label. The combination of semantic classification
loss (£semantic), and occupancy loss (£occ), presented in
Equation 5, is used to train the BEV Segmentation model
end-to-end. When combined with semantic loss, we intro-
duce a weighting parameter (λ) to occupancy oss. This fo-
cuses the training on the BEV Segmentation task and helps
in training stability and convergence.

£total = £semantic + λ ·£occ (5)

3. Implementation
Datasets: For fisheye BEV segmentation, there are no
real-world datasets, but there are two possible synthetic
datasets, namely SynWoodScape[14] and F2BEV (FB-
SSEM dataset) [15]. These datasets do not address the oc-
clusion problem described in the previous Occlusion rea-
soning section. Besides this issue, F2BEV is confined to
simulating just parking lots and is not suitable for gen-
eral driving. SynWoodScape has released only a small ini-
tial sample of the dataset. Therefore, we generated a syn-
thetic dataset using the Cognata simulation platform. To
overcome the occlusion problem, we enrich the information
from the BEV camera using additional sensor information
from other vehicle cameras. We project the perspective se-
mantic labels from other camera sensors in the vehicle to
3D space to rectify the BEV camera semantic labels. Our
final dataset comprises four fisheye cameras and six pinhole
cameras with 1920 × 1208 resolution, BEV ground truth
images (400× 400) with five semantic classes: invalid, ve-
hicles, lane markings, street, and background.

In addition, we generate an occlusion probability map
indicating the likelihood of occlusion in each grid cell.

The training dataset comprises five virtual scenes of about
90 seconds each from Pittsburgh, Munich, and HaSharon.
Each scene is simulated with different traffic, weather, and
daylight conditions. The whole dataset contains more than
12,000 different frames corresponding to 50,000 fisheye im-
ages.

Architecture Details: As described in Section 2, we se-
lect the architectural approach from Lift-Splat-Shoot [9] to
implement the BEV segmentation using fisheye cameras.
Given the near-field applications of fisheye cameras, we
choose a BEV grid cell size of 0.25m instead of 0.5m. Fur-
ther, we set a coverage range of 25m around the ego vehicle.
The input resolution to the network is 480× 302. Addition-
ally, while training, we incorporate color jittering and other
commonly used data augmentation techniques such as scal-
ing, rotation, and cropping.

4. Experiments and Results

We perform several training runs to evaluate implementa-
tion details and improve the results. We use a GPU server
with four Nvidia Quadro RTX5000 GPUs with a batch size
64. We use Adam optimizer with a learning rate of 10−4.
All implementation is done in PyTorch.

We generate 3 sets of test scenes: easy, medium, and
hard. The easy scene replicates the traffic and weather sce-
narios of the training set. The medium and hard sets are
new highways and complex road geometry urban scenes.
We use Intersection over Union (IoU) as the primary metric
for semantic classification. It is computed with predicted
semantic class (y) and ground truth semantic class (ŷ ).
We track and report the IoU for each class separately to
account for the skew in classes (background vs. pedestri-
ans/vehicles), along with mIoU, which is the mean of IoU
of all the classes. We also use IoU to predict occupancy by
converting it to binary masks.

Table 1 shows the results of training and test datasets.
Comparing the three test sets shows the performance drop
with the increasing difficulty level. The medium test set
scores are significantly lower than the easy test set, espe-
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Table 1. Quantitative Performance of FisheyeBEVSeg on dif-
ferent test dataset slices. Input image size is 480× 302.

Method Image Type Dataset
IoU

mIoU Occlusions Vehicles Markings Street Background

LSS [9]
Cyl.

Rectified

Easy 0.659 - 0.607 0.379 0.773 0.875
Medium 0.540 - 0.539 0.214 0.645 0.763

Hard 0.314 - 0.317 0.114 0.523 0.303

FisheyeBEVSeg
Raw

Distorted

Easy 0.796 0.815 0.776 0.517 0.895 0.978
Medium 0.690 0.682 0.764 0.364 0.858 0.782

Hard 0.466 0.666 0.464 0.176 0.572 0.449

cially for the lane marking and the background. However,
the network learns to position the vehicles quite well. We
also compared against standard baseline [9] by applying a
cylindrical projection to rectify the fisheye images. Cylin-
drical projection preserves the vertical lines from fisheye
images. The results in Table 1 indicate that our model per-
forms better than the rectification process. It is an intu-
itive outcome, given that rectification introduces unneces-
sary object stretching and interpolation artifacts to the im-
age in addition to losing some of the field of view. We
provide qualitative results of FisheyeBEVSeg on the test
data at https://youtu.be/HfTPwMabgS0. It can be
observed that the vehicles and lane markings are detected
accurately. The network has problems predicting the road
precisely, especially in regions that have more than 10 m
away.

Ablation Studies: During our experiments, we used
a class weighting of (13×, 3×, 1×, 1×) for vehicles, lane
markings, streets, and backgrounds, respectively. However,
from Table 2, the model with uniformly weighted loss per-
forms better for almost all classes. Our explanation for
counter-intuitive behavior is that, unlike the image classifi-
cation tasks, for semantic BEV segmentation, the presence
and detectability of class are more important than just class
occurrence. Given the geometry-based approach, the net-
work cannot estimate occluded areas. We do not assign a
loss to occluded areas so the network does not hallucinate.
Loss removal for occluded regions avoids the network up-
dating its weights based on these occluded regions. Table 2
illustrates the impact of occupancy loss on accuracy.

5. Conclusion
In this work, we introduce a novel pipeline to perform se-
mantic Bird’s Eye View (BEV) segmentation using images
from fisheye cameras. We perform our experiments on a
synthetic dataset due to the lack of public datasets with fish-
eye cameras. Future directions for our work include bridg-
ing the reality gap between synthetic and real-world data
and extending to additional tasks with fisheye cameras. We
hope that this work encourages further research in perform-
ing BEV perception for fisheye cameras.
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