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Abstract

The wide presence of cameras using automatic image

processing has a positive impact on smart cities and au-

tonomous driving objectives but also poses privacy threats.

In this context, there has been an increasing interest in reg-

ulating the acquisition and use of public and private data.

In this paper, we propose a method to co-design a lens and

an image processing pipeline to perform semantic segmen-

tation of urban images, while ensuring privacy by introduc-

ing optical aberrations directly on the lens. This partic-

ular design relies on a hardware level of protection that

prevents an attacker from accessing sensitive information

from the original images of a device. Related works rely

on specific privacy threats, requiring a large database for

training. In contrast, we propose to seek robustness by

preventing deblurring during training in a self-supervised

way, thus, without requiring additional annotations. More-

over, we validate our approach by simulating attacks with

deblurring, and license plate detection and recognition to

show that our model can fool these tasks with success while

keeping a high score on the utility task.

1. Introduction

Deep neural networks can perform many computer vi-

sion tasks and are likely to be embedded in more and more

imaging systems. However, citizens and regulators are

aware of the privacy risks posed by the increasing number

of connected cameras. To mitigate this issue, processing

can be applied to relevant features extracted from the image

to allow a utility task (e.g., object detection, instance seg-

mentation) while preventing the reconstruction of sensitive

information. Most common approaches are performed at

software-level [14, 29], although that does not entirely pro-

tect against an attacker who would get access to the sensor

data (see Figure 1). To increase the system’s safety, it is

Privacy-lens

Blurred image

(without sensitive content)

Hard

security level

Semantic Segmentation

Common lens

All-in-focus

image

No or low

security level

Semantic Segmentation

Prone to error

sensitive-content blurring

(post-processing)
Medium

security level

Software-level privacy

Hardware-level privacy

Figure 1. Two approaches to protect privacy. Software-level pri-

vacy uses an algorithmic component to mask sensitive data in the

image: it fails to ensure privacy if one gets access to the device, or

if the sensitive content is not correctly detected. Hardware-level

protection guarantees that even if one were to get full access to the

camera software, sensitive information would not be extracted.

preferable to use a hardware approach, such as a specific

lens to physically blur the image before it reaches the sen-

sor [9, 23].

To go further, the processing and privacy constraints

have to be considered when designing the lens. There must

be a balance between privacy and processing performance.

Thus, if the privacy features are removed, the main task

should still be able to be performed.

In this context, camera design can be conducted with

optics/neural network co-design methods, a.k.a deep op-

tics [10], that jointly optimize lens parameters and neural

network weights. This contrasts with the standard approach

with fixed optical parameters for sensing and tuning the im-

age processing algorithm for some tasks. In deep optics

a parameterized optics encoder is plugged at the input of

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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the task-oriented neural network and parameters of both are

optimized thanks to gradient descent and examples from a

dataset. A typical optical encoder is depicted in Figure 3.

It specifically computes two features with dominant effect

on image quality: blur – through the point spread function

(PSF) – and noise distribution parameters. Examples from

the dataset are convolved with the PSF and noise is added

according to the noise model, generating physically sound

images. Finally, the simulated image can be fed into a neu-

ral network (see Figure 2).

The described pipeline must be differentiable to explore

co-design and optimize the optical parameters using gradi-

ent descent. In particular, it is necessary to compute not

only the PSF but also its gradients with respect to the opti-

cal parameters. This can be performed with two main types

of simulations: differentiable ray tracing (DRT) and Fourier

optics.

Differentiable ray tracing can optimize a lens made of

multiple glass elements for Extension of Depth of Field

(EDOF) [22, 31, 40] or object detection [13]. Differentiable

ray tracing is well suited for the optimization of a set of

conventional lenses, but it is a geometric model that does

not take diffraction into account.

On the other hand, Fourier optics [19] is adapted to the

simulation of diffractive elements. As such, it has been suc-

cessfully used to optimize a phase mask for EDOF [39],

or depth estimation [21]. Fourier Optics has already been

adopted to optimize optics for Human Pose Estimation

(HPE) while protecting privacy [24]. In this work, a diffrac-

tive element is optimized so that the sensor image contains

enough information to perform pose estimation while pre-

venting face recognition. Other works have shown that this

method can also be applied to scene captioning [6]. How-

ever, these approaches use co-design to counter specific pri-

vacy threats and require a large database for training on both

main and adversarial tasks.

