
Supplementary Material: Cross-Domain Synthetic-to-Real In-the-Wild Depth and
Normal Estimation for 3D Scene Understanding

Jay Bhanushali1 Manivannan Muniyandi1 Praneeth Chakravarthula2

1Haptics Lab, Indian Institute of Technology Madras
2UNC Chapel Hill

1. Supplementary Material
In this supplementary material, we discuss our approach

on generating the OmniHorizon dataset in Unreal Engine
4. We elaborate on the factors and certain assumptions that
we made in order to render the dataset. Additionally, we
discuss about training the UBotNet on indoor datasets and
architecture choices. Finally, we demonstrate additional
results for depth and normal estimation from real-world
images in the wild.

1.1. Depth clamping

Rendering engines such as Unreal Engine 4 work with
a larger depth range compared to that captured by physical
sensors. However, we were interested in exploring the range
of depth information that can be used for covering a wide
range of objects in outdoor scenarios. This motivated us to
simulate the limitations of the physical sensors and restrict
the depth range to 150 m, similar to the Fukuoka dataset [5].
The engine places the far plane at infinity, which results in
depth values being generated for extremely distant objects.
To avoid this, we modify the depth material to visualise the
impact of constraining the depth to a maximum specified
value. We show the results for the clamping of depth at
a range of 10m, 75m and 150m in Figure 2. At a depth
of 10 m, only the truck is visible. When the depth range
is raised to 75 m, cars and building start to appear in the
background. At 150 m, the trees and most of the background
are visible. By limiting the depth in outdoor environments,
it is possible to focus solely on nearby items, or, depending
on the application, on distant objects as well.

1.2. View-space vs world-space normals

The view space normals are calculated relative to the
camera orientation, whereas the world space normals are
calculated with respect to the global axes of the scene. The
normals in view space are desired when using a perspec-
tive camera as they are tied to the camera pose (extrinsic
parameters). However, the panoramic image is obtained by
rotating the camera on both the horizontal and vertical axis

in increments of fixed angle steps (5°), followed by merging
the multiple views.

(a) view-space normals (b) world-space normals

Figure 1. Comparison between view-space and world-space nor-
mals. The normals captured in view-space appear as gradient with
lack of clear distinction between the basis vectors. Normal maps
recorded in world-space follow a consistent coordinate system.

Since the coordinate system is relative to the camera in
view space, it also gets modified with the rotation. This
results in a gradient of normals with no basis vectors. The
normals obtained in world space are absolute and indepen-
dent of camera pose. Figure 1 shows the difference between
the view-space and world-space normals. Therefore, we cap-
tured the normals in world space as it was consistent for both
within and between the scenes. We show the convention
used for the world-space normals in Figure 3.

1.3. Virtual Avatars

As discussed in main paper, we utilised Metahumans [4]
for the virtual avatars in the scene. We have used premade
MetaHumans available in the Quixel bridge. It allowed us
to bring in highly detailed characters and more diversity in
the pedestrians. But there were certain challenges while
using the Metahumans for the dataset. They are generated
with multiple level of details (LODs) for perfomance opti-
misation. As a result, there would be sudden popups and
other artifacts when the camera is approaching a character.
Figure 4 illustrates how the character hair and details change
when the camera is approaching the character. Lower LOD
level (LOD 8) indicates lowest detailed polygon mesh with
no advanced features such as detail normal maps or hairs.
The higher LOD level (Level 0/1) has higher polygons with
extra detail maps for the skin and hair grooming system.

1



Figure 2. Depth clamping experiment. Comparison between various depth ranges after clamping to a specific range: 10 m, 75 m and 150 m.
Inverted depth maps are shown for better visualization.

Figure 3. Convention for the world-space normals.

Additionally, we also observed artifacts in the normal maps
for the characters with detailed grooming such as facial hair.
Figure 5 shows the issues with the normal maps of a char-
acter in the region with facial hair. For such characters we
used LOD 1 or LOD 2 to resolve the problems.

