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Abstract

Foggy-scene semantic segmentation (FSSS) is highly
challenging due to the diverse effects of fog on scene prop-
erties and the limited training data. Existing research has
mainly focused on domain adaptation for FSSS, which has
practical limitations when dealing with new scenes. In our
paper, we introduce domain-generalized FSSS, which can
work effectively on unknown distributions without extensive
training. To address domain gaps, we propose a frequency
decoupling (FreD) approach that separates fog-related ef-
fects (amplitude) from scene semantics (phase) in feature
representations. Our method is compatible with both CNN
and Vision Transformer backbones and outperforms exist-
ing approaches in various scenarios.

1. Introduction
Learning robust scene semantic segmentation is critical for
many safety-crucial road applications such as autonomous
driving [3, 4, 13, 54]. Among a variety of scenes, foggy-
scene semantic segmentation (FSSS) deserves special at-
tention [5]. Fog, as a typical bad weather condition, has
a variety of atmospheric light and attenuation [6, 18, 33],
which poses different levels of confusion on the scene radi-
ance and leads to different levels of appearance ambiguity.
Furthermore, the annotation of FSSS is very scarce, com-
pared to clear scenes.

Existing FSSS methods can be summarized into two cat-
egories. The first category is the de-foggy based methods,
which implement fog removal (dehaze) on top of a segmen-
tation model. These methods need to reconstruct the scene
radiance first, which is a highly ill-posed problem. Con-
sequently, the reconstructed scene radiance can still suf-
fer regional degradation (e.g. overexposure, color distortion
[51, 63]), and the quality is still not sufficient for pixel-wise
semantic predictions [42]. The second category consists
of curriculum domain adaptation methods that adapt scene
radiance from clear conditions (source domain) to condi-
tions affected by atmospheric light and atmosphere scat-
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Figure 1. FSSS by: (a) existing curriculum domain adaptation
method CuDA-Net [42]; (b) our proposed domain generalized
FSSS. Foggy target domains are Foggy-CityScapes [53], Foggy
Driving [53], and Foggy Zurich [52].

tering (target domain). However, these methods can only
generalize to foggy scenes with a similar appearance to the
training dataset. As depicted in Fig. 1, the appearance of
fog varies significantly from one scene to another.

In this paper, we propose to study a new task: domain
generalized FSSS, which allows a FSSS model to general-
ize to arbitrary unseen foggy domains when only trained
on a clear source domain (see Fig. 1 for an example). To
address this challenge, we propose that the primary goal
of domain-generalized FSSS is to separate the scene se-
mantics from the foggy appearance. Our approach focuses
on the frequency domain, taking into account the observa-
tion that foggy appearance is primarily related to ampli-
tude, while scene semantics are primarily related to phase
[22, 30, 40]. Therefore, we propose a novel Frequency
Decoupling (FreD) learning scheme.

In our approach, we utilize a semantic encoder and a fog
encoder. For both encoders, we split their feature repre-
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sentations into phase and amplitude components using Fast
Fourier Transformation (FFT). Then, we transfer the ampli-
tude component from the semantic encoder to the fog en-
coder branch, and vice versa, transferring the phase compo-
nent from the fog encoder to the semantic encoder branch.
This allows the semantic encoder to emphasize the phase
component [22, 30, 40], while the fog encoder can focus
on the amplitude component [55, 67, 68]. Lastly, we apply
instance normalization to the amplitude component before
performing the Inverse Fast Fourier Transformation (IFFT).
This ensures that the scene representation remains stable
even in the presence of varying fog density.

We conduct extensive experiments to validate the ef-
fectiveness of the proposed method. As common prac-
tice, CityScapes [14] is used as the clear source domain,
ACDC-fog [54], Foggy-Zurich [52], Foggy-Driving [53]
and Foggy-CityScapes [53] are used as the target domains.
The proposed method is able to outperform all existing
paradigms including: 1. existing domain generalized which
are not foggy scenes focused [13, 16, 23, 24, 28, 38, 46–
48, 71], 2. Foggy scene domain adaptation [1, 8, 15, 17, 21,
29, 31, 42, 57, 58, 61, 70], 3. directly-supervised [12, 64]
and 4. de-fog based methods [2, 8, 18, 49, 50, 60, 69]. Fur-
thermore, extensive ablation analysis and visualization fur-
ther validate the effectiveness of the proposed method.

Our contribution can be summarized as follows.
• We introduce a novel task, domain-generalized FSSS,

which is more practical than domain-adaptive FSSS.
• We propose an innovative Frequency Decoupling (FreD)

learning scheme for this task. It improves semantics by
focusing on the phase component and separates the fog
impact by normalizing the amplitude component.

