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Figure 1. Comparison of the video results generated by different text-to-video models with the prompt “A basketball free falls in the air”.
Best viewed with Acrobat Reader for animation.

Abstract

Recent advances in text-to-video generation have har-
nessed the power of diffusion models to create visually com-
pelling content conditioned on text prompts. However, they
usually encounter high computational costs and often strug-
gle to produce videos with coherent physical motions. To
tackle these issues, we propose GPT4Motion, a training-
free framework that leverages the planning capability of
large language models such as GPT, the physical simula-
tion strength of Blender, and the excellent image genera-
tion ability of text-to-image diffusion models to enhance the
quality of video synthesis. Specifically, GPT4Motion em-
ploys GPT-4 to generate a Blender script based on a user
textual prompt, which commands Blender’s built-in physics
engine to craft fundamental scene components that encap-
sulate coherent physical motions across frames. Then these
components are inputted into Stable Diffusion to generate
a video aligned with the textual prompt. Experimental re-
sults on three basic physical motion scenarios, including
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rigid object drop and collision, cloth draping and swinging,
and liquid flow, demonstrate that GPT4Motion can gener-
ate high-quality videos efficiently in maintaining motion co-
herency and entity consistency. GPT4Motion offers new in-
sights in text-to-video research, enhancing its quality and
broadening its horizon for future explorations. Our home-
page website is https://GPT4Motion.github.io.

1. Introduction

In recent years, the computer vision community has shown
increasing interest in generative AI. The rise of diffusion
models [17, 45–47] has led to significant advancements in
high-quality image generation from textual prompts, com-
monly known as text-to-image (T2I) synthesis [6, 39, 40,
42]. Building upon this success, researchers have explored
the extension of T2I diffusion models to the realm of text-
to-video (T2V) generation and editing. Earlier efforts pri-
marily focus on directly training T2V diffusion models in
pixel [10, 18, 19, 44] or latent spaces [1, 4, 8, 15, 28, 50,
51, 56, 58]. While such approaches yield promising results,
their reliance on extensive datasets [3, 52, 55] for training
leads to heavy computational costs. In search of more cost-
effective video generation methods, some researchers have
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proposed mechanisms that adapt existing T2I models for
the video domain. For example, Tune-A-Video [54] con-
siderably reduces the training effort by fine-tuning a pre-
trained T2I model like Stable Diffusion [40] for video edit-
ing. However, it still requires an optimization process for
each video generation.

Recent research has shifted towards developing training-
free T2V approaches [21, 24] to alleviate the computational
burden. For instance, Text2Video-Zero [24] utilizes the pre-
trained T2I model, Stable Diffusion, to synthesize videos
without additional training. While these training-free meth-
ods have advanced in reducing resource requirements, they
encounter challenges in achieving coherent motions, partic-
ularly when using a single user prompt to guide all frames’
generation. This limitation can result in videos that lack
the continuity of action or miss essential motion details due
to the model’s limited understanding of the temporal dy-
namics from a simple abstract description. To address these
shortcomings, recent studies [20, 21] have harnessed the de-
scriptive power of large language models (LLMs) [35, 53],
such as GPT-4 [34] and PaLM2 [2], to generate frame-by-
frame descriptions from a single user prompt, aiming to en-
rich the narrative across the video sequence. Building upon
this foundation, subsequent research [30, 31] has taken a
step further by instructing LLMs to generate not only de-
tailed descriptions but also explicit spatiotemporal layouts
from a single prompt, which then serve as conditions of the
T2I diffusion models to generate videos frame by frame.
Although the complemented prompts or dynamic layouts
improve the video quality over methods relying on a sin-
gle prompt, it is substantially challenging to ensure motion
coherence particularly when there are large motion shifts.