1.4. Assumptions in the Dataset

Our dataset renders several realistic outdoor and indoor
environments with dynamic scene components. While cu-
rating this dataset, we made certain assumptions especially
about the outdoor scenes which we list below:

1. The sky is assumed to be situated at infinitely large
distance from the camera, and is represented as a spher-
ical mesh of large radius encompassing the entire scene.
Additionally, normals are not rendered for the sky re-
gion. It is represent using black which indicates invalid
normal values. This allows us to distinguish sky from
other regions in the scene.

2. Transparent and transluscent materials such as water,
windows of the buildings and windshields of vehicles
are replaced with fully reflective materials. We ob-
served that inferring depth of such materials from color
images is challenging and this limitation, for exam-
ple, also applies to real-world datasets captured using
lidars [8]. Figure 6 depicts the limitation of using trans-
parent and translucent materials in the dataset. The
original water shader in the scene was designed in such
a way that it acted as a see-through material in case of
depth. As a result, the depth map captures the terrain
hidden underneath the water surface. We modified the
the water shader to a reflective surface and thus depth

is correctly rendered as a planar surface. We observed
a similar case for the glass shader used for windows
in the vehicles. The vehicles indeed have detailed in-
doors but due to reflections on the glass, the inside is
not clearly visible. However, the depth map has much
cleaner view of the indoors. To avoid this conflict of in-
formation, we use fully opaque and reflective materials
for the windows.

2. UBotNet

UBotNet for Indoor datasets. In the main paper, we dis-
cussed about the UBotNet architecture and the results from
training on the OmniHorizon dataset. We additonally trained
UBotNet on real-world indoor dataset Pano3D [1] to validate
the performance of the network on other datasets. Pano3D
is proposed as a modification of Matteport3D [2] and Gib-
son3D [10]. We used the official splits provided by the
authors for Matterport3D for training and validation. For,
Gibson, we used the GibsonV2 Full Low Resolution for train-
ing and validated on Matterport. All the images used for
training were of 512 x 256 resolution. We used the loss func-
tion and training parameters outlined in our main paper. We
trained UBotNet Lite on the both the datasets for 60 epochs.

Table 1. Quantitative results for depth estimation using UBotNet
Lite validated on indoor dataset - Matterport3D.

Depth Error ↓ Depth Accuracy ↑
Dataset RMSE MRE RMSE log δ1 δ2 δ3

Matterport3D 0.639 0.142 0.064 0.817 0.952 0.981
Gibson 3D 0.591 0.154 0.061 0.830 0.965 0.986

Table 1 shows the quantitative results for the task of depth
estimation by UBotNet Lite evaluated on Matterport3D. We
also show the qualitative results for the validation task in
Figure 8. We observed better performance in overall metrics
and the visual results when the network is trained on the
Gibson3D.



Figure 4. Dynamic LODs vs Constant LOD. a) The Dynamic LOD system loads different meshes with various level of details based on the
proximity to camera. This however results in sudden poping up of the meshes which generates artefacts in the data. b) Default LOD settings
used by the engine. c) The modified LOD system is used to maintain LODs at a fixed LOD so that the avatar’s appearance is unaffected by
distance. d) The LOD of the character is locked to 1 using Forced LOD.

Figure 5. Artefacts in normal maps for facial hairs. When the
camera is very close to the characters, the engine uses additional
detail meshes for characters with facial hair at the highest LOD
level (LOD 0). As a result, artefacts appear in the normal maps.We
use LOD 1 or 2 for such characters.

Absolute vs Relative positional encoding. We utilised
relative positional encoding [6] for self-attention in our pro-
posed UBotNet architecture. We compare it against the
absolute positional embeddings and show the quantitative
results in Table 2. The absolute positional embeddings per-
form inferior to the relative positional embeddings used for
self-attention. Moreover, the differences are more prominent
in case of normal estimation. This is reaffirmed by the vi-
sual differences shown in Figure 7. The network loses the
context required for learning the consistent representation
of the normals. It behaves similar to the UNet128 network
discussed in the main paper.