• The proposed method is versatile to both CNN and ViT
backbones, and outperforms existing domain general-
ized segmentation methods upto 4.1% mIoU on Foggy-
CityScapes and curriculum domain adaptation methods
upto 14.4% mIoU on ACDC-fog.

2. Related Work
Foggy-Scene Semantic Segmentation (FSSS) holds
unique challenge than other semantic segmentation tasks
[25–27, 32, 45]. Direct segmentation on de-fogged images
still suffers from regional degradation [42] as many other
types of degraded image do [9, 20]. The dominant trend is
to approach this problem as curriculum domain adaptation
(e.g., AdSegNet [58], ADVENT [61], ProDA [70], DMLC
[17], SAC [1], Refign-DAFormer [7], DACS [57], DISE [8],
CCM [31], CuDA-Net [42], CMAda3+ [15], DAFormer
[21]). The concept is to utilize both clear and foggy scenes
as input, allowing the semantic representation from clear
scenes to adapt to the appearance in foggy scenes.

In contrast to domain generalization, this approach has a
limitation. For each new scene, the model needs to undergo

training again. In practice, foggy scenes are highly dy-
namic, resulting in significant domain gaps between them.
Consequently, an adapted foggy scene may not perform
well in a new foggy scene.

Fog Removal is an important and well studied task,
which aims to restore the appearance of fog as if it is fog-
free. Previous methods, whether model-driven or data-
driven, typically assume that the degraded image consists
of both the background layer and the weather effect layer
[34, 35]. Some typical de-fog works include DCP [18],
MSCNN [49], Non-local [2], DCPDN [69], GFN [50] and
DISE [8]. In the past few years, weather removal is usually
implemented in an all-in-one paradigm [60, 65, 72], which
aims to remove multiple types of weather by a single model.

However, as reported in recent works [15, 42], applying
scene segmentation models directly to de-fogged images re-
sults in a notable decrease in performance compared to do-
main adaptation-based scene segmentation methods. The
localized degradation of de-fogged images presents diffi-
culties for existing scene segmentation models in accurately
determining pixel-wise semantics [51, 63].

Domain Generalized Semantic Segmentation mainly
focuses on driving scenes, where the domain gap comes
from varied urban landscapes. Earlier works usually lever-
age instance normalization [23, 46, 48] or instance whiten-
ing transformation [13, 47, 48] to decouple the impact of
cross-domain style variation. More recently, style hallu-
cination becomes another feasible solution to improve the
cross-domain generalization [16, 24, 28, 56]. These ap-
proaches augment the variety of styles using images from
real-world scenarios, allowing the segmentation model to
encounter a broader range of styles during training [3–5].

To the best of our knowledge, domain-generalized FSSS
has not been previously explored. In addition to coping
with diverse urban environments, domain-generalized FSSS
faces challenges related to varying lighting and attenuation
conditions.

3. Theoretical Analysis
3.1. Problem Definition

Fog and semantic segmentation A foggy scene is usu-
ally formulated as [18, 37, 43]:

I(x) = J(x) · e−βd(x) +A(1− e−βd(x)), (1)

where I is the observed image, J is the scene radiance
(namely the fog-free scene), A is the global atmospheric
light, β is the scattering coefficient of the atmosphere
(namely the fog density), and d is the scene depth.

For the task of foggy-scene semantic segmentation
(FSSS), given a segmentation model f(·) which learns the
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Figure 2. Learning semantic representation of foggy scenes: (a) If only learn on clear images, the more the fog is, the more scattered
the feature is; (b) de-fogged images cannot be perfectly reverse the scattered representation, because de-fog is an ill-posed problem by
definition; (c) domain adaptation may learn a clustered representation of each foggy domain, however, the learned representation does not
generalize to an unseen foggy domain. (d) Domain generalized FSSS (our approach), which aims to learn a generalized presentation that
decouples the fog.
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Figure 3. When considering the same driving scene captured un-
der varying fog densities, we observe that, after undergoing Fast
Fourier Transformation (FFT), the phase component—containing
abundant semantics—remains similar, while the amplitude com-
ponent, associated with fog densities, exhibits notable differences.
Here the light, medium and dense fog density is defined in Foggy
CityScapes [53].

mapping between the observed intensity I and the seman-
tic category y, the relation between semantic prediction and
fog can be described as

y(x) = f(I(x)) = f(J(x) · e−βd(x) +A(1− e−βd(x))). (2)

Note that when β = 0, namely fog-free, Eq. 2 falls back
to the canonical urban scene semantic segmentation (USSS)
given by

y(x) = f(J(x)), (3)

which is a well-studied topic with numerous methods [10,
12, 39, 64] and large scale datasets [14, 44, 66].
Domain generalized FSSS in this paper, as illustrated in
Fig. 1, is defined as to only train on Eq. 3 setting. It directly
does inference on various non-trivial Eq. 2 settings.