Motivated by these LLM-assisted methods [9, 20, 21, 30,
31, 36], this paper offers a new perspective to handle the
problem of motion incoherence. Specifically, we propose
GPT4Motion, a training-free framework that leverages the
strategic planning capability of GPT-4, the physical simu-
lation strength of Blender1, and the excellent image gener-
ation ability of Stable Diffusion to enhance the quality of
video synthesis. Given a user textual prompt, GPT4Motion
begins by deploying GPT-4 to produce Blender scripts that
drive the creation of essential video scene elements, includ-
ing edges and depth maps. Subsequently, these elements
are then employed as conditions for Stable Diffusion to
generate the final video. This methodology ensures that
the resulting video not only faithfully aligns with the tex-
tual prompt but also exhibits consistent physical behaviors
across all frames, as shown in Figure 1. The contributions
of our work are summarized in the following.

• We demonstrate the powerful planning capability of GPT-

1Blender is a popular open-source 3D creation suite that offers a com-
prehensive set of tools for 3D modeling, animation, and rendering. See
https://www.blender.org/ for details.

4 in driving Blender to accurately simulate basic physical
motion scenes, showing the potential of LLMs to con-
tribute to physics-based video generation tasks.

• We propose GPT4Motion, a training-free framework that
employs scripts generated by GPT-4 for Blender’s scene
simulation, enabling the generation of temporally coher-
ent videos using the pretrained T2I Stable Diffusion.

• Experimental results on three basic physical motion sce-
narios demonstrate that GPT4Motion can efficiently gen-
erate high-quality videos which maintain motion co-
herency and entity consistency.

2. Related Work
2.1. Text-to-Video Generation

Text-to-video (T2V) generation targets at the creation of
videos from textual descriptions. Although significant
progress has been made in text-to-image (T2I) synthesis
[6, 12, 23, 33, 39, 40, 42], T2V techniques are still in the
early stage. The Video Diffusion Model (VDM) [19] adapts
the image diffusion U-Net [41] architecture to a 3D U-Net
for joint image and video training, while Make-A-Video
[44] introduces a novel approach learning from image-text
pairs and unlabelled videos.

While these methods depend on extensive datasets [3,
52, 55] for training, recent research [21, 24] focuses on
training-free T2V to reduce training costs. For instance,
Text2Video-Zero [24] uses pretrained Stable Diffusion [40]
for video synthesis, employing cross-attention with the first
frame for frame consistency. DiffSynth [7] proposes a latent
in-iteration deflickering framework and a video deflicker-
ing algorithm to mitigate flickering and generate coherent
videos. Despite their advancements, many T2V models still
face challenges such as motion incoherence and entity in-
consistency. Addressing these issues, our work introduces a
novel approach that integrates the planning power of LLMs
with the simulation capability of Blender for T2V synthesis.

2.2. LLM-Assisted Visual Generations

Large language models like GPT-4 [34], PaLM [2], and
BLOOM [43] excel in various multimodal tasks[25, 27, 42].
In the field of text-to-image generation, LLMs have been
successfully used to generate prompts [5, 14] or to cre-
ate spatial bounding boxes from textual prompts to control
image generation [9, 29, 36]. Inspired by these develop-
ments, recent efforts [20, 21, 31] have started to incorpo-
rate LLMs into the T2V realm. For instance, Free-bloom
[21] leverages LLMs to generate detailed frame-by-frame
descriptions from a single prompt, thereby enriching the
video’s narrative. Similarly, LVD [30] expands this idea by
not only producing detailed descriptions but also creating
comprehensive spatiotemporal layouts that guide T2I dif-
fusion models in the frame-by-frame video generation pro-
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cess. Different from them, this paper instructs GPT-4 to
generate scripts for Blender to generate scene components
which further serve as conditions of Stable Diffusion to syn-
thesize videos.

2.3. Blender in Deep Learning

Blender, an open-source 3D creation suite, offers a compre-
hensive set of tools for 3D modeling, animation, and ren-
dering, enabling the creation of complex and realistic 3D
scenes. Beyond these effects, Blender has also played a key
role in deep learning, particularly for generating synthetic
data crucial for model training [49]. Additionally, 3D-
GPT [48] instructs LLMs to drive Infinigen [38], a Python-
Blender-based library of generation functions, for procedu-
ral 3D modeling. However, the application of Blender on
T2V has not yet been explored. Traditional video creation
utilizing Blender often requires much professional technical
knowledge and involves complex manual procedures such
as texturing, rigging, animation, lighting and compositing.