In this paper, we present a co-design method for au-

tonomous driving with privacy-preserving data. Here are

our contributions:

• We propose a privacy-lens design framework that can

add a robust level of visual privacy protection to exist-

ing recognition systems without significant impact on

associated non-privacy tasks (e.g., semantic segmenta-

tion);

• We adopt an adversarial training strategy to optimize

optical parameters, like [23], but we directly use a de-

blurring network in a self-supervised fashion to pre-

vent our model against adversarial attacks;

• We propose a solution to automatically balance the in-

fluence of the utility task and the adversarial examples

during training using gradient penalty [20];

• We assess the protection of the proposed encoded im-

ages against attack with state-of-the-art networks for

deblurring;

• Finally, we validate our privacy-preserving design

method on a sensitive task such as license plate de-

tection and recognition (LPDR).

To the best of our knowledge, this is the first work that pro-

poses using deep optics for privacy protection in the scope

of urban scenes, and more specifically, autonomous driving.

2. Related Work

Related works are usually classified into two main cate-

gories for privacy issues: software and hardware-level pro-

tection.

Software-level privacy methods modify an input image

after the image acquisition. Usually, they consist of one

network that detects sensitive information (e.g., faces, li-

cense plates, skin color) and another model that removes or

encodes this information by blurring [1], pixelization [17],

masking, or fake image generation [11, 14, 25, 26]. Lately,

these last techniques have been of great success, as they pro-

pose to modify the image while guaranteeing a small impact

on the main task. However, these systems depend on the tar-

get domain of the training dataset and are prone to error. For

example, a person’s identity can easily be compromised if

the first network fails to detect one’s face. Also, a possi-

ble attacker can have access to the images from the sensor

before anonymization.

Thus, hardware-level solutions are usually more robust

as they propose to remove privacy features during image

acquisition which would make it impossible for an attacker

to have the real information. This includes using low-

resolution sensors [8,15], or event cameras [2,3,27]. Recent

works also propose to design specific privacy-lens [9,23,24]

to physically filter sensitive information. In [9], the authors

explore lens designs and depth information to produce more

blur near the sensor than far from it, as objects already lose

information with the distance. However, the choice of op-

tical parameters is performed empirically. [23, 24] propose

a deep optics approach where the optical encoder is jointly

optimized with a neural network decoder for human pose

estimation (HPE). More specifically, the camera lens is op-

timized to add aberrations and, thus, protect the private at-

tributes of a scene. At the same time, a deep network de-

coder is optimized to extract the HPE from these corrupted

images. This project evolves to [23], where the model is

remodeled to use an adversarial component during train-

ing to prevent post-training attacks, and also temporal sim-

ilarity matrices (TSM) for temporal consistency between

frames. Despite the proposed automation of optical design,

the model depends on annotations for the adversarial task,

which are based on the classification of private attributes.
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Figure 2. Overview of the proposed adversarial training strategy for camera co-design. In the forward pass, the image formation model

simulates the effects of the lens and the sensor on the scene, as described in Section 3.1. Subsequently, each task is performed by a

neural network for semantic segmentation (utility task) and deblurring (adversarial task). We detail training of the two antagonist tasks

in Section 3.2. In the backward pass (blue and red arrows), one optimization step is applied to update θseg and θdeb; then, a second pass

(green arrow) is used to apply an optimization step to the optical parameters, θopt.
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Figure 3. The optical encoder simulates the effect of the optical pa-

rameters θopt through convolution with the PSF. The sensor model

introduces an intensity change linked to the aperture and noises.

In this work, we also adopt a co-design training pipeline

to select the best optical parameters automatically. How-

ever, our adversarial task relies on a deblurring network.

This guarantees a self-supervised alternative that has the

advantage of avoiding the need for further annotations. In-

deed, we rely on the input data (sharp-colored images) for

the ground truth. Thus, our approach is more generic as the

lens optimization is not dedicated to protecting the image

from a specific attack. Also, we provide an ablation study

on different techniques from multi-task learning and adver-

sarial training stabilization to find the best trade-off between

the training objectives.

3. Proposed Method

In this paper, we propose to co-design a privacy-

preserving camera dedicated to urban scene analysis.