On top of the challenges of fog-free domain general-
ized USSS [13, 23, 46–48, 48], this new task has its unique

challenges because each unseen domain (foggy scenes) has
its atmospheric light A, fog density β, and distribution of
depth d(·). Furthermore, labelled FSSS data is very scarce.

3.2. Analysis of Existing & Proposed Paradigm

Here, we further analyze how fog impacts the semantic rep-
resentation.
Direct Inference As illustrated in Fig. 2a, when trained
on a clear source domain D(S) = {x(S)

i }N(S)

i=1 , and doing
inference on a variety of foggy target domains D(T1) =

{x(T1)
i }N(T1)

i=1 , · · · , D(Tj) = {x(Tj)
i }

N(Tj)

i=1 , · · · . For a clear
source domain D(S), we have β = 0. The segmentation
model is learnt from the image appearance only impacted
by the scene radiance J in Eq. 3. For a foggy target do-
main D(Tj), the image appearance is also impacted by atmo-
spheric light A(Tj) and atmosphere scattering β(Tj). In this
paradigm, the semantics is only learnt from the appearance
determined by the scene radiance J. However, the pres-
ence of fog in the target domains brings in the impact of
atmospheric light A and attenuation e−βd(x), which poses
a natural ambiguity of the scene radiance J reflected on the
image appearance. This phenomenon renders the semantic
space and poses challenge to cluster effectively. In general,
as fog density increases, the learned semantic representation
becomes more scattered.
De-fog For de-fog methods which implement scene seg-
mentation on the de-fogged images, the input of the seg-
mentation model f(·) in the inference stage is the re-
constructed scene radiance Ĵ. Finding an optimal recon-
structed scene radiance Ĵ is an inverse operation of Eq. 1,
which is highly ill-posed (many more unknowns than con-
straints). Consequently, the regional degradation of Ĵ can
confuse the segmentation model f(·) pre-trained on clear
scenes. Difficulties remain to cluster the semantics (illus-
trated in Fig. 2b).
Domain Adaption For domain adaptation scene segmenta-
tion methods, the key idea is to take images from the clear
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source domain D(S) and a foggy target domain D(T1) as
input. Such methods can learn a stable mapping between
J(S) and J(T1), atmospheric light A(T1) and atmosphere
scattering β(T1). However, when inference on other foggy
domain J(Tj) that has not seen before, the different atmo-
spheric light A(Tj) and atmosphere scattering β(Tj) pose
different levels of ambiguity and confusion on the scene
radiance J(Tj), which has not encountered during training.
Consequently, it can still be difficult for the domain adapta-
tion methods to correctly cluster the semantics from unseen
fog domains (in Fig. 2c).
Domain Generalized FSSS (proposed) We consider the
domain generalization paradigm for FSSS, which aims to
generalize to arbitrary unseen foggy domains D(T1), · · · ,
D(Tj), · · · , when only learns from a clear source domain
D(S). Its key idea is to decouple the impact of atmospheric
light and atmosphere scattering from different fog domains,
which we denote as A(T1), β(T1), · · · , A(Tj), β(Tj), · · · .
In this way, the domain gap is alleviated, and the semantic
space can be robust to the variation of fog densities (illus-
trated in Fig. 2d).

3.3. Frequency Domain Analysis

We use Fast Fourier Transformation (FTT) for frequency
analysis. As shown in Fig. 3, the fog density, which is de-
termined by atmospheric light A and atmosphere scattering
β, reflects more from the amplitude component [55, 67, 68].
In contrast, the phase component, which reflects the scene
objects [22, 30, 40], is relatively stable from different do-
mains that have levels of fog densities.

To summarize, the domain gap of FSSS is more reflected
in the amplitude component. The composition between
phase and amplitude provides a feasible solution to address
this task in a divide-and-conquer way.

Overall Idea Fig. 4 gives an overview of the proposed
frequency decoupling method. Given the representation
outputted from the semantic encoder ES and the fog en-
coder EF , we decompose them into phase and amplitude
component. Then, the phase components from both en-
coders, denoted as PS and PF , are concentrated to the se-
mantic encoder branch. At the same time, the amplitude
components from both encoders, denoted as AS and AF ,
are shifted to the fog encoder branch for decoupling.

