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Abstract

Acquiring visually pleasing videos under insufficient
lighting has been an important and challenging task for
both photographers and algorithm engineers. Current
methods have evolved into two major paradigms: prior-
itizing camera gain, which induces higher level of noise,
and prioritizing exposure time, which brings about undesir-
able motion blur. Though both paths can lead to satisfying
outputs, there is still a lack of direct comparison between
them under the context of fast evolving deep learning algo-
rithms, which can be crucial to shed light on better ways
for capturing and enhancement. In this paper, we present
a thorough study using state-of-the-art image and video en-
hancement frameworks, comparing Gain-first, Exposure-
first, and Mixed strategies on a large dataset collected by
a special optical system so that three strategies can com-
pete fairly under controlled conditions. Experiment results
across multiple camera gain levels and exposure time set-
tings, as well as a theoretical analysis, show advantages of
Gain-first strategy over Exposure-first one under relatively
small ratio, and superiority of Mixed strategy under extreme
low-light cases, providing a basis for optimal videography
and enhancement algorithm designs in the future.

1. Introduction
As digital imaging devices being widely used throughout
past decades, there has been increasing demands on al-
gorithms to help them adapt to insufficient lighting situa-
tions. Particularly, low-light imaging of dynamic scenes
is of great significance than ever, playing crucial roles in
mobile photography, visual surveillance, video conferenc-
ing [41], underwater exploration [27], microscopy [77] and
autonomous driving [37] etc. Yet, hindered by the essence
of low photon count in the dark and short exposure time lim-
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ited by frame rates, such task of low-light video enhance-
ment remains a challenging one in terms of generating vi-
sually satisfying and smooth results.

Without exclusively designed hardware modifications,
current solutions for low-light video capture mainly fall into
two categories: 1. raising gain value, and 2. elongating ex-
posure time. The former elevates camera gain level, which
readily gives rise to conspicuous noise patterns, while the
latter faces inevitable obstacles of motion blur. Therefore,
dark video enhancement tasks can either be formulated as
denoising [13, 30, 48, 63, 73, 76, 79] in the perspective of
increasing gain level, or as deblurring [38, 68, 86, 88] in the
situation of using longer exposure.

Although efforts are being made to combine two as-
pects together in a form of joint enhancement for low-light
videos [29, 89], these paths have been developing indepen-
dently of each other. Several prior works [25, 46, 47] have
tried to compare denoising and deblurring under the context
of HDR or imaging systems, yet neither are they able to ver-
ify their conclusions on large scale real-world data, nor do
they incorporate advanced deep learning enhancement al-
gorithms in their analysis.

To tackle this conundrum, we started by collecting a
large benchmark dataset that has paired video samples for
Gain-first, Exposure-first, and Mixed strategies, as shown
in Figure 1. The dataset, consisting of more than 720 videos
(i.e. 54000 images) in total spanning 3 light intensity ratios
and 60 scenes for each strategy, is shot by a synchronized
optical system that can record image sequences of exactly
identical scenes on multiple cameras. By varying camera
settings, diverse training inputs and ground truths can be
recorded simultaneously.

With this dataset, we managed to analyze different strate-
gies under precisely controlled conditions. A massive num-
ber of experiments are carried out, incorporating 2 state-of-
the-art video-oriented [7, 40], 2 latest image-oriented [75,
80], and 1 joint-denoising-deblurring [89] enhancement al-
gorithms, to provide straightforward comparisons. Based
on that, rigorous conclusions can be drawn on advantages
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Figure 1. As raising camera gain and prolonging exposure time can both produce bright images from low-light environments, it is still
unclear whether their unwanted artifacts, i.e. noise and motion blur, cause similar level of difficulties for enhancement networks. In this
paper, we delve into Gain-first, Exposure-first, and Mixed strategies, comparing them under strictly controlled conditions, to investigate
an optimal selection for low-light video photography and enhancement algorithm designs.

of Gain-first against Exposure-first under common light re-
duction ratios and supremacy of Mixed under a large ratio,
offering heuristics for better low-light video photography
and enhancement pipeline designs. We also provide a the-
oretical justification in our supplementary materials, incor-
porating the latest real-world noise [18] and motion blur
modeling [4], proving the existence of a turning point where
performances of different strategies switch places, pointing
out a promising direction for future exploration under the
complexity of this topic.

The main contributions of our work can be summarized
as:
1. A newly designed coaxial optical system is proposed, ca-

pable of capturing image sequences with the same con-
tents concurrently on multiple cameras, facilitating vari-
ous training sample collection of dynamic scenes.