Our GPT4Motion simplifies this process by introducing
an innovative framework that employs GPT-4 to generate
Blender’s script, which bypasses the need for manual in-
teraction and intricate scene setup. This not only simplifies
the creation process but also ensures the temporal coherence
and textual alignment of the generated videos. Through
the integration of GPT-4-driven scripting with Blender’s ad-
vanced simulation capability, GPT4Motion marks substan-
tial progress in the T2V domain, offering a user-friendly
and efficient approach to producing high-quality videos.

3. Method
3.1. Task Formulation

Given a user prompt about some basic physical motion sce-
nario, we aim to generate a physically accurate video. Phys-
ical phenomena are often associated with the material of the
object. We focus on simulating three common types of ob-
ject materials encountered in daily life: 1) Rigid Objects,
such as balls, which maintain their shapes when subjected
to forces; 2) Cloth, such as flags, characterized by their
softness and propensity to flutter; 3) Liquid, such as water,
which exhibits continuous and deformable motions. More-
over, we give particular attention to several typical motion
modes for these materials, including collisions (direct im-
pacts between objects), wind effects (motion induced by air
currents), and flow (continuously and easily move in one
direction). Simulating these physical scenarios typically in-
volves knowledge of Classical Mechanics [11], Fluid Me-
chanics [26] and other physical knowledge. Current text-
to-video diffusion models struggle to capture this complex
physical knowledge through training, thereby failing to pro-
duce videos that adhere to physical principles.

To address these challenges, we propose a novel

training-free text-to-video generation framework, named
GPT4Motion, which is illustrated in Figure 2. The advan-
tage of our approach is that GPT-4’s semantic understanding
and code generation capabilities are leveraged to translate
the user prompt into a Blender Python script. This script
can drive Blender’s built-in physics engine to simulate the
corresponding physical scene. We then introduce Control-
Net [57], which takes as input the dynamic results of the
Blender simulation and directs Stable Diffusion to generate
each frame of the video. This framework ensures that the
generated video is not only consistent with the user prompt,
but also physically correct. In the next sections, we describe
the details of our framework.

3.2. Blender Simulations via GPT-4

GPT-4 is a large language model pre-trained on huge
amounts of Internet data with great capability for seman-
tic understanding and code generation. We have ob-
served that while GPT-4 has a certain knowledge about
the Blender Python API, it still struggles with generating
Blender Python scripts based on user prompts. On the one
hand, asking GPT-4 to create even a simple 3D model (like
a basketball) directly in Blender seems to be an overwhelm-
ing task [48]. On the other hand, because the Blender
Python API has fewer resources and its API version is up-
dated quickly, GPT-4 can easily misuse certain functions or
make errors due to version differences. To address these
issues, we propose the following schemes:

Leveraging External 3D Models. Creating 3D models
typically requires professional artists to manually craft
them, spending substantial time sculpting details, paint-
ing fine texture maps, and optimizing the model topol-
ogy, which GPT-4 cannot independently accomplish. For-
tunately, there is a large amount of 3D models available on
the Internet2. Hence, we have collected common 3D ob-
jects from everyday life and can automatically load the 3D
models via scripts corresponding to textual prompts.

Encapsulating Blender Functions. Although GPT-4
possesses the necessary knowledge of the Blender Python
API, writing a lengthy script to render an entire scene re-
mains challenging. We note that for our target scenarios,
Blender Python scripts typically consist of several fixed
steps, including scene initialization, rendering, object cre-
ation and import, and physical effects. Thus, we guide GPT-
4 to encapsulate these reusable functions (see the supple-
ment material). By doing so, we have greatly simplified the
entire process from user prompts to rendering correspond-
ing physical scenarios. These encapsulated functions can be
broadly categorized into three types:
• Scene initialization and rendering functions. These func-

tions are responsible for clearing the default initial scene

2https://www.blenderkit.com/
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Figure 2. The architecture of our GPT4Motion. First, the user prompt is inserted into our designed prompt template. Then, the Python
script generated by GPT-4 drives the Blender physics engine to simulate the corresponding motion, producing sequences of edge maps and
depth maps. Finally, two ControlNets are employed to constrain the physical motion of video frames generated by Stable Diffusion, where
a temporal consistency constraint is designed to enforce the coherence among frames.