Specifically, the required task is semantic segmentation,

from which further scene analysis can be conducted such as

counting cars or pedestrians. We adopt a differentiable op-

tical model based on Fourier optics to jointly optimize the

optical parameters and a semantic segmentation network.

Also, like in [23,24], we use an adversarial training strategy

to introduce privacy knowledge to the optical model. How-

ever, instead of relying on private-attributes annotations, we

use a deblurring neural network to restore the original inputs

and simulate an attack that would start with the deblurring

of the generated privacy images from the sensor. We can ob-

serve the pipeline of our training strategy in Figure 2. The

objective is to generate degraded images which cannot be

restored by this deblurring network. Thus, optical parame-

ters should be specialized to predict semantic segmentation

maps from the degraded images while the privacy attributes

cannot be restored. The proposed pipeline enables using the

gradients from the adversarial task to improve the optical

encoder parameters, so the images cannot be reconstructed

with the original sensitive content.

In the following, we explain our method in further detail,

and we also describe our experiments.

3.1. Optical encoder

Image Formation Modeling. We consider an optical sys-

tem composed of a lens of focal f and a phase mask. The

last is a glass element of varying thickness which introduces

a phase difference to the incoming light, as illustrated in

Figure 4. The phase mask thickness h is parameterized in

the Zernike basis of polynomials as commonly used in the

literature to describe optical systems [43]. We only consider

a sum of the n = 6 first Zernike polynomials.

We model the effect of the optics on the scene by com-

Figure 4. Fourier optics description of the optical system: a planar

wavefront reaches the phase mask which introduces a phase delay

to the modulated wavefront.
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puting its point spread function, which can be convolved

with an image, to simulate the effect of the optical part. For

the sake of computational complexity, we use Fourier op-

tics [19] to compute the point spread function of the phase

mask.

With light sources of wavelength λ far from the aper-

ture, we can consider that the incident wavefront is made of

plane waves. In this case, its phase at a point (x, y) of the

aperture is ψ
(

x2 + y2
)

where ψ = πR2

λ

(

1
zo

+ 1
zs

− 1
f

)

is

the defocus introduced by the lens (with R the aperture ra-

dius, zo and zs the positions of the object and the sensor

with respect to the lens). Then the phase mask of refrac-

tive index nglass introduces a phase difference φ (x, y) =
(nglass − nair)h (x, y) compared to propagation in the air

(of refractive index nair). As such the complex light ampli-

tude field after the aperture is

Uout(x, y) = A (x, y) eiφ(x,y)eiψ(x
2+y2) (1)

where A (x, y) is the transmittance of the aperture and is

equal to 1 where it is opened and 0 everywhere else. The

propagation between the phase mask and the sensor can

then be computed using the Fourier transforms F to get the

field on a point (xs, ys) of the sensor. The intensity of the

point spread function is obtained by taking the square of the

magnitude of this field

PSF (xs, ys) =

∣

∣

∣

∣

F (Uout)

(

xs
λzs

,
ys
λzs

)
∣

∣

∣

∣

2

. (2)

This model is differentiable and its implementation in

Pytorch enables the joint optimization of optical and neural

network parameters using gradient descent.

Sensor model. The sensor is modeled in two steps, as in-

troduced in [16]: an intensity change and a sensor model

(Figure 3). The intensity change models the fact that re-

ducing the aperture will lead to a darker image. The sensor

model adds non-linearities and multiple sources of noise, in

particular Schottky noise which is signal dependent. It also

introduces different quantum efficiencies for each channel

in the sensor and applies the Bayer filter needed to get 3

channels on a camera. In addition, we apply a simple bilin-

ear demosaicking filter to process RGB images instead of

RAW images.

3.2. Optimization Framework

Models. We use SegFormer [42] as semantic segmenta-

tion model and we adopt RED-Net [35] for our deblurring

objective. SegFormer comprises an encoder-decoder struc-

ture with a multi-scale hierarchical Transformer structure

for the first part (encoder) and a lightweight multilayer per-

ceptron (MLP), for the second part (decoder). In the origi-

nal paper, the authors propose a series of Mix Transformer

encoders (MiT) that differ in size. We choose to use MiT-

B0 which is the smallest as our training pipeline contains 3

models, and is thus already memory-demanding.