Network architecture Table 3 shows the detailed layout
of the UBotNet architecture. The three major sections of the
architecture are: UNet Encoder, Bottleneck Transformer and
UNet Decoder.

3. Addition Results
Figure 9 shows the results for the networks discussed in

main paper for depth and normal estimation on 360 images
captured from real-world locations. As evident from the
results, other methods struggle when estimating the normal
information. On the other hand, UBotNet leverages this in-
formation and estimates both depth and normal information
with increased accuracy. Note that some of networks also
struggle with changing sky conditions and hence produce
artifacts in those regions. UBotnet is more robust to diverse
outdoor lighting and sky conditions. Interestingly, other net-
works also fail to identify vertical structures (as shown in last
image of Figure 9) whereas both UBotNet and UbotNet Lite
are able to segment ground from the walls and boundaries.

Figure 10 demonstrates the qualitative results for the ar-
chitectures that perform only depth estimation. The visual
output of depth estimation from the Bifuse [9] support the
quantitative results in the main paper where Bifuse performs
really well in OmniHorizon benchmark. Figure 11 shows
additional examples of depth and normal estimation by UBot-
Net on real-world images. We test the network in overcast
cast conditions, uneven terrain and reflective floors. UBot-
Net also performs well with diverse vegetation scenarios
ranging from small shrubs to complex forests. We also show
few results for indoor scenarios where the network performs
well even though it was trained for outdoor scenarios. Note
that all the networks used for the evaluation and results dis-
cussed in this section were trained purely on OmniHorizon
dataset.



Figure 6. Assumptions for the dataset. a) Modification of water shader to achieve constant depth across the surface of the water. b)
Modification of glass shader into opaque reflective surface which hides the interior parts of the vehicles.

Figure 7. Comparison between Abs. and Rel. positional embedding. Absolute positional embedding loses the context required for learning
the normals when used for self-attention.

Table 2. Quantitative results for the comparison between the positional embedding used in the UBotNet architecture for self-attention. The
results for the Relative Positional Embedding are repeated from our main paper for the comparison.

Depth Error ↓ Depth Accuracy ↑ Normal Error ↓ Normal Accuracy ↑
Method RMSE MRE RMSE log δ1 < 1.25 δ2 < 1.252 δ3 < 1.253 Mean Median RMSE 5.0◦ 7.5◦ 11.25◦

Absolute Pos. Emb. 0.053 0.290 0.152 0.691 0.871 0.925 8.65 3.98 13.99 54.26 63.00 73.23
Relative Pos. Emb. 0.054 0.271 0.151 0.712 0.875 0.926 7.44 3.61 12.12 56.80 67.28 78.52



Figure 8. Qualitative results for UBotNet Lite trained on Indoor datasets - Matterport3D and Gibson3D.

Figure 9. Depth and Normal estimation on real-world images in the wild. Comparison between all the networks discussed in main paper for
depth and normal estimation on real world images.



Figure 10. Qualitative results for monocular depth estimation by [7], [3] and [9] on OmniHorizon and real-world images.



Figure 11. Examples of depth and normal estimation using UBotNet on real-world images in the wild.

References
[1] Georgios Albanis, Nikolaos Zioulis, Petros Drakoulis,

Vasileios Gkitsas, Vladimiros Sterzentsenko, Federico Al-
varez, Dimitrios Zarpalas, and Petros Daras. Pano3d: A
holistic benchmark and a solid baseline for 360° depth estima-
tion. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 3722–3732,
2021. 2

[2] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. International Conference on 3D
Vision (3DV), 2017. 2

[3] Giovanni Pintore et al. SliceNet: deep dense depth estimation
from a single indoor panorama using a slice-based representa-
tion. In CVPR, 2021. 6



[4] Epic Games. Metahumans, 2022. https://www.
unrealengine.com/en-US/metahuman. 1