and performing the rendering. In Blender, one can set up
the simultaneous image outputs of depth, normal, edge,
and segmentation for a video. We find that using edge
and depth images yields good performance in our frame-
work, so we render these edge and depth images for video
generation.

• Object creation and import functions. These functions
offer the capability to create basic objects (such as view-
points, floors, cubes, spheres, etc.) within a Blender
scene. In addition to creating simple objects, we also pro-
vide import functions that allow users to bring external
3D models into Blender.

• Physics effect functions. These functions encapsulate the
basic physics and material effect settings within Blender.
For instance, they can assign different physical types
(such as rigid, cloth, or liquid) to objects or set up wind
force effects.

Translating User Prompts into Physics. Figure 3 shows
the general prompt template we design for GPT-4. It in-
cludes encapsulated Blender functions, external assets, and
instruction. We define the dimensions of the virtual world
in the template and provide information about the cam-
era’s position and viewpoint. Such information aids GPT-4
in better understanding the layout of the 3D space. Ulti-

mately, the user prompt becomes part of the instruction, di-
rectly guiding GPT-4 to generate the corresponding Blender
Python script. Finally, with this script, Blender renders the
edge and depth image sequences.

3.3. Video Synthesis with Physical Conditions

Our goal is to generate a consistent and realistic video based
on the user prompt and corresponding physical motion con-
ditions provided by Blender. We adopt Stable Diffusion XL
(SDXL) [37], an upgraded version of Stable Diffusion [40].
We made the following modifications to SDXL.

Physics Motion Constraints. ControlNet [57] is a net-
work architecture that can control the image generation of
a pretrained text-to-image diffusion model with additional
conditions, such as edge or depth. However, a single Con-
trolNet is limited to one type of condition. The generation
of some physical motion videos requires the control of mul-
tiple conditions. For example, when generating a video of
a basketball in free fall, its edges can accurately reflect its
texture changes, but the edges cannot reflect 3D layout of
the scene, resulting in the lack of realism in the video. On
the other hand, the depth map of the scene helps address this
problem but is unable to capture the texture changes of the
basketball. Therefore, we leverage a combination of Canny-
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Figure 3. Our prompt template designed for GPT-4. It contains
information about functions, external assets, and instruction. The
user prompt is inserted into the placeholder “{PROMPT}”.

edge-based ControlNet and depth-based ControlNet to pre-
cisely control the generation of the video. Specifically, we
add the intermediate results of the two ControlNets together
to serve as the final conditions for SDXL.

Temporal Consistency Constraint. To ensure temporal
consistency across different frames of a video, we modify
the self attention (SA) in the U-Net of SDXL into cross-
frame attention (CFA). Specifically, the self attention in the
U-Net uses linear projections WQ, WK , and WV to project
the feature Fi of the i-th frame (for simplicity, we ignore
the time-step t) into Qi = WQFi, Ki = WKFi, and Vi =
WV Fi, and perform the self attention calculation:

SA(Qi,Ki, Vi) = Softmax(QiK
T
i /

√
d)Vi, (1)

where d is a scaling factor. To obtain the cross-frame atten-
tion, we concatenate the feature of the frame Fi, i ̸= 1, with
the first frame F1 for K and V , while keeping Q unchanged:

Qi = WQFi, Ki,1 = WK [F1, αFi], Vi,1 = WV [F1, Fi],
(2)

and the cross-frame attention operation is:

CFA(Qi,Ki,1, Vi,1) = Softmax(QiK
T
i,1/

√
d)Vi,1, (3)

where [·, ·] denotes the concatenation, and α ∈ [0, 1] is a
hyperparameter. We find that increasing α improves the fi-
delity of the moving object but at the same time brings more
flickering; on the contrary, decreasing α reduces the flicker-
ing but also decreases the fidelity of the moving object. The
cross-frame attention has the effect that the i-th frame pays
attention to not only itself but also the first frame. Surpris-
ingly, by this cross-frame attention design, the generated
video frames exhibit remarkable content consistency. Ad-
ditionally, we employ the same initial noise for SDXL to
generate all the frames of the video, which further enhances
the temporal consistency.

4. Experiments
4.1. Implementation Details

In our experiments, we use the Stable Diffusion XL 1.0-
base model3, along with Canny-edge-based ControlNet4

and depth-based ControlNet5. The α in the rigid object,
cloth, and liquid experiments are set to 0.9, 0.75, and 0.4,
respectively. We use the DDIM sampler [46] with classifier-
free guidance [16] and 50 sampling steps in our experiments
on one NVIDIA A6000 GPU. The version of the Blender is

3https : / / huggingface . co / stabilityai / stable -
diffusion-xl-base-1.0

4https://huggingface.co/diffusers/controlnet-
canny-sdxl-1.0

5https://huggingface.co/diffusers/controlnet-
depth-sdxl-1.0
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Figure 4. GPT4Motion’s results on basketball drop and collision.
Our homepage website is https://GPT4Motion.github.
io.

Figure 5. GPT4Motion’s results on a fluttering flag.

Figure 6. GPT4Motion’s results on a fluttering T-shirt.

3.6. We generate 80-frame sequences of edge and depth
maps at a resolution of 1920× 1080 for each prompt. The-
oretically, our method can generate motion video of any
length and resolution. For conciseness, in this paper, we
show the cropped video with 1080 × 1080 resolution. By
the way, the videos in this experimental section may look
slow, which is because too many videos are displayed at the
same time on the same page. To view the motion in these
videos, please use Acrobat Reader6. The original videos
can be found in our supplementary material.

4.2. Controlling Physical Properties

We demonstrate the generative capabilities of our method
across three physical scenarios, highlighting how it en-
ables control over specific physical properties through user

6https://www.adobe.com/acrobat/pdf-reader.html

prompts to influence the overall generation results.

Basketball Drop and Collision. Figure 4 displays bas-
ketball motion videos generated by our method with three
prompts. In Figure 4 (left), the basketball maintains a high
degree of realism in its texture while spinning, and accu-
rately replicates the bouncing behavior after collision with
the floor. Figure 4 (middle) demonstrates that our method
can precisely control the number of basketballs and effi-
ciently generate the collisions and bounces that occur when
multiple basketballs land. Impressively, as shown in Fig-
ure 4 (right), when the user requests that the basketball is
thrown towards the camera, GPT-4 calculates the necessary
initial velocity of the basketball based on its fall time in the
generated script, thereby achieving a visually convincing ef-
fect. This demonstrates that our approach can be combined
with the physical knowledge that GPT-4 has to control the
content of the video generation (see the supplementary ma-
terial for more details).

Cloth Fluttering in Wind. Figures 5 and 6 validate our
method’s capability in generating the motion of cloth ob-
jects influenced by wind. Utilizing existing physics engines
for simulation, GPT4Motion generates the fluctuations and
waves of cloth under different wind strengths. In Figure 5,
we present the generated results of a flag fluttering. The flag
exhibits complex ripple and wave patterns under different
wind strengths. Figure 6 shows the motion of an irregular
cloth object, T-shirt, under different wind strengths. Influ-
enced by the physical properties of the fabric, such as elas-
ticity and weight, the T-shirt undergoes flapping and twist-
ing, with visible changes in creases and wrinkles.

Water Pouring into a Mug. Figure 7 shows three videos
of water of different viscosities being poured into a mug.
When the viscosity is low, the flowing water collides and
merges with the water in the mug, creating complex turbu-
lence on the surface. As the viscosity increases, the flow
becomes slower and the water begins to stick together.