RED-Net is a small encoder-decoder image restoration

network. We adopt the 10-layer version, referred to as

RED10 in the original paper, which does not contain skip

connections between the convolution and the deconvolution

parts. The encoder is made of four blocks that each divide

image resolution by two. The decoder uses transposed con-

volutions to retrieve the original image resolution. RED-

Net has a simpler architecture compared to modern image

restoration networks but is well suited for co-design as its

smaller receptive field can still invert the local blurring from

the PSF and it trains faster.

Adversarial Training. Adversarial training consists of

building defenses on a network against attacks by training

a model using adversarial examples [37]. In [18], Goodfel-

low et al. proposed a generative adversarial network (GAN),

which made this training strategy widely popular. In the

paper, two networks were trained simultaneously in a min-

max game: a generator network (G) should fool a second

network, the discriminator (D), by generating images close

to a dataset distribution, whileD was trained to classify im-

ages from the dataset as real and from G, as fake. One

evolution of this strategy is to train directly the neural net-

works to prevent adversarial attacks that could jeopardize

their primary task [4, 33]. Here, we follow this strategy to

optimize the parameterized optical model explained in Sec-

tion 3.1, to concurrently produce images that can be used

by a semantic segmentation network, while hiding private

attributes. We achieve this property by using a deblurring

network to generate adversarial examples and help our op-

tical model become stronger against attacks.

The proposed adversarial training is illustrated in Fig-

ure 2, and is explained as follows. In the forward pass,

the original image, xi is modified in the optical encoder,

Mopt. Then, xsi is fed to the semantic segmentation model,

Mseg , and the deblurring model, Mdeb. Here, θt, where

t ∈ {opt, seg, deb} corresponds to each model’s parame-

ters. Finally, we calculate the pixel-wise cross-entropy loss,

Lseg , for semantic segmentation; and we use the mean-

squared error (MSE) Ldeb, for deblurring. The ground truth

for the deblurring model corresponds to the original image,

xi before being modified by the optical model. In the next

step, both θseg and θdeb are optimized with their respective

gradients ∂Lseg/∂θseg and ∂Ldeb/∂θdeb. And finally, we

update the optical parameters by trying to minimize Lseg
and concurrently maximize Ldeb, with respect to θopt. This

translates to:

min
θopt

(λsegLseg(ŷ
seg
i , ysegi )− λdebLdeb(ŷ

deb
i , xi)) (3)
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let ŷsegi = Mseg(x
s
i ; θopt, θseg), and correspondingly

ŷdebi = Mdeb(x
s
i ; θopt, θdeb) be the outputs of the semantic

segmentation and deblurring networks. ysegi is the ground-

truth from the semantic segmentation dataset. Also, λt ≥ 0
are the weights used to balance each task influence on the

optical model optimization. All our experiments consider

that we have no specific loss or regularization for the op-

tical model, thus, there is no λopt. Indeed, by using two

different models to optimize a third one, we can relate to a

multi-objective optimization (MOO) problem. This means

we need to find the best way to counterbalance their effects

on the common parameters and reach the best results.

This can be achieved either by experimentally setting

values to λt or by using a method that will automatically

find this balance as in [7, 36]. We compare fixing λt ex-

perimentally with different values during training and also

use Multi-Term Adam (MTAdam) [34] to find the optimal

trade-off between the loss terms. We chose this approach

as it is simple to implement and has shown great results.

MTAdam is based on the first and second moments of the

gradients of the models to balance the optimization of each

parameter of the network.

Moreover, we propose another solution to deal with

this unbalancing problem, this time by a native adversarial

training optic. Since [18], adversarial networks have been

known to struggle with instability during training. Some

of the most known problems are related to vanishing gra-

dients, as the D converges too quickly and, thus, G gen-

erates poor samples as the gradients from D are too small.

During our experiments, we noticed this behavior on Mdeb.