[5] Oscar Martinez Mozos, Kazuto Nakashima, Hojung Jung,
Yumi Iwashita, and Ryo Kurazume. Fukuoka datasets for
place categorization. The International Journal of Robotics
Research, 38(5):507–517, 2019. 1

[6] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck
transformers for visual recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16519–16529, June 2021. 3

[7] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet: 360
indoor holistic understanding with latent horizontal features.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2573–2582, 2021. 6

[8] Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo,
Haochen Wang, Falcon Z. Dai, Andrea F. Daniele, Moham-
madreza Mostajabi, Steven Basart, Matthew R. Walter, and
Gregory Shakhnarovich. DIODE: A Dense Indoor and Out-
door DEpth Dataset. CoRR, abs/1908.00463, 2019. 2

[9] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and
Yi-Hsuan Tsai. Bifuse: Monocular 360 depth estimation
via bi-projection fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 462–471, 2020. 3, 6

[10] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world percep-
tion for embodied agents. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 2

https://www.unrealengine.com/en-US/metahuman
https://www.unrealengine.com/en-US/metahuman


Table 3. UBotNet Network Architecture. The network consists of three major segments: UNet Encoder, Bottleneck Transformer and UNet
Decoder. Note: To simplify the table we have included the final dense and sigmoid layers in the Decoder towards the end.

UNet Encoder Bottleneck Transformer UNet Decoder

Layer Output Shape Params Layer Output Shape Params Layer Output Shape Params

Conv2d-1 128, 512, 256 3, 456 Identity-64 2048, 32, 16 0 ConvTranspose2d-158 1024, 64, 32 8, 389, 632
BatchNorm2d-2 128, 512, 256 256 Conv2d-65 512, 32, 16 1, 048, 576 Conv2d-159 1024, 64, 32 18, 874, 368

ReLU-3 128, 512, 256 0 BatchNorm2d-66 512, 32, 16 1, 024 BatchNorm2d-160 1024, 64, 32 2, 048
Conv2d-4 128, 512, 256 147, 456 ReLU-67 512, 32, 16 0 ReLU-161 1024, 64, 32 0

BatchNorm2d-5 128, 512, 256 256 ReLU-68 512, 32, 16 0 Conv2d-162 1024, 64, 32 9, 437, 184
ReLU-6 128, 512, 256 0 ReLU-69 512, 32, 16 0 BatchNorm2d-163 1024, 64, 32 2, 048

DoubleConv-7 128, 512, 256 0 ReLU-70 512, 32, 16 0 ReLU-164 1024, 64, 32 0
MaxPool2d-8 128, 511, 255 0 ReLU-71 512, 32, 16 0 DoubleConv-165 1024, 64, 32 0
MaxPool2d-9 128, 511, 255 0 ReLU-72 512, 32, 16 0 UNet-up-block-166 1024, 64, 32 0

ReflectionPad2d-10 128, 514, 258 0 Conv2d-73 1024, 32, 16 524, 288 ConvTranspose2d-167 512, 128, 64 2, 097, 664
ReflectionPad2d-11 128, 514, 258 0 Conv2d-74 512, 32, 16 262, 144 Conv2d-168 512, 128, 64 4, 718, 592

BlurPool-12 128, 256, 128 0 RelPosEmb-75 4, 512, 512 0 BatchNorm2d-169 512, 128, 64 1, 024
BlurPool-13 128, 256, 128 0 Softmax-76 4, 512, 512 0 ReLU-170 512, 128, 64 0
Conv2d-14 256, 256, 128 294, 912 MHSA-77 512, 32, 16 0 Conv2d-171 512, 128, 64 2, 359, 296

BatchNorm2d-15 256, 256, 128 512 Identity-78 512, 32, 16 0 BatchNorm2d-172 512, 128, 64 1, 024
ReLU-16 256, 256, 128 0 BatchNorm2d-79 512, 32, 16 1, 024 ReLU-173 512, 128, 64 0