2. We build a large scale benchmark dataset containing
over 54000 training images across multiple gain levels,
exposure time, light intensity ratios, frame rates, making
it possible to compare different camera setting strategies
on identical contents for current and future algorithms.

3. Experiments are conducted, training state-of-the-art en-
hancement models on the collected dataset, demon-
strating hindrances brought about by Gain-first and
Exposure-first strategies respectively, drawing conclu-
sions that are reinforced by a theoretical explanation,
giving insights for better low-light videography and en-
hancement.

2. Related Works

In this section, we give a summary of development in low-
light image/video enhancement from aspects of denoising
methods, deblurring techniques, and related datasets.

Denoising. In conventional image processing, noise reduc-
tion can be approached by optimizing pixel intensity dis-

tributions with image priors, e.g. sparsity [14, 16, 17, 43],
self-similarity [22], total variation [55, 66]. In deep learning
era, high performances can be achieved by uncomplicated
synthetic noisy image data [10, 24, 42, 44, 72, 83], real
world dark/noisy datasets [9, 11, 13, 28, 48, 67, 79], and un-
supervised learning methods [3, 23, 34–36, 49] that largely
alleviates difficulties of gathering paired training samples.
Recently, complicated noise models [5, 18, 73, 76, 85]
are put forward, modeling camera imaging process from a
physics perspective integrating photon and electronic prop-
erties, synthesizing authentic data for training.

Deblurring. For decades, blind deconvolution for uni-
form motion deblurring [2, 6, 15, 20, 26, 45, 58, 78, 81]
and more general non-uniform motion deblurring [21, 31–
33, 51, 53, 54, 56, 57, 71] have made substantial pro-
gresses. Apart from single-image-based deblurring, nu-
merous video-oriented models are also proposed [33, 59,
61, 64, 69, 70, 82] to model temporal complementary in-
formation. End-to-end deep-learning-based models prevail
over recent years, including: a multi-scale network termed
as MSCNN [50] restoring sharp images in a coarse-to-fine
manner; a symmetric U-shape network design along with
parameter sharing strategy proposed by Gao et al. [19];
and MT-RNN [60] that introduces recurrent U-Net strategy
to sharpen images in an iterative fashion, while MIMO-
UNet [12] processes multi-scale images simultaneously
with a single network, achieving high quantitative perfor-
mances and computational efficiency.

Although several works of deblurring directly ap-
plied to low-light video enhancement can be found [68,
86, 88], state-of-the-art deblurring networks are more
prevalent in generic image/video restoration models, e.g.
VRT [39]/RVRT [40], BasicVSR++ [7, 8], Restormer [80],
Uformer [75], etc. Most of them are capable of reaching
outstanding performance in both denoising, deblurring, and
other tasks like super-resolution as well.
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Beyond focusing on only one side of the story, latest
works also show possibilities of achieving two goals of de-
noising and deblurring at the same time. Establishing a
paired dataset between dark blurry images and bright sharp
GTs, Zhou et al. [89] trained an effective network, LED-
Net, to jointly restore clean images from intertwined degra-
dation. Though demonstrating impressive results, the paper,
however, is in lack of a discussion on the necessity of this
joint method, i.e., it doesn’t answer a question about when
jointly denoising-deblurring would become an optimal so-
lution, given that other denoising and deblurring algorithms
might be powerful enough to deal with ordinary cases.

Dataset. For denoising, synthetic datasets [14, 22, 66]
usually adopts additive, white, Gaussian noise model [76].
Overcoming the obstacles of data collection in real-world,
SID [9], SMID [11], SMOID [28] are assembled raw im-
age/video datasets for low-light enhancement. DND [62]
and SIDD [1], produced with scrutiny, have become popu-
lar benchmarking datasets for denoising algorithms. These
datasets contain sRGB and RAW format, enabling networks
to overcome enhancement ratios up to 300 (e.g., SID [9],
ELD [76], both in RAW format). Yet, cases of ratio over
100 are still challenging for sRGB.

For deblurring, DVD [70], GoPro [50], and REDS [52]
are commonly used synthetic datasets, yet unable to gen-
eralize well to the real-world scenarios and even can-
not remove the artifacts introduced by insufficient light-
ing. RealBlur [65] and Beam-Splitter Deblurring Dataset
(BSD) [87], both have exclusively designed hardware sys-
tems, collect aligned blurry and sharp images in real
world, elevating algorithm performances with captured nu-
ances. Meanwhile, Zhou et al. [89] utilizes existing Zero-
DCE [23] model to simulate low-light degradation, gener-
ating LOL-Blur dataset for joint denoising and deblurring.
All of deblurring datasets are in RGB format. While some
of them considers camera response function (CRF) or im-
age signal processing (ISP) in their pipeline, all of them
still land their network inside RGB domain. Typically, de-
blurring algorithms are often concerned with situations that
have an exposure ratio between sharp and blurry frames
close to or below 10, e.g., RealBlur [65], BSD [87].