As the deblurring task is simpler than semantic segmenta-

tion, this task converges rapidly. So, images are not blurred

enough to prevent adversarial attacks. To overcome this

problem, we propose to adapt the gradient penalty (GP)

strategy from [20]. This method enforces the Lipschitz con-

straint by forcing the norm of the gradients from an adver-

sarial model (D, or Mdeb) to be 1. Therefore, our objective

in Equation 3 becomes:

min
θopt

(λsegLseg(ŷ
seg
i , ysegi )− λdebLdeb(ŷ

deb
i , xi)

+ (∥
∂Ldeb(ŷ

deb
i , xi)

∂θopt
∥2 − 1)2). (4)

3.3. Implementation details

Datasets. Our experiments make use of Cityscapes [12],

a dataset for urban scene understanding. This comprises

5000 densely annotated frames split into 2975 images for

training, and 500 for validation, which are used for tests

only and not during training. Annotations for the rest of the

dataset are not accessible to the public.

Pre-processing. During training, we use only a few data

augmentation transformations. We normalize images be-

tween 0 and 1 so that each pixel value represents the energy

of a point light source. Then we randomly crop the image

to a fixed resolution of 512 × 512 pixels and randomly flip

it horizontally. We use less data augmentation compared

to the original Segformer paper [42] as the optical encoder

described in 3.1 applies the PSF based on the geometry of

the scene and applies the noise based on the intensity of

the image. As such, changing them with further data aug-

mentation would likely result in unrealistic images. During

inference, we only normalize the images with the original

resolution of 1024× 2048 to feed the network. For seman-

tic segmentation inference, we follow the original paper in-

structions by using a sliding strategy to generate the output

with the same size as the input.

Metrics. We report semantic segmentation performance

using mean intersection over union (mIoU), mean accuracy

(mA) ie. the average accuracy of all the classes, and overall

accuracy (OA) ie. the accuracy of per pixel classification.

We report deblurring quality using peak signal to noise ratio

(PSNR) and structural similarity (SSIM).

Implementation details. Optical parameters and deblur-

ring network are trained using Adam [28] with a learning

rate of 10−3. The semantic segmentation network is fine-

tuned using AdamW [32] and a learning rate of 6 × 10−5.

We train with batches of 16 images for 200 epochs on a

NVIDIA A40 (∼ 1 day). Also, we set λseg = 1 for all ex-

periments and we vary λdeb ∈ {1, 100, 1000} to understand

the effects of increasing the importance of the adversarial

examples on the sensor model. These values were chosen

experimentally with respect to the difference between the

loss values from semantic segmentation and deblurring.

4. Experiments results

In this section we present the results obtained with ex-

perimental protocol described in the previous section.

4.1. Utility task

Table 1 displays the semantic segmentation results ob-

tained with various settings. The first row contains the ref-

erence to the original implementation from the Segformer

paper [42]. This network achieves the best segmentation

results as it processes clean images in a higher resolution

(1024 × 1024) than in the following experiments, without

any blur or noise from the optical encoder. Also, the origi-

nal training pipeline contains more data augmentation than

ours, as explained in Section 3.3. OS denotes the baseline

obtained by jointly optimizing the optical encoder and the

segmentation network to minimize Lseg . It reaches slightly
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Table 1. The first seven rows include the comparison between the best results with Segformer-B0 trained with adversarial routine. We use

the following notation to identify the training strategies: semantic segmentation (S), optics (O), deblurring (D), and minus (-) means the

subsequent task is adversarial. For adversarial training, (MTAdam) indicates that MTAdam was used to balance losses, (GP) indicates that

gradient penalty was used, otherwise the fixed value of λdeb is indicated. The last two rows include results from NAFNet used to deblur the

privacy images to the LPDR task. ↑ and ↓ indicate values we aim at, respectively maximizing and minimizing for the privacy-preserving

objective.

Model Metrics

mA↑ mIOU↑ OA↑ PSNR (dB)↓ SSIM ↓ LPDR Acc. ↓

Original Segformer - 0.762 - - - 43.0%

OS 0.778 0.700 0.935 - - -

OS-D (MTAdam) 0.770 0.693 0.935 24.5 0.78 7.7%

OS-D (λdeb = 1) 0.759 0.680 0.929 16.0 0.758 1.9%

OS-D (GP) 0.758 0.678 0.929 22.7 0.81 0.0%

OS-D (λdeb = 102) 0.744 0.664 0.927 21.1 0.80 0.0%

OS-D (λdeb = 103) 0.713 0.630 0.918 23.2 0.84 0.0%

NAFNet Finetuned - - - - - 1.4%

NAFNet Pretrained - - - - - 0.0%

worse metrics as it deals with the noise added by the sensor

model and the blur from the PSF which impedes segmenta-

tion of small objects.