4. Methodology

Fig. 5 shows the full pipeline of the proposed Frequency
Decoupling (FreD) method. It consists of three key steps,
namely, dual self-attention encoding, phase-amplitude in-
teraction and deep amplitude decoupling.

image
representation

𝐸𝑆

𝐸𝐹

𝑃𝑆

𝐴𝑆

𝑃𝐹

𝐴𝐹

P

A

refined
representation

decoupling 

S/F: semantic/fog P/A : phase/amplitude  feature fusion E : encoder

Figure 4. Overall idea to learn domain generalized FSSS by fre-
quency decoupling. ES /EF : semantic /fog encoder; P /A: phase /
amplitude component; Blue arrow refers to feature fusion.

4.1. Dual Self-Attention Encoding

Before studying the semantic and fog representation in the
frequency space, a pre-requisite is to build both representa-
tions from the image encoder. The recently developed mask
attention method, as demonstrated in [11, 12], has exhib-
ited superior capabilities in capturing contextual informa-
tion within image representations compared to traditional
convolutional neural networks. In contrast to existing FSSS
methods that rely on domain adaptation and use CNNs to
represent semantics and fog, our approach introduces dual
mask-attention encoding to construct semantic and fog rep-
resentations.

Given an image encoder (e.g., ResNet-50, Swin-
Transformer), we have an image representation from a cer-
tain block, denoted as F ∈ R(W ·H)×C . Assume it is
fed into the lth layer of the mask attention decoder, its
key Kl ∈ R(W ·H)×C , value Vl ∈ R(W ·H)×C and query
Ql ∈ RN×C is computed by three linear transformations
fKl

, fVl
and fQl

, respectively. Then, the mask queries
Xl ∈ RN×C are computed as

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1, (4)

where softmax is the softmax function, and Ml−1 ∈
{0, 1}N×(W ·H) is a binary matrix from the mask queries
Xl−1 of the (l−1)th layer, with a threshold of 0.5. Further,
M0 is binarized and resized from X0.

The mask queries Xl are later on fed into the self-
attention mechanism, which aims to exploit the long-range
dependencies throughout the scene. It is computed as

Attention(QXl
,KXl

,VXl
) = Softmax(

QXl
KXl√
dk

)VXl
, (5)

where QXl
, KXl

and VXl
denote the query, key and value

of Xl, each of which can be computed by a linear transfor-
mation. Further, Softmax denotes the softmax function.

On top of Eq. 5, we design two self-attention based en-
coders to transfer the mask queries Xl into the semantic
and fog representation, respectively. Given the semantic en-
coder ES , the mask queries XS

l ∈ RN×C for semantic rep-
resentation can be computed according to Eq. 5. Similarly,
given the fog encoder EF , the mask queries XF

l ∈ RN×C

for fog representation are also computed according to Eq. 5.
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Figure 5. Framework overview of the proposed Frequency Decoupling (FreD) learning for domain generalized foggy-scene semantic
segmentation (FSSS). Given an image feature Fl from the image encoder, the proposed FreD consists of three key steps, namely, dual
self-attention encoding (in Sec. 4.1), phase-amplitude interaction (in Sec. 4.2) and deep amplitude decoupling (in Sec. 4.3), respectively.

4.2. Phase-Amplitude Interaction

Learning both semantic and fog representations from only
the image appearance is ill-posed, making it still difficult
to precisely represent the semantic information and the fog
information from XS

l and XF
l . To more precisely describe

the semantic and fog representation, we follow our analysis
in the frequency space (in Sec. 3.3), and disentangle both
XS

l and XF
l in the frequency space. To this end, the phase-

amplitude interaction step is proposed to separate and refine
both semantic and fog representation.

Take the mask queries (for semantics) XS
l as an example.

The Fast Fourier Transformation (FFT) transforms it from
the spatial space to frequency space, given by

Fs
l (u, v) =

W∑
w=1

H∑
h=1

XS
l (w, h)e

−j2π(wu/W+hv/H). (6)

This frequency representation F s
l (u, v) (in Eq. 6) is fur-

ther converted into the polar coordinate form, given by
Fs

l (u, v) = |Fs
l (u, v)|e−jϕ(u,v). (7)

Consequently, the phase PS
l and amplitude component

AS
l is computed as

Ps
l (u, v) = ϕ(u, v), (8)

As
l (u, v) = |Fs

l (u, v)|. (9)

Similarly, we can get the phase component and ampli-
tude component from XF

l , which we denote as PF
l and AF

l ,
respectively.