Conv2d-17 256, 256, 128 589, 824 ReLU-80 512, 32, 16 0 DoubleConv-174 512, 128, 64 0
BatchNorm2d-18 256, 256, 128 512 ReLU-81 512, 32, 16 0 UNet-up-block-175 512, 128, 64 0

ReLU-19 256, 256, 128 0 ReLU-82 512, 32, 16 0 ConvTranspose2d-176 256, 256, 128 524, 544
DoubleConv-20 256, 256, 128 0 ReLU-83 512, 32, 16 0 Conv2d-177 256, 256, 128 1, 179, 648

UNet-down-block-21 256, 256, 128 0 ReLU-84 512, 32, 16 0 BatchNorm2d-178 256, 256, 128 512
MaxPool2d-22 256, 255, 127 0 ReLU-85 512, 32, 16 0 ReLU-179 256, 256, 128 0
MaxPool2d-23 256, 255, 127 0 Conv2d-86 2048, 32, 16 1, 048, 576 Conv2d-180 256, 256, 128 589, 824

ReflectionPad2d-24 256, 258, 130 0 BatchNorm2d-87 2048, 32, 16 4, 096 BatchNorm2d-181 256, 256, 128 512
ReflectionPad2d-25 256, 258, 130 0 ReLU-88 2048, 32, 16 0 ReLU-182 256, 256, 128 0

BlurPool-26 256, 128, 64 0 ReLU-89 2048, 32, 16 0 DoubleConv-183 256, 256, 128 0
BlurPool-27 256, 128, 64 0 ReLU-90 2048, 32, 16 0 UNet-up-block-184 256, 256, 128 0
Conv2d-28 512, 128, 64 1, 179, 648 ReLU-91 2048, 32, 16 0 ConvTranspose2d-185 128, 512, 256 131, 200

BatchNorm2d-29 512, 128, 64 1, 024 ReLU-92 2048, 32, 16 0 Conv2d-186 128, 512, 256 294, 912
ReLU-30 512, 128, 64 0 ReLU-93 2048, 32, 16 0 BatchNorm2d-187 128, 512, 256 256

Conv2d-31 512, 128, 64 2, 359, 296 BoTBlock-94 2048, 32, 16 0 ReLU-188 128, 512, 256 0
BatchNorm2d-32 512, 128, 64 1, 024 Identity-95 2048, 32, 16 0 Conv2d-189 128, 512, 256 147, 456

ReLU-33 512, 128, 64 0 Conv2d-96 512, 32, 16 1, 048, 576 BatchNorm2d-190 128, 512, 256 256
DoubleConv-34 512, 128, 64 0 BatchNorm2d-97 512, 32, 16 1, 024 ReLU-191 128, 512, 256 0

UNet-down-block-35 512, 128, 64 0 ReLU-98 512, 32, 16 0 DoubleConv-192 128, 512, 256 0
MaxPool2d-36 512, 127, 63 0 ReLU-99 512, 32, 16 0 UNet-up-block-193 128, 512, 256 0
MaxPool2d-37 512, 127, 63 0 ReLU-100 512, 32, 16 0 Linear-194 512, 256, 512 66, 048

ReflectionPad2d-38 512, 130, 66 0 ReLU-101 512, 32, 16 0 ReLU-195 512, 256, 512 0
ReflectionPad2d-39 512, 130, 66 0 ReLU-102 512, 32, 16 0 Dropout-196 512, 256, 512 0

BlurPool-40 512, 64, 32 0 ReLU-103 512, 32, 16 0 Linear-197 512, 256, 128 65, 664
BlurPool-41 512, 64, 32 0 Conv2d-104 1024, 32, 16 524, 288 ReLU-198 512, 256, 128 0
Conv2d-42 1024, 64, 32 4, 718, 592 Conv2d-105 512, 32, 16 262, 144 Dropout-199 512, 256, 128 0

