This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

GPT4Motion: Scripting Physical Motions in Text-to-Video Generation via
Blender-Oriented GPT Planning

Jiaxi Lv"** Yi Huang!?*
Yifan Liu® Yafei Wen?

Mingfu Yan!-?*
Xiaoxin Chen?

Jiancheng Huang!? Jianzhuang Liu®
Shifeng Chen'!f

!Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
2University of Chinese Academy of Sciences, *VIVO Al Lab

{4x.1v1l, yi.huang, mf.yan, jc.huang, jz.liu, yf.liu2, shifeng.chen}@siat.ac.cn

{yafei.wen, xiaoxin.chen}@vivo.com

“A backetball free falle in the air”’

7 P

GPT4Motion AnimateDiff [13]

ModelScope [50]

Text2Video-Zero [24] DirecT2V [20]

Figure 1. Comparison of the video results generated by different text-to-video models with the prompt “A basketball free falls in the air”.

Best viewed with Acrobat Reader for animation.

Abstract

Recent advances in text-to-video generation have har-
nessed the power of diffusion models to create visually com-
pelling content conditioned on text prompts. However, they
usually encounter high computational costs and often strug-
gle to produce videos with coherent physical motions. To
tackle these issues, we propose GPT4Motion, a training-
free framework that leverages the planning capability of
large language models such as GPT, the physical simula-
tion strength of Blender, and the excellent image genera-
tion ability of text-to-image diffusion models to enhance the
quality of video synthesis. Specifically, GPT4Motion em-
ploys GPT-4 to generate a Blender script based on a user
textual prompt, which commands Blender’s built-in physics
engine to craft fundamental scene components that encap-
sulate coherent physical motions across frames. Then these
components are inputted into Stable Diffusion to generate
a video aligned with the textual prompt. Experimental re-
sults on three basic physical motion scenarios, including

Work done during the internship of Lv at VIVO Al Lab.
*Equal contributions.
T Corresponding author: shifeng.chen@siat.ac.cn

rigid object drop and collision, cloth draping and swinging,
and liquid flow, demonstrate that GPT4Motion can gener-
ate high-quality videos efficiently in maintaining motion co-
herency and entity consistency. GPT4Motion offers new in-
sights in text-to-video research, enhancing its quality and
broadening its horizon for future explorations. Our home-
page website is https://GPT4Motion.github. io.

1. Introduction

In recent years, the computer vision community has shown
increasing interest in generative Al. The rise of diffusion
models [17, 45-47] has led to significant advancements in
high-quality image generation from textual prompts, com-
monly known as text-to-image (T2I) synthesis [6, 39, 40,
42]. Building upon this success, researchers have explored
the extension of T2I diffusion models to the realm of text-
to-video (T2V) generation and editing. Earlier efforts pri-
marily focus on directly training T2V diffusion models in
pixel [10, 18, 19, 44] or latent spaces [1, 4, 8, 15, 28, 50,
51, 56, 58]. While such approaches yield promising results,
their reliance on extensive datasets [3, 52, 55] for training
leads to heavy computational costs. In search of more cost-
effective video generation methods, some researchers have

1430

https://www.adobe.com/acrobat/pdf-reader.html
https://GPT4Motion.github.io

proposed mechanisms that adapt existing T2I models for
the video domain. For example, Tune-A-Video [54] con-
siderably reduces the training effort by fine-tuning a pre-
trained T2I model like Stable Diffusion [40] for video edit-
ing. However, it still requires an optimization process for
each video generation.

Recent research has shifted towards developing training-
free T2V approaches [21, 24] to alleviate the computational
burden. For instance, Text2Video-Zero [24] utilizes the pre-
trained T2I model, Stable Diffusion, to synthesize videos
without additional training. While these training-free meth-
ods have advanced in reducing resource requirements, they
encounter challenges in achieving coherent motions, partic-
ularly when using a single user prompt to guide all frames’
generation. This limitation can result in videos that lack
the continuity of action or miss essential motion details due
to the model’s limited understanding of the temporal dy-
namics from a simple abstract description. To address these
shortcomings, recent studies [20, 21] have harnessed the de