Despite the prosperity of enhancement algorithms and
datasets, which way, with the help of deep learning frame-
works, is the most suitable for low-light videos remains
unanswered. Prior works that compares denoising and de-
blurring [25, 46, 47] fail to verify their conclusions on real-
world data, nor did they consider data-driven enhancements
or joint methods. In this work, we gather a large dataset
containing precisely aligned Gain-first, Exposure-first, and
Mixed images for exactly identical scenes, which enables
us to compare three strategies directly. Extensive number
of experiments using latest models are carried out, accom-
panied by theoretical analysis of image formation, shedding

light on better dark video capturing and enhancement.

3. Experiment Settings

In this section, we first introduce our optical system for data
collection and parameter setting in each strategy, followed
by detailed description of our dataset structure. We present
experiment settings of networks in the last subsection.

3.1. Optical System

Illustrated in Figure 2 is our camera system, composed of 3
beam splitters to separate incident light beams identically in
two levels, transmitting exact same photon signals towards
four cameras independently. Taking advantage of ND fil-
ter’s ability to attenuate light intensity without color shift-
ing, camera 1, 2, and 3 in the picture can record dark images
that are aligned with bright images recorded by camera 4.
All optical components are carefully aligned by hand while
inspecting the discrepancy images among four cameras of
a reference pattern. Although tremendous efforts have been
taken, geometric misalignment within a few pixels is impos-
sible to be eliminated by hand, due to the complexity of our
system. Therefore, we further estimate homographies and
use them to correct images. All components are firmly fixed
on a metal breadboard with plastic cushion to avoid shift
due to vibration during capture. Signal generator that gov-
erns timing of shooting further enforces simultaneity among
all cameras, guaranteeing spatial and temporal alignments.

The cameras we use are FLIR GS3-U3-23S6C Camera,
equipped with a global shutter, adjustable analog gain from
0 to 30 dB, and exposure time from 30µs to 3.2s. It is
commonly used for industrial utilities, containing a Sony
IMX174 image sensor that can also be found in commer-
cial cameras, ruling out irrelevant factors like rolling shutter
effect, while maintaining genericness for our experiments.
We choose 3 types of ND filters with transmittance of 1/10,
1/30, and 1/100, in order to emulate multiple levels of dark-
ness, covering meaningful ratios for both denoising and de-
blurring tasks as mentioned in section 2, namely: 1/10 to
cover common deblurring cases; 1/100 to push the limit of
denoising methods; and 1/30 as a middle point. For a spe-
cific instance, if all mounted ND filters are of 1/10 trans-
mittance ratio, and all 4 cameras using the same gain and
exposure time, then camera 4 should produce a raw image
that has pixel values roughly1 10 times of that of images
shoot at the same time by camera 1, 2 and 3. We refer to the
3 darkness conditions as ratio10, ratio30, and ratio100, for
brevity. The relationship between such ratio and camera’s
analog gain is: AnalogGain = 20× log10 (ratio).

1Considering existence of noise, it is not precisely, but should be fairly
close to, 10 times.
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Figure 2. (a) Optical diagram of our camera system. (b) Illustration of center-aligned exposure timings for different lengths of exposure.
(c) A top-view photo of our system. Exploiting beam splitter’s equally dividing light property and ND filter’s unbiased light intensity
reduction, we are able to record 3 dark versions on camera 1, 2, 3 and 1 bright version on camera 4 of the exact same scenes.

Table 1. Camera parameter settings for ratio10, ratio30, and ra-
tio100. ET, AG, FR means exposure time, analog gain, and frame
rate, respectively. For each capture, parameters are fixed through-
out the sequence.

Ratio Param. G-first Mixed E-first GT

10
ET (ms) 2 6 20 2
AG (dB) 20 10 0 0
FR (fps) 30 30 30 30

30
ET (ms) 2 6 60 2
AG (dB) 29 20 0 0
FR (fps) 15 15 15 15

100
ET (ms) 2 6 20 2
AG (dB) 30 30 20 0
FR (fps) 30 30 30 30

3.2. Parameter Settings

Table 1 shows key parameters used in the process of data
collection. In the table, G-first stands for Gain-first strat-
egy, shot on camera 1, compensating attenuated brightness
primarily by raised analog gain value. E-first stands for
Exposure-first strategy, shot on camera 3, increasing its lu-
minance primarily by longer exposure time. Mixed strat-
egy is shot on camera 2, benefiting from both moderate
gain values and slightly longer exposure time. Ground truth
bright image sequences are shot on camera 4, with constant
0dB gain and 2ms exposure as a standard. All 4 cameras,
when set with different length of exposure, are temporally
center-aligned for exposure time as shown in Figure 2 (b),
i.e., as Exposure-first has the longest time, all other cameras
have their respective starting and ending point of exposure
being symmetric with respect to the exact center point of
Exposure-first’s exposure duration on time axis.