4.3. Comparisons with Baselines

We compare our GPT4Motion against four baselines: 1)
AnimateDiff [13], which combines Stable Diffusion with
a motion module, augmented by Realistic Vision Dream-
Booth7; 2) ModelScope [50], incorporating spatial-temporal
convolution and attention mechanisms into Stable Diffusion
for T2V tasks; 3) Text2Video-Zero [24], which leverages
Stable Diffusion’s image-to-image capabilities for generat-
ing videos through cross-attention and modified latent code
sampling; 4) DirecT2V [20], employing a LLM for frame-
level descriptions from prompts, with rotational value map-
ping and dual-softmax for continuity. To maintain the size

7https : / / civitai . com / models / 4201 ?
modelVersionId=29460
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Figure 7. GPT4Motion’s results on the water pouring.

of the paper, we only compare GPT4Motion with these
baselines on three examples. More comparisons are given
in the supplementary material.

A Basketball Free Falls in the Air. As shown in Fig-
ure 1, the baselines’ results do not match the user prompt.
DirecT2V and Text2Video-Zero face challenges in texture
realism and motion consistency, whereas AnimateDiff and
ModelScope improve video smoothness but struggle with
consistent textures and realistic movements. In contrast to
these methods, GPT4Motion can generate smooth texture
changes during the falling of the basketball, and bouncing
after collision with the floor, which appear more realistic.

A White Flag Flaps in the Wind. As shown in Fig-
ure 8 (1st row), the videos generated by AnimateDiff and
Text2Video-Zero exhibit artifacts/distortions in the flags,
whereas ModelScope and DirecT2V are unable to smoothly
generate the gradual transition of flag fluttering in the wind.
However, as shown in the middle of Figure 5, the video gen-
erated by GPT4Motion can show the continuous change of
wrinkles and ripples on the flag under the effect of gravity
and wind.

Water Flows into a White Mug on a Table, Top-Down
View. As shown in Figure 8 (2nd row), all the baselines’
results fail to align with the user prompt. While the videos
from AnimateDiff and ModelScope reflect changes in the
water flow, they cannot capture the physical effects of water
pouring into a mug. The videos generated by Text2Video-
Zero and DirecT2V, on the other hand, show a constantly
jittering mug. In comparison, as shown in Figure 7 (left),
GPT4Motion generates the video that accurately depicts the
surge of water as it collides with the mug, offering a more
realistic effect.

Quantitative Evaluation and User Study. We se-
lect three metrics for quantitative comparisons: Motion
Smoothness [22], which represents the fluidity of video mo-
tion and reflects the physical accuracy to some extent; CLIP
scores [32], indicative of the alignment between the prompt
and the video; and Temporal Flickering [22], which illus-
trates the flickering level of the generated videos. Please

AnimateDiff ModelScope Text2Video-Zero DirecT2V

AnimateDiff ModelScope Text2Video-Zero DirecT2V

Figure 8. Videos generated by four text-to-video baselines with
two user prompts.

Method Motion↑ CLIP↑ Flickering↑
GPT4Motion 0.993 ± 0.003 0.260 ± 0.022 0.990 ± 0.006
AnimateDiff 0.991 ± 0.002 0.257 ± 0.020 0.988 ± 0.002
ModelScope 0.937 ± 0.051 0.252 ± 0.036 0.924 ± 0.059

Text2Video-Zero 0.946 ± 0.015 0.252 ± 0.024 0.928 ± 0.009
DirecT2V 0.879 ± 0.067 0.253 ± 0.033 0.870 ± 0.071

Table 1. Quantitative comparison across various methods. The
best performances are denoted in bold.

refer to the supplementary material for details on each met-
ric. The results, as shown in Table 1, demonstrate that our
GPT4Motion, leveraging GPT-4 for understanding and in-
voking Blender to simulate physical scenes, outperforms
the other four methods on all the metrics. However, these
metrics might not encompass the entire scope of video gen-
eration quality, leading us to undertake a user study for a
more comprehensive evaluation. We also conduct a user
study with 30 participants, where we show videos gener-
ated by different methods under the same prompt and ask
the participants to vote for the best video based on three
evaluation criteria: physical accuracy, text-video alignment,
and the least amount of video flickering. Remarkably, our
GPT4Motion’s results obtain 100% of the votes.