BatchNorm2d-43 1024, 64, 32 2, 048 RelPosEmb-106 4, 512, 512 0 Linear-200 512, 256, 1 129
ReLU-44 1024, 64, 32 0 Softmax-107 4, 512, 512 0 Sigmoid-201 512, 256, 1 0

Conv2d-45 1024, 64, 32 9, 437, 184 MHSA-108 512, 32, 16 0 Linear-202 512, 256, 3 387
BatchNorm2d-46 1024, 64, 32 2, 048 Identity-109 512, 32, 16 0 Sigmoid-203 512, 256, 3 0

ReLU-47 1024, 64, 32 0 BatchNorm2d-110 512, 32, 16 1, 024
DoubleConv-48 1024, 64, 32 0 ReLU-111 512, 32, 16 0

UNet-down-block-49 1024, 64, 32 0 ReLU-112 512, 32, 16 0
MaxPool2d-50 1024, 63, 31 0 ReLU-113 512, 32, 16 0
MaxPool2d-51 1024, 63, 31 0 ReLU-114 512, 32, 16 0

ReflectionPad2d-52 1024, 66, 34 0 ReLU-115 512, 32, 16 0
ReflectionPad2d-53 1024, 66, 34 0 ReLU-116 512, 32, 16 0

BlurPool-54 1024, 32, 16 0 Conv2d-117 2048, 32, 16 1, 048, 576
BlurPool-55 1024, 32, 16 0 BatchNorm2d-118 2048, 32, 16 4, 096
Conv2d-56 2048, 32, 16 18, 874, 368 ReLU-119 2048, 32, 16 0

BatchNorm2d-57 2048, 32, 16 4, 096 ReLU-120 2048, 32, 16 0
ReLU-58 2048, 32, 16 0 ReLU-121 2048, 32, 16 0

Conv2d-59 2048, 32, 16 37, 748, 736 ReLU-122 2048, 32, 16 0
BatchNorm2d-60 2048, 32, 16 4, 096 ReLU-123 2048, 32, 16 0

ReLU-61 2048, 32, 16 0 ReLU-124 2048, 32, 16 0
DoubleConv-62 2048, 32, 16 0 BoTBlock-125 2048, 32, 16 0

UNet-down-block-63 2048, 32, 16 0 Identity-126 2048, 32, 16 0
Conv2d-127 512, 32, 16 1, 048, 576

BatchNorm2d-128 512, 32, 16 1, 024
ReLU-129 512, 32, 16 0
ReLU-130 512, 32, 16 0
ReLU-131 512, 32, 16 0
ReLU-132 512, 32, 16 0
ReLU-133 512, 32, 16 0
ReLU-134 512, 32, 16 0

Conv2d-135 1024, 32, 16 524, 288
Conv2d-136 512, 32, 16 262, 144

RelPosEmb-137 4, 512, 512 0
Softmax-138 4, 512, 512 0
MHSA-139 512, 32, 16 0
Identity-140 512, 32, 16 0

BatchNorm2d-141 512, 32, 16 1, 024
ReLU-142 512, 32, 16 0
ReLU-143 512, 32, 16 0
ReLU-144 512, 32, 16 0
ReLU-145 512, 32, 16 0
ReLU-146 512, 32, 16 0
ReLU-147 512, 32, 16 0

Conv2d-148 2048, 32, 16 1, 048, 576
BatchNorm2d-149 2048, 32, 16 4, 096

ReLU-150 2048, 32, 16 0
ReLU-151 2048, 32, 16 0
ReLU-152 2048, 32, 16 0
ReLU-153 2048, 32, 16 0
ReLU-154 2048, 32, 16 0
ReLU-155 2048, 32, 16 0

BoTBlock-156 2048, 32, 16 0
BoTStack-157 2048, 32, 16 0


	. Supplementary Material
	. Depth clamping
	. View-space vs world-space normals
	. Virtual Avatars
	. Assumptions in the Dataset

	. UBotNet
	. Addition Results