In ratio10 situation, all brightness gap can be covered by

analog gain (20dB = 10-fold pixel intensity amplification)
or exposure time (20ms vs. 2ms), producing perfect sam-
ples for controlled experiments that only vary single factor
at a time. In ratio30’s case, this can be achieved as well
(29dB = 28.18-fold amplification; 60ms vs. 2ms), since we
lowered frame rate of all cameras at the same time, mak-
ing sure the longest required exposure time, 60ms, is still
possible at a 15 fps frame rate. However, longer exposure
time introduces stronger biases against Exposure-first strat-
egy, as we saw in preliminary tests and can be seen from the
results that will be presented in this paper later. If this pur-
suit of purity continues to isolate denoising and deblurring
factors completely for two strategies, we will arrive at an
extremely low frame rate for ratio100, which undoubtedly
diminishes the necessity of further experimentation. Thus,
to proceed in a more meaningful way, we adopt 30fps for ra-
tio100, setting analog gain to the maximum possible value,
30dB (=31.62-fold amplification), for Gain-first, and 20ms
exposure for Exposure-first. The remaining ratio gap for
Gain-first are compensated by a digital gain, while settings
for Exposure-first under ratio100 also come with a 20dB
(=10-fold amplification) gain, so that starting points of all
compared strategies are in a close range with each other,
leading to fairer and more distinct comparisons.

3.3. Dataset Structure

A subset of our collected data can be seen in Figure 1, 3,
and more in supplementary materials. For each ratio, we
filmed 60 scenes with immense amount of objects, like
buildings, vehicles and pedestrians, covering as much com-
plicated motion as possible. Camera movements are diver-
sified among all scenes, ranging from being completely still
to fast panning or tilting movements, creating graded levels
of difficulties for all strategies, reducing possible inclina-
tion towards any specific strategy. Each scene contains 75
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Figure 3. Dataset samples. Dark images are obtained by dividing
GT images by amplification ratios, serving as a reference for what
a camera would see without any help from gain or exposure. It is
recommended to zoom in to see different levels of noise and blurry
effects among pictures.

frames in total, except for ratio10 where each scene has 150
frames. Doubling the number of images allows us to con-
duct an extra experiment to test methods under ratio10 with
15fps, simply by extracting 75 frames out of 150 with a
two-frame temporal stride. Without hardware setting modi-
fications, this extra experiment serves as an examination for
validity on our choices of divergent frame rates. Original
ratio10 30fps experiment uses first 75 consecutive frames
from each scene. Basically, our experiments cover 4 cate-
gories: ratio10 15fps, ratio10 30fps, ratio30 15fps, and ra-
tion100 30fps, each containing 60 scenes with 75 distinct
frames per scene for 3 strategies, bringing the total number
of unique images in our dataset to 4×60×75×3 = 54000.
Images are stored in RGB and RAW format, with spatial
dimension of 480 × 640. In consideration of the fact that
existing deblurring methods focus solely on RGB formats,
we prioritized the usage of RGB images in following exper-
iments, while RAW counterparts will be released as well,
promoting deeper exploration to the topic.

The 60 scenes under each category are partitioned into 3
parts: 51 for training, 3 for validation, and 6 for test. On
3 selected scenes for validation set, we manually examined
and adjusted the selections to include 2 scenes with camera
movements and 1 scene with none. Likewise, test set is also
balanced in the sense of camera motion, i.e., 3 moving and
3 still, for the reason that Exposure-first strategy is more
motion-sensitive than others, demanding a closer inspection
on performances for still and moving scenes respectively
rather than merely presenting results on test set as a whole.

3.4. Networks

We selected 5 video/image enhancement algorithms based
on their state-of-the-art performances on denoising and de-
blurring tasks at the time being. 2 video-oriented works:
RVRT [40] and BasicVSR++ [7, 8]. 2 image-oriented
works: Restormer [80] and Uformer [75]. 1 joint enhance-
ment model: LEDNet [89]. All models are trained on Gain-
first, Exposure-first, and Mixed images paired with clean
GTs for all 4 categories of intensity ratios and frame rates.
Hence the total number of experiments is 4×3×5 = 60, tak-
ing more than 150 equivalent days on 4 RTX-3090 GPUs.