As explained in Sec. 3.3, fog primarily affects the ampli-
tude component, whereas semantics are more prominent in
the phase component. Consequently, our goal is to enable
the semantic encoder ES to exclusively attend to the phase
component, while simultaneously enabling the fog encoder
EF to exclusively attend to the amplitude component.

Specifically, after interaction, the representation Pl from
the semantic encoder ES is computed as

Pl = E[PS
l ,P

F
l ], (10)

and the representation Al from the fog encoder EF is com-
puted as

Al = E[AS
l ,A

F
l ], (11)

where E[·, ·] denotes the average operation.

4.3. Deep Amplitude Decoupling

The primary challenge in learning domain-generalized
FSSS is the variation in fog density across different do-
mains. After obtaining the amplitude component Al which
represents the presence of fog, it is natural to consider de-
coupling its impact from the semantics. To realize this ob-
jective, we propose the deep amplitude decoupling.

Instance normalization [59] has been widely used for
style transfer. It applies a channel-wise normalization for
a feature representation, and makes the feature representa-
tion less sensitive to the style variation [36]. More recently,
it has been widely used for domain generalized semantic
segmentation [23, 46, 48], aiming to decouple the impact of
style. To this end, we implement the instance normalization
function on amplitude component Al, making it robust to
the variation of fog densities. For simplicity, here we de-
scribe the instance normalization on Al from the perspec-
tive of spatial space RN×C , which is computed as

Âc
l =

Ac
l − µ

σ + ϵ
· γ + β, (12)

µ =
1

C

C∑
c=1

Ac
l ,σ =

√√√√ 1

C

C∑
i=1

(Ac
l − µ)2, (13)

where c = 1, 2, · · · , C represent the number of each indi-
vidual channel.

Finally, let IFFF(·, ·) denote the inverse fast Fourier
transform (IFFT), which has a pairwise phase and ampli-
tude as input. Then, the decoupled amplitude component
Âl and the phase component P is merged to get the refined
mask queries Xfinal

l , given by

Xfinal
l = IFFF(P, Âl). (14)

4.4. Implementation Details

The proposed frequency decoupling scheme is integrated
into each layer of a Transformer encoder, which is the
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key component of Mask2Former [11, 12] segmentation
paradigm. For the image encoder, by default we use the
Swin-base Transformer [41] as backbone, with a pre-trained
weight on ImageNet. Notably, the proposed frequency de-
coupling based Transformer is also versatile to CNN based
backbones such as ResNet-50, ResNet-101 and etc. For the
image decoder, following the original Mask2Former [12]
pipeline, the image feature is progressively upsampled to
×32 , ×16, ×8 and ×4 resolution, respectively.

The Transformer decoder consists of nine frequency de-
coupling components. Following the original Mask2Former
[12], for every three components, the image features of the
×32, ×16 and ×8 resolution are inputted one-by-one. The
final output from the ninth component is fused with the ×4
resolution image features for prediction.

Without whistles and bells, all the loss functions and
hyper-parameters keep the default settings of the original
Mask2Former [12] without any additional fine-tuning. The
model is trained by 50 epochs, with an initial learning rate
1× 10−4 and the Adam optimizer.

5. Experiments

5.1. Datasets

CityScapes (C) [14] is one of the widely-used scene seman-
tic segmentation datasets for driving scenes with 19 seman-
tic categories. In our experiments, its training set with 2965
well-annotated samples are used as the source domain for
domain generalized methods.
Clear CityScapes (CC) [53] is a subset of CityScapes
[14]. It consists of 498 deliberately-selected samples from
CityScapes, and is only used as the source domain for do-
main adaptation methods.
Foggy-CityScapes (FC) [53] is one of the most commonly-
used dataset for FSSS. It has 498 images for training and 52
images for testing. The fog in this dataset is synthetic, and
has three levels of fog densities, namely, light, medium, and
dense.
Foggy Zurich (FZ) [52] is a FSSS dataset that captures real-
fog scenes in the Zurich City. It has 3,808 real-world sam-
ples, but most of them are unlabelled. In our experiments,
only its 40 images with annotation are used as foggy target
domain.
Foggy Driving (FD) [53] is FSSS dataset only used for test-
ing. It has 101 images that are captured under real fog con-
ditions. 33 of 101 images are finely-annotated and the rest
68 of them are coarsely-annotated.
Adverse Conditions Dataset with Correspondences
(ACDC) [54] is a recently published driving scene semantic
segmentation dataset under adverse conditions. It has 4,006
samples in total, and 1000 of them are captured under real
fog conditions. Following its original setting, the dataset
split for training set, validation set and test set is 4:1:5.