4.4. Ablation Study

We perform an ablation study to evaluate the importance of
control conditions, cross-frame attention, and α values in
Eq. 2, analyzing the effect of each design separately. Ex-
periments are conducted with the user prompt “A white flag
flaps in the wind”, and the video of the complete model is
shown in Figure 5 (middle).

Control Conditions. Figure 9 exhibits the results across
frames under different controlling conditions, which shows
that the model without the edge condition (w/o edge) fails
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Figure 9. Ablation experiments on various control conditions and
cross-frame attention. Four consecutive frames are shown.

to generate correct object edges (see the first row). Addi-
tionally, the model without the depth condition (w/o depth)
not only adds extra cloth to the flag, but also mixes the flag
and the cloud due to the lack of depth-of-field information.
The result of Figure 5 (middle) demonstrates that the joint
use of both control conditions preserves the integrity of the
object edges and well handles the problem of mixing up the
flag with the sky.

First-Frame Attention (FFA). In this setting, Ki,1 is
replaced with K1 = WKF1, and Vi,1 is replaced with
V1 = WV F1 during the generation of the i-th frame in
Eq. 3. This means that the i-th frame only attends to the
first frame (without paying attention to itself). As shown in
Figure 9 (3rd row), the model FFA results in incomplete flag
generation, where part of the flag merges with the sky and
white clouds. Conversely, our cross-frame attention allows
the i-th frame during its generation to focus not only on the
features of the first frame but also on its own characteristics,
thereby maintaining temporal consistency and ensuring the
completeness of the generated object.

Different α Values. To explore the balance of the first
frame and current frame in keeping temporal consistency,
we select three different α values for comparison. Figure 10
presents four generated consecutive frames. It is clear that
when the α value is too small, the generated results suffer
from distortion, while a large α value causes flickering (in-
consistent flag color intensity). By adjusting the α value to
an appropriate level (i.e., 0.75), the generated results main-
tain the fidelity of the flag and reduce the flickering.

5. Limitations and Future Work
Although GPT4Motion advances the field of T2V synthe-
sis, it has several limitations that set the directions for fu-

α
=

0.
1

α
=

0.
75

α
=

1.
0

i i+ 1 i+ 2 i+ 3

Figure 10. Ablation experiments on different α values. Four con-
secutive frames are shown.

ture research. While GPT4Motion successfully handles ba-
sic physical motions related to specific object materials, we
have not extended it to more complex motion scenarios. We
hypothesize that complex motions could be decomposed
into a series of basic motions, requiring more refined in-
structions for LLMs. Another limitation is that sometimes
the generated videos still have flickering in some frames.
Despite these limitations, we believe that GPT4Motion pro-
vides a promising way for T2V generation.

6. Conclusions

This paper proposes GPT4Motion, a new training-free
framework that effectively combines the advanced plan-
ning capability of Large Language Models (LLMs) with
the robust simulation tool, Blender, for efficient text-to-
video (T2V) synthesis. By generating Blender’s scripts via
GPT-4, GPT4Motion significantly simplifies the video gen-
eration process, making it more accessible and less reliant
on extensive manual effort or a deep, specialized techni-
cal knowledge in 3D modeling. Experimental results on
three basic physical motion scenarios, including rigid object
drop and collision, cloth draping and swinging, and liquid
flow, demonstrate GPT4Motion’s impressive capability to
efficiently generate high-quality videos with temporal co-
herence, surpassing previous T2V methods. GPT4Motion
opens up new perspectives for T2V generation. Its integra-
tion of LLM-driven scripting and advanced Blender simu-
lation paves a promising path for tackling more complex
scenes in future research.
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