We maintained all of these models’ default structures,
and make sure that under one category (e.g., Ratio10 15fps)
all hyperparameters are exactly the same for 3 strategies,
guaranteeing impartial competitions. Specific modifica-
tions for each model are detailed in our supplementary ma-
terials.

4. Results
4.1. Quantitative Evaluations

All trained models are evaluated by PSNR↑, SSIM↑ [74],
LPIPS↓ [84]. Comprehensive results can be found in Ta-

Table 2. Overall quantitative results, averaged over entire test set
for each experiment respectively. Colors denote video-oriented,
image-oriented, joint methods.

PSNR/SSIM/LPIPS
Ratio10 15fps

G-first Mixed E-first

RVRT 37.1/0.958/0.0127 36.1/0.950/0.0147 30.9/0.891/0.0426
BasicVSR++ 36.9/0.960/0.0130 35.6/0.949/0.0158 32.3/0.915/0.0327

Restormer 37.7/0.962/0.0112 36.5/0.958/0.0132 34.3/0.940/0.0233
Uformer 34.0/0.956/0.0188 33.6/0.950/0.0192 32.7/0.927/0.0268
LEDNet 36.3/0.959/0.0150 34.2/0.948/0.0197 30.9/0.910/0.0371

PSNR/SSIM/LPIPS
Ratio10 30fps

G-first Mixed E-first

RVRT 36.9/0.959/0.0133 36.0/0.950/0.0152 33.3/0.925/0.0278
BasicVSR++ 36.7/0.958/0.0150 35.9/0.954/0.0149 31.5/0.924/0.0301

Restormer 37.8/0.963/0.0113 36.5/0.958/0.0138 33.9/0.941/0.0240
Uformer 36.4/0.961/0.0138 35.1/0.952/0.0161 32.4/0.923/0.0284
LEDNet 35.9/0.959/0.0155 34.5/0.950/0.0197 30.3/0.904/0.0425

PSNR/SSIM/LPIPS
Ratio30 15fps

G-first Mixed E-first

RVRT 32.8/0.938/0.0235 34.3/0.949/0.0206 24.5/0.788/0.1271
BasicVSR++ 34.0/0.952/0.0204 34.5/0.954/0.0193 28.0/0.868/0.0669

Restormer 34.0/0.946/0.0210 34.7/0.952/0.0200 26.9/0.853/0.0820
Uformer 33.1/0.944/0.0219 32.7/0.949/0.0214 26.4/0.843/0.0859
LEDNet 33.1/0.949/0.0243 32.5/0.945/0.0292 25.0/0.809/0.1040

PSNR/SSIM/LPIPS
Ratio100 30fps

G-first 2 Mixed E-first

RVRT 32.1/0.925/0.0271 33.5/0.942/0.0202 31.7/0.904/0.0340
BasicVSR++ 32.6/0.931/0.0250 32.8/0.939/0.0229 28.8/0.869/0.0658

Restormer 31.6/0.913/0.0315 32.5/0.929/0.0244 32.5/0.925/0.0275
Uformer 31.5/0.913/0.0299 32.5/0.927/0.0254 32.0/0.920/0.0309
LEDNet 30.7/0.903/0.0361 31.2/0.922/0.0303 30.4/0.903/0.0421

2Tainted background color here is a reminder that, at Ratio100, G-first
is with digital gain; E-first with analog gain, neither of which is purely
enhanced by a single factor.
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Figure 4. Epoch losses recorded during Uformer training, delivering an intuitive illustration for initial degree of difficulties and convergence
speeds for different settings.

Table 3. Quantitative results on test videos with no camera move-
ment. Colors denote video-oriented, image-oriented, joint meth-
ods.

PSNR/SSIM/LPIPS
Ratio10 15fps

G-first Mixed E-first

RVRT 36.3/0.955/0.0173 37.1/0.956/0.0156 34.4/0.934/0.0267
BasicVSR++ 36.5/0.960/0.0163 37.0/0.955/0.0165 34.9/0.941/0.0237

Restormer 37.1/0.960/0.0145 37.5/0.961/0.0150 36.7/0.956/0.0190
Uformer 35.2/0.956/0.0188 35.3/0.959/0.0186 35.4/0.954/0.0213
LEDNet 35.6/0.956/0.0194 35.3/0.956/0.0209 34.0/0.945/0.0276

PSNR/SSIM/LPIPS
Ratio10 30fps

G-first Mixed E-first

RVRT 36.2/0.956/0.0175 37.1/0.954/0.0170 35.2/0.942/0.0226
BasicVSR++ 35.6/0.950/0.0211 37.0/0.955/0.0171 34.2/0.934/0.0276

Restormer 37.4/0.961/0.0144 37.5/0.960/0.0162 35.7/0.951/0.0229
Uformer 35.9/0.957/0.0173 36.7/0.960/0.0175 34.8/0.948/0.0248
LEDNet 35.2/0.955/0.0202 35.6/0.955/0.0212 33.0/0.934/0.0368

PSNR/SSIM/LPIPS
Ratio30 15fps

G-first Mixed E-first

RVRT 31.1/0.928/0.0274 34.6/0.956/0.0166 28.6/0.893/0.0575
BasicVSR++ 32.8/0.947/0.0229 33.9/0.956/0.0183 30.3/0.917/0.0394

Restormer 32.1/0.935/0.0246 34.6/0.956/0.0178 29.5/0.909/0.0501
Uformer 31.6/0.933/0.0256 33.1/0.954/0.0189 29.7/0.916/0.0458
LEDNet 31.8/0.942/0.0268 32.8/0.953/0.0231 28.1/0.903/0.0580

PSNR/SSIM/LPIPS
Ratio100 30fps

G-first Mixed E-first

RVRT 31.9/0.931/0.0288 33.3/0.950/0.0207 33.7/0.944/0.0221
BasicVSR++ 32.2/0.940/0.0266 32.9/0.950/0.0238 32.4/0.947/0.0302

Restormer 31.1/0.915/0.0351 32.5/0.940/0.0245 33.8/0.955/0.0202
Uformer 31.3/0.917/0.0323 32.4/0.936/0.0254 33.5/0.952/0.0223
LEDNet 30.2/0.905/0.0390 31.4/0.938/0.0289 32.3/0.952/0.0292

ble 2, showing overall tendencies among all settings. We
also included measurements obtained by testing on subset
of static shot and subset of moving shot respectively in Ta-
ble 3 and 4, to further portray characteristics of test results.
A visualization in the form of heatmap for Table 2, 3, 4 are
presented in our supplementary document, which can serve
as a visual aid for descriptions and conclusions in the fol-
lowing paragraphs.

Superiority of Gain-first. It can be easily noticed that
Gain-first strategy has predominant advantages against
Exposure-first in ratio10 and ratio30. Gain-first overpow-
ers Mixed strategy in all ratio10 settings, showing non-
inferiority in ratio30 against Mixed as well. Addition-
ally, Gain-first results demonstrate robustness in dynamic
scenes, while others crippled by distortions, especially in
the case of the longest exposure for ratio30. This proves the

Table 4. Quantitative results on test videos with camera move-
ments. Colors denote video-oriented, image-oriented, joint meth-
ods.

PSNR/SSIM/LPIPS
Ratio10 15fps

G-first Mixed E-first

RVRT 37.9/0.961/0.0082 35.1/0.944/0.0138 27.3/0.848/0.0586
BasicVSR++ 37.3/0.960/0.0097 34.2/0.942/0.0151 29.7/0.888/0.0418

Restormer 38.2/0.965/0.0080 35.5/0.955/0.0115 31.9/0.924/0.0276
Uformer 32.8/0.956/0.0189 31.9/0.940/0.0197 30.1/0.900/0.0324
LEDNet 37.0/0.962/0.0107 33.1/0.941/0.0186 27.9/0.875/0.0467

PSNR/SSIM/LPIPS
Ratio10 30fps

G-first Mixed E-first

RVRT 37.5/0.963/0.0091 34.9/0.946/0.0134 31.3/0.908/0.0329
BasicVSR++ 37.9/0.965/0.0088 34.8/0.953/0.0127 28.8/0.914/0.0325

Restormer 38.3/0.966/0.0081 35.5/0.957/0.0113 32.1/0.931/0.0251
Uformer 36.9/0.964/0.0104 33.5/0.945/0.0146 30.0/0.897/0.0320
LEDNet 36.7/0.964/0.0107 33.5/0.944/0.0181 27.6/0.874/0.0481

PSNR/SSIM/LPIPS
Ratio30 15fps

G-first Mixed E-first

RVRT 34.5/0.948/0.0197 34.0/0.943/0.0246 20.4/0.683/0.1967
BasicVSR++ 35.3/0.956/0.0180 35.0/0.952/0.0203 25.6/0.820/0.0944

Restormer 35.9/0.958/0.0174 34.7/0.949/0.0221 24.4/0.796/0.1139
Uformer 34.7/0.956/0.0181 32.3/0.944/0.0239 23.1/0.769/0.1260
LEDNet 34.4/0.956/0.0218 32.2/0.937/0.0354 21.9/0.715/0.1501

PSNR/SSIM/LPIPS
Ratio100 30fps

G-first Mixed E-first

RVRT 32.4/0.920/0.0255 33.6/0.933/0.0196 29.7/0.863/0.0459
BasicVSR++ 32.9/0.923/0.0234 32.7/0.928/0.0219 25.2/0.790/0.1015

Restormer 32.1/0.910/0.0279 32.6/0.919/0.0243 31.2/0.895/0.0348
Uformer 31.8/0.910/0.0276 32.5/0.918/0.0253 30.6/0.888/0.0396
LEDNet 31.2/0.902/0.0331 31.1/0.907/0.0318 28.6/0.854/0.0549

usefulness of camera gain over exposure, as when increas-
ing gain and prolonging exposure are both available under
these ratios, noisy videos have more potential to be restored
by deep learning algorithms than blurry ones.

Loss tendencies. With the help of gathered loss informa-
tion from Uformer training processes in Figure 4, we are
able to visualize traits of each experiment more clearly. At
the beginning of each training, Exposure-first images add
the most difficulties to tasks. Even under a balanced cir-
cumstance like ratio100 that has proximate starting points
for all three, Exposure-first training exhibits relatively lower
convergence. Another remarkable point from the loss plots
is that, although quantitative measurements don’t show a
constant performance gain when comparing ratio10 15fps
to 30fps, higher frame rate indeed lowers training losses for
all strategies, substantiating our choice of preserving higher
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Figure 5. Heatmap depicted PSNR of each frame in RVRT [40]
and Restormer [80] results. Each row represents PSNR values cal-
culated on each frame of a restored video. Each strategy (G-first,
Mixed, E-first), contains 6 videos that correspond to the same GTs,
with upper 3 rows being static shot videos, lower 3 being moving
shot ones.

frame rates at ratio100 to intensify competition, rather than
leaving it at a similar landslide.

Fine-grained measurements. As is noticeable in previous
tables, all strategies achieves comparable results under ra-
tio100, since they are all implemented in a mixed fashion at
this condition. Nonetheless, static-shot results and moving-
shot results at this ratio show contrary relations between
Gain-first and Exposure-first, urging a closer examination.
Therefore, we draw heatmaps in Figure 5 to display PSNR
distributions of 2 networks at ratio100 on a frame-by-frame
level. Gain-first and Mixed have gradual color gradients,
while Exposure-first has oscillating high and low values.
Following this observation, we further inspected fluctua-
tion levels of each strategy’s numerical performances. In
Table 5, there exist palpable differences between Gain-first
and Exposure-first, as the latter can fluctuate more than two
times of the former, raising the question on Exposure-first’s
robustness.

4.2. Qualitative Results

We pieced together sequential sample frames from restored
results of 3 methods under 3 ratio conditions. Figure 6 and 7
are results from BasicVSR++ under ratio10 15fps, and
LEDNet under ratio30 15fps, both of which are moving-
shot videos that focus on showcasing Exposure-first’s in-
ability to recover sharp edges under large scene movements.
Figure 8 juxtaposes result images from RVRT under ra-
tio100 30fps. With this scene being a static-shot video,
Exposure-first can recover frames to a favorable level, while

Table 5. Standard deviation of PSNR, SSIM, LPIPS calculated
among restored frames. Colors denote video-oriented, image-
oriented, joint methods. Reaffirming that tainted background color
for strategy names here is a reminder that, at Ratio100, none of
them is purely enhanced by a single factor.

Std of
PSNR/SSIM/LPIPS

Among all Ratio100 30fps test scenes
G-first Mixed E-first

RVRT 1.74/0.031/0.014 1.96/0.024/0.010 3.03/0.053/0.021
BasicVSR++ 1.32/0.026/0.010 1.81/0.024/0.010 4.68/0.098/0.050

Restormer 1.50/0.032/0.012 1.84/0.028/0.011 2.91/0.044/0.016
Uformer 1.53/0.029/0.012 1.83/0.027/0.012 2.67/0.045/0.017
LEDNet 1.32/0.038/0.012 1.14/0.031/0.011 2.99/0.066/0.024

Std of
PSNR/SSIM/LPIPS

Among static shot test scenes
G-first Mixed E-first

RVRT 1.43/0.016/0.012 2.21/0.011/0.010 1.63/0.017/0.011
BasicVSR++ 0.74/0.008/0.010 1.93/0.011/0.010 2.16/0.024/0.018