Method Backbone Target Domains
→ AF → FZ → FD → FC

CNN Encoder:
IBNet [46] Res-50 63.8 33.4 45.5 66.5

Iternorm [23] Res-50 63.3 35.2 44.6 66.9
SW [47] Res-50 62.4 34.1 45.8 66.4
ISW [13] Res-50 64.3 36.1 46.2 66.6

SHADE [71] Res-50 61.4 39.5 42.0 65.8
SAW [48] Res-50 64.0 37.3 47.0 67.8

WildNet [28] Res-50 64.7 39.2 42.6 64.4
SPC [24] Res-50 68.0 39.3 43.5 64.7

FreD (Ours) Res-50 69.3 36.9 49.1 71.9
↑1.3 ↓2.4 ↑2.1 ↑4.1

ViT Encoder:
SegFormer* [64] MiT-B4 59.2 43.9 46.6 75.5

ISSA* [38] MiT-B4 67.5 - - -
HGFormer* [16] Swin-L 69.9 - - -

Mask2Former [12] Swin-B 73.3 49.4 51.1 73.8
FreD (Ours) Swin-B 75.1 50.9 53.2 76.6

↑1.8 ↑1.5 ↑2.1 ↑2.8

Table 1. Comparison with existing domain generalized segmen-
tation methods. Evaluation metric mIoU is in %. ’-’: no official
performance report. ACDC-Fog: AF; Foggy Zurich: FZ; Foggy-
driving: FD; Foggy-CityScapes: FC. By default all the results are
implemented on the official source code and default parameter set-
tings; *: directly cite from the corresponding papers.

5.2. State-of-the-art Comparison

Comparison with Generalization Methods Notice that
we are the first generalization methods for FSSS. Here
we compare with existing domain generalization methods
which can be applied to FSSS. Our method is generally ap-
plicable to both CNN backbones and ViT backbones. As
shown in Table 1, the first group compares with methods us-
ing CNN backbones, which are IBNet [46], Iternorm [23],
SW [47], ISW [13], SHADE [71], SAW [48], WildNet [28]
and SPC [24].

The second group compares with methods using ViT
backbones, which are HGFormer [16] and ISSA [38], Seg-
Former [64] and Mask2Former [12]. ISSA [38] and HG-
Former [16] do not have available code and the results are
directly cited from their papers. Our method uses Swin-
Base as backbone, which is same as Mask2Former [12].

In accordance with existing domain generalized segmen-
tation setting, we use CityScapes as the source domain.
Four FSSS datasets are used as unseen target domains,
namely, FC, FZ, FD and AF.

Table 1 reports the performance. For CNN backbones,
the proposed method outperforms second best by 1.3%,
2.1% and 4.1% mIoU on AF, FD and FC, respectively. On
FZ, there is a 2.4% mIoU drop compared with SPC [24],
which involves large-scale additional training data. For
CNN backbones, the proposed method outperforms second-
best by 1.8%, 1.5%, 2.1% and 2.8% mIoU improvement on
AF, FZ, FD and FC, respectively. In conclusion, the pro-
posed method is able to significantly outperform existing
domain generalized segmentation methods when deployed
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Method Backbone Intermediate Domain Target Domains
CZ FZ Other → AF → FZ → FD

CNN Encoder:
AdSegNet* [58] Res-101 ✓ ✓ 31.8 26.1 37.6
ADVENT* [61] Res-101 ✓ ✓ 32.9 24.5 36.1

DISE* [8] Res-101 ✓ ✓ 42.4 40.7 45.2
CCM* [31] Res-101 ✓ ✓ - 35.8 42.6
SAC* [1] Res-101 ✓ ✓ - 37.0 43.4

ProDA* [70] Res-101 ✓ ✓ 38.4 37.8 41.2
DMLC* [17] Res-101 ✓ ✓ - 33.5 32.6
DACS* [57] Res-101 ✓ ✓ - 28.7 35.0

CMAda3+* [15] RefineNet ✓ ✓ ✓ - 46.8 49.8
FIFO* [29] RefineNet ✓ ✓ ✓ 54.1 48.4 50.7

CuDA-Net* [42] Res-101 ✓ ✓ 55.6 48.2 52.7
ViT Encoder:

DAFormer* [21] MiT-B5 ✓ ✓ 48.9 44.4 -
CumFormer* [62] MiT-B5 ✓ ✓ 60.7 - 56.2

FreD (w. CC) Swin-B 71.1 46.3 48.7
FreD (w. C) 75.1 50.9 53.2

↑14.4 ↑2.5 ↓3.0

Table 2. Comparison with foggy-scene cumulative domain adapta-
tion methods. Evaluation metric mIoU is in %. ’-’: either no offi-
cial code or no performance report. N/A: the result is not meaning-
ful under domain generalization setting. ’*’: directly cited from
the corresponding references. ACDC-Fog: AF; Foggy Zurich:
FZ; Foggy-driving: FD; Clear Zurich: CZ; Clear CityScapes: CC;
CityScapes: C.

on either CNN or ViT backbone.

Comparison with Domain Adaptation Methods While
our proposed method has not seen the target domain during
training and does not need any intermediate domains, never-
theless, the proposed method demonstrates superior perfor-
mance compared with domain adaption methods on FSSS.

For comparison, we choose AdSegNet [58], DISE [8],
CCM [31], ADVENT [61], CMAda3+ [15], DACS [57],
SAC [1], DMLC [17], ProDA [70], DAFormer [21], FIFO
[29] and CuDA-Net [42]. They use Clear-Cityscapes as
source domain and a variety of intermediate domains. De-
tails are listed in Table 2.

As shown in Table 2, when using Clear-Cityscapes as
source domain, our method outperforms the second-best by
10.4% mIoU on AF. The performance on foggy zurich (FZ)
is slightly slower because the compared methods use it as
both intermediate domain and target domain. The perfor-
mance on FD is also lower because FD is a very small
dataset and can be easily trained if visible. Our method can
be easily improved when use a larger source domain. Here
we replace clear-Cityscapes to Cityscapes. As can be seen,
the performance on AF and FZ are both the best, and on FD
is close to the best. Especially, we achieve a performance
gain by 14.4% mIoU on AF.

Comparison with De-fog Methods De-fog paradigm is
also compared. For each defog based method, following
the implementation in [42], the first stage is to implement
de-fog algorithms on each target domain. Then, the sec-
ond stage is to do inference on each target domain by the
pre-trained segmentation model on the source domain. The

Method Target Domains
→ AF → FZ → FD

DCP [18] + RefineNet [39] 34.7 31.2 33.2
MSCNN [49] + RefineNet [39] 38.5 34.4 38.3
Non-local [2] + RefineNet [39] 31.9 27.6 32.8
DCPDN [69] + Res-101 [19] 33.4 28.7 37.9
GFN [50] + RefineNet [39] 33.6 28.7 37.2
DISE [8] + Res-101 [19] † - 38.6 37.1

TransWeather [60] + SegFormer [64] 39.4 37.3 -
FreD 71.1 46.3 48.7

↑31.7 ↑7.7 ↑10.4

Table 3. Comparison with existing de-fog based methods. Clear-
CityScapes as source domain. Evaluation metric mIoU is in %. ’-’:
either no official code or no performance report. N/A: the result is
not meaningful under domain generalization setting. ’*’: directly
cited from the corresponding references. †: needs domain adapta-
tion, uses CZ and FZ as intermediate domain. Foggy Zurich: FZ;
Clear Zurich: CZ.

Encoders Target Domains
ES EF → AF → FZ → FD

73.3 49.4 51.1
✓ 74.3 50.1 52.4

✓ 74.2 49.9 52.3
✓ ✓ 75.1 50.9 53.2

Table 4. Ablation studies on the semantic encoder ES and the
fog encoder EF in the proposed method. ACDC-Fog: AF; Foggy
Zurich: FZ; Foggy-driving: FD. Evaluation metric mIoU is in %.

PF → PS AS → AF P → A → AF → FD
73.3 51.1

✓ 74.5 52.6
✓ ✓ 74.7 52.8
✓ ✓ ✓ 75.1 53.2

Table 5. Ablation studies on each step of phase-amplitude interac-
tion. ACDC-Fog: AF; Foggy-driving: FD. Metric mIoU is in %.

de-fog methods include DCP [18], MSCNN [49], Non-
local [2], DCPDN [69], GFN [50] and DISE [8], and Tran-
sWeather [60], For stage 2, RefineNet [39], Res-101 [19]
and SegFormer [64] are used. All the source domains are
CC. The results are reported in Table 3. Our proposed meth-
ods outperforms all de-fog methods greatly.

5.3. Ablation Studies

On Each Encoder The proposed method consists of two
self-attention based encoders to represent the scene seman-
tic and the fog, which we denote as ES and EF , respec-
tively. We compare the proposed method with the scenarios
when there is only one encoder. CityScapes is used as the
source domain. ACDC-fog (AF), Foggy Zurich (FZ) and
Foggy Driving (FD) are used as the unseen target domains.

The results are reported in Table 4. When only using ES ,
the mIoU improvement on AF, FZ and FD is 1.0%, 0.7%
and 1.3%. When only using EF , the improvement on AF,
FZ and FD, in contrast, is 0.9%, 0.5% and 1.2%. Clearly,
jointly using both ES and EF leads to a better FSSS perfor-
mance, by 1.9%, 1.5% and 2.1% on AF, FZ and FD.
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Unseen images InternormGround truth IBNet SAW OursISW

Foggy Driving

ACDC-fog

Foggy CityScapes

Foggy Zurich

Figure 6. Visualized foggy-scene semantic segmentation results when using CityScapes as the source domain. From the first to forth row,
Foggy Zurich, Foggy CityScapes, ACDC-fog and Foggy Driving is the unseen target domains. The proposed method is compared with
existing domain generalized semantic segmentation methods, namely, IBNet [46], Internorm [23], ISW [13] and SAW [48].

Method Backbone Target Domains
→ light → medium → dense mean

IBNet [46] Res-50 72.4 67.9 59.5 66.6
Iternorm [23] Res-50 72.0 68.3 60.7 66.9

SW [47] Res-50 73.3 69.4 61.7 66.5
ISW [13] Res-50 72.1 67.9 60.1 66.7

DeepLabv3+ [10] Res-101 67.1 65.2 61.6 63.4
SegFormer [64] MiT-B4 70.5 66.1 62.3 65.3

Mask2Former [12] Swin-B 76.2 74.5 70.8 73.7
Ours Swin-B 79.5 78.0 74.8 77.4

↑3.3 ↑3.5 ↑4.0 ↑3.7

Table 6. Sensitivity analysis of the proposed method on the foggy
density. CityScapes as the source domain. Foggy CityScapes -
light, -medium and -dense are used as unseen target domains, re-
spectively. Evaluation metric mIoU is in %. The mean mIoU (de-
noted as mean) on Foggy-CityScapes is not a simple average of
three kinds of densities.

On Phase-Amplitude Interaction Under the above do-
main generalization setting, we further analyze how each
step of the phase-amplitude interaction impacts the overall
performance. As shown in Fig. 4, the phase component PF

is merged into the phase component PS , the amplitude com-
ponent AS is merged into the amplitude component AF ,
and finally the merged phase P is fused with the decoupled
amplitude A. We denote these three steps as PF → PS ,
AS → AF and P → A, respectively.

The results are reported in Table 5. The impact of
PF → PS is slightly higher than AS → AF , as the phase
component has more semantic information. On the other
hand, fusing decoupled amplitude component can lead to
another slight segmentation improvement.

On Foggy Density We further analyze the generalization
ability of the proposed method and existing domain gen-
eralized segmentation on different levels of fog density.
CityScapes is used as the source domain, and the Foggy-
CityScapes is used as unseen target domains when posed

on the light, middle and dense fog densities.

Table 6 reports the experimental outcomes. The pro-
posed method shows the state-of-the-art performance when
generalized to different levels of fog densities. Especially,
when generalized to middle and dense fog densities, it out-
performs the second-best by up to 3.5% and 4.0% mIoU.

5.4. Visualization

We show some visual segmentation results of the pro-
posed method and other domain generalized semantic seg-
mentation methods in Fig. 6. Each model is trained on
CityScapes as the source domain, and does inference on
the four unseen target domains, namely, ACDC-fog, Foggy
Zurich, Foggy Driving and Foggy CityScapes. The pro-
posed method shows a better visual prediction than existing
methods. More visual segmentation results are provided in
the supplementary material.

6. Conclusion

This paper addresses domain generalized foggy-scene se-
mantic segmentation (FSSS), which can generalize to un-
seen foggy domains when training only on a clear source
domain. It investigates the impact of fog formulation on
FSSS methods and introduces a Frequency Decoupling
(FreD) approach for domain-generalized FSSS. To address
the domain gap among foggy scenes, this approach lever-
ages the frequency space to fog-related effects (ampli-
tude) from scene semantics (phase) in feature representa-
tions. Experimental results across multiple datasets demon-
strate the superiority of the proposed method over existing
domain-generalized, domain adaptation, and de-fog FSSS
methods.
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