Adversarial training (marked as OS-D) with λdeb = 1
reduces mIoU by approximately 2% compared to the lens

optimized without privacy considerations (OS). This small

decrease is explained by the small blur added to the image,

which can be seen in Figure 6, as the objective losses are

unbalanced. Increasing λdeb to 1000 lowers mIoU by 5%

more, as the blur amount increases causing a more signif-

icant impact on this task. Still, this has a small effect on

the utility task compared to the benefit of improved privacy,

as seen by the increased blur amount. Tuning λdeb exper-

imentally to 1000 showed great results, however, it can be

time-consuming to try different values to achieve the best

results. So, by using MTAdam, we expected the algorithm

to find a better trade-off between each gradient’s influences

on the optical model. However, this technique failed to bal-

ance the losses to increase privacy for our dataset. Never-

theless, the gradient penalty (GP) strategy proved to be very

efficient and added the desired automation to balance the

task’s influence on the optical model. By forcing the gradi-

ent norm of the deblurring model to 1, it prevents gradient

vanishing and, so, the model generates significant adversar-

ial information through training. This result ensures privacy

as in OS-D λdeb = 1000 but shows better performance in

semantic segmentation.

Figure 5 shows two examples of results obtained for the

utility task with gradient penalty. Compared to the original

scene, the sensor image is noticeably blurrier. Fine details

such as sign poles are not detected by the semantic segmen-

tation but the quality is good enough to count pedestrians or

cars.

Figure 6 displays an example of sensor image for each

adversarial system as well as the corresponding PSF and

deblurring result. As expected the sensor image becomes

blurrier as λdeb increases. The PSF corresponding to the

systems with the most blur are darker because their energy

is more spread on the sensor.

Overall, the reduction of semantic segmentation metrics

seen in Table 1 is compatible with the exploitation of the

segmentation results.

4.2. Privacy Attack Experiment

In the following, we study the systems optimized with

λdeb = 1000 and with gradient penalty to assess the poten-

tial of privacy attacks. We focus on deblurring attacks that

aim at reconstructing sharp images from the sensor, and li-

cense plate detection and recognition (LPDR) that would be

used to identify vehicles.

Deblurring Attack. We consider two types of deblurring

attacks against the co-designed system. First, a sensor ac-

cess attack, where one only has access to images from the

sensor of the privacy-preserving lens. Then, known pairs

attack, where one has access to pairs of clean and blurry im-

ages. To ensure that the co-designed lens is robust against

privacy attacks we test these two scenarios. For the sensor

access attack, the lack of ground truth data corresponding

to the blurry images means that a deblurring network can’t

be fine-tuned for the privacy-preserving lens. In this case,

we use pretrained weights provided for NAFNet [41] and

DeblurGAN-V2 [30] obtained after training on the GoPro

dataset. For this attack, we correct the white balance man-

ually to compensate for the tint introduced by the physical

sensor model (see Figure 5). For the known pairs attack

we train using the parameters recommended for training

NAFNet [41] for 100000 iterations over images from the
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Scene Sensor image Semantic segmentation Ground truth

Figure 5. Examples of semantic segmentation results from the adversarial system trained with gradient penalty.

Scene OS-D MTAdam OS-D (λdeb = 1) OS-D (λdeb = 102) OS-D GP OS-D (λdeb = 103)

Figure 6. In the first row, we show examples of sensor images (xs
i ) from the adversarial systems, and their corresponding PSF in the bottom

right corner. In the second row, we have the corresponding reconstruction (ŷdeb
i ) from the deblurring network optimized (Mdeb( · ; θdeb∗))

during the adversarial training.

Cityscapes dataset after blurring them with the lens opti-

mized for privacy.

Table 2 displays the results of the deblurring attacks: us-

ing the deblurring network obtained after the adversarial

training; for two networks in the sensor access scenario; and

using a network trained on a set of images from the camera

with corresponding high quality images. In the first case,

both networks trained on the GoPro dataset reach a PSNR

and an SSIM value close to the network optimized during

the adversarial training. Figure 7 displays examples of im-

ages obtained after deblurring for the different attacks. The

pretrained networks do not recover high-frequency content

in the blurred images making it impossible to see fine details

(see Figure 7). On the other hand, the network from the

adversarial training introduces some ringing artifacts that

lower his PSNR. With access to pairs of blurry and corre-

sponding sharp images, it is possible to train a deblurring

network to specifically restore images from our camera. In

this case, we reach higher PSNR and SSIM. The resulting

images (Figure 7) recover most of the content but some fine

details remain indistinguishable.