Restormer 1.13/0.009/0.010 2.08/0.010/0.011 2.24/0.016/0.012
Uformer 1.18/0.007/0.012 2.09/0.011/0.012 1.72/0.015/0.010
LEDNet 0.47/0.023/0.010 0.75/0.010/0.009 1.82/0.020/0.014

Std of
PSNR/SSIM/LPIPS

Among moving shot test scenes
G-first Mixed E-first

RVRT 1.99/0.039/0.015 1.66/0.030/0.010 2.80/0.045/0.022
BasicVSR++ 1.64/0.034/0.010 1.69/0.028/0.010 3.68/0.079/0.046

Restormer 1.64/0.044/0.012 1.58/0.035/0.011 2.96/0.042/0.016
Uformer 1.78/0.041/0.011 1.53/0.034/0.012 2.63/0.041/0.017
LEDNet 1.64/0.049/0.013 1.41/0.037/0.012 2.80/0.061/0.024

Gain-first cannot properly remove all noises, leaving visible
noise patterns on the zoomed-in green box. More video re-
sults and visualizations are included in our supplementary
materials, corroborating conclusions drawn from quantita-
tive measurements.

5. Discussion
Based on above experiment results, it can be inferred that
Gain-first strategy is a more preferable choice for video en-
hancement than Mixed and Exposure-first under acceptable
light attenuation levels. This gives us a new perspective
on deblurring long exposure videos shot in dark, where
larger gain might preserve more information that is eas-
ier to restore if increasing gain level is accessible. When
the surrounding light reduction ratio approaches maximum
value of camera gain amplification, Gain-first reduces to be
comparable with Mixed, but still better than Exposure-first.
When going beyond camera gain level, even with state-
of-the-art denoising models, noise pattern persists, leaving
chances for Mixed and Exposure-first. This answers the
question of when jointly denoising-deblurring methods are
called upon, a vital discussion on its necessity that is absent
in [89]. Extreme dark environments require mixed scheme
to concurrently suppress noise pattern and motion blur dis-
tortion.
Theoretical interpretation. To further support our conclu-
sions, a theoretical reasoning based on noise [18] and mo-
tion blur modeling [4] coupled with synthetic data test is
detailed in our supplementary material, demonstrating clear
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Figure 6. Consecutive restored frames from BasicVSR++ [7] of ratio10 15fps, with enlarged patches on the right.
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Figure 7. Consecutive restored frames from LEDNet [89] of ratio30 15fps, with enlarged patches on the right.
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Figure 8. Consecutive restored frames from RVRT [40] of ratio100 30fps, with enlarged patches on the right.

existence of a critical turning point between Gain-first and
Exposure-first, indicating possible optimal strategies with
respect to ratio and motion speed.

Alignment with prior works. Though our conclusion is
partly in alignment with former comparisons between de-
noising and deblurring [25, 47], that denoising/Gain-first
is predominantly better than deblurring/Exposure-first, our
work is unique in 3 aspects. Firstly, all previous analysis are
done theoretically only, without real world data verification,
while our benchmark dataset is collected with carefully de-
signed optical system to ensure rigorous conclusions. Sec-
ondly, prior works only involve traditional algorithms, not
concerned with deep learning methods, while we carry out
our experiments with latest networks, clarifying the rela-
tionship between different strategies under the uncertainty
introduced by data-driven algorithms. Thirdly, none of the
prior comparisons considers Mixed strategy that was pro-
posed only in recent years, showing an inspiring result of
Mixed strategy from our experiments for future low-light
video capture and enhancement algorithm design.

Limitations and future work. Since we use RGB format-
ted images, paths for low-light video enhancement through
raw sensor data is left out of the picture for now. But such
experiments can be carried out easily with the release of
our dataset containing all RGB and RAW images. We will
continue to explore authentic noise modeling, searching for

a theoretical calculation for aforementioned critical points
rather than finding in a discrete fashion. Such equilibrium
points may offer connections between calibrated noise level
and blurriness, uncovering new possible directions for both
tasks and related areas, e.g., multi-exposure HDR capture.

6. Conclusion

In this paper, we collected a large benchmark dataset for
investigating optimal method for low-light video photog-
raphy and enhancement among Gain-first, Exposure-first,
and Mixed strategies. The dataset is built using newly de-
signed optical system capable of recording aligned image
sequences on multiple different cameras simultaneously.
Large amount of experiments utilizing latest enhancement
models are carried out, showing abundant evidence for
Gain-first’s advantage under relatively small brightness re-
duction ratio. In darker environments, Mixed strategy is a
better choice to exceed limits of camera gain value. A theo-
retical explanation is also given in the supplementary mate-
rials, further supporting conclusions from empirical experi-
ments.
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