The resulting camera is robust against deblurring by net-

works pretrained for generic images but good reconstruc-

tion can be achieved when training a dedicated attack net-

work. Note that such an attack would be unlikely in prac-

tice since it would require gathering many aligned pairs of

blurry and sharp images.

License Plate Detection and Recognition (LPDR). Like

in [9], we also consider an LPDR model to simulate an at-

tack on our designed lens. Cityscapes-LP [5] provides an

extension to the Cityscapes dataset with license plate anno-

tations for validation.

To simulate this attack, we follow [38] as the proposed

method is extensible to license plates from different coun-

tries and can be used for inference without further training.

The authors propose a pipeline divided into three main parts

including a vehicle detection model, LP detection, and fi-

nally an OCR (Optical Character Recognition). This last

step is a combination of character segmentation and charac-

ter recognition.

As a metric for this task, we adopt the accuracy (Acc)

corresponding to the fraction of correctly detected and rec-

ognized license plates over the total number of readable li-

cense plates. We express this metric as a percentage. Our

results can be observed in the rightmost column of Ta-

ble 1. We compare the performances obtained with the

LPDR model using respectively the original sharp images

from Cityscapes dataset (first row) and blurred images from

adversarial learning. Moreover, we test the LPDR model on
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Deblurring network OS-D (GP) OS-D (λdeb = 103)

PSNR (dB) ↓ SSIM ↓ PSNR (dB) ↓ SSIM ↓

Adversarial training 22.7 0.81 23.2 0.84

Pretrained NAFNet [41] 25.7 0.80 23.4 0.80

Pretrained DeblurGanV2 [30] 25.8 0.80 23.5 0.84

Trained NAFNet 38.9 0.97 36.7 0.96

Table 2. Comparison of deblurring attacks for the systems trained with gradient policy or with λdeb = 103. The adversarial training

corresponds to the RedNet [35] network used during the adversarial training.

Scene Sensor image Adversarial training Pretrained DeblurGanV2 Trained NAFNet

Figure 7. Examples of deconvolved images from the adversarial system trained with gradient penalty. The blue tint of the sensor image

comes from different quantum efficiencies for each channel in the sensor model.

the deblurred images obtained using the NAFNet finetuned

and pretrained (last two rows). Notice that we aim to have

low accuracy to indicate our system is efficient in protecting

privacy.

Compared to the performance obtained with the original

images, the LRPD model shows drastically reduced scores

when applied to the blurred images at the sensor output.

This could be explained by the color perturbation added by

the sensor that the LPDR model does not expect in addi-

tion to the blur. Nevertheless, this score is only slightly im-

proved when the model is applied to the deblurred images

using NafNet, which rectifies this effect. To conclude, this

experiment validates the gain in privacy protection brought

by the proposed method.

5. Conclusions

This paper presents the use of deep-optics tools to im-

prove the privacy of imaging systems by using physical im-

age encoding. We propose an adversarial training procedure

to jointly optimize a lens and processing to perform seman-

tic segmentation of urban images while ensuring that access

to sensor images would not raise privacy concerns. In this

context, we successfully integrate a penalization term for

the deblurring model gradients to prevent fast convergence

of the adversarial model. Thus, we continually guarantee

its feedback to strengthen the optical model against attacks.

Besides, our approach ensures privacy in a self-supervised

manner and does not require sensitive annotations related

to privacy attributes. We evaluate the robustness of the opti-

mized system for two kinds of attacks: deblurring of sen-

sor images and automatic license plate recognition. The

proposed tools are generic and could be applied to create

privacy-preserving systems for other tasks.

One limitation of our method is the use of Fourier op-

tics which can only simulate PSF on the optical axis. Us-

ing differentiable ray tracing will allow us to optimize com-

plex lenses made of multiple glass elements while consid-

ering PSF variations in the field. The demonstration of our

method has been performed on a simulated scenario. Since,

the next step of this project is to design and build a proto-

type of the privacy-preserving lens and then to validate the

method on real-world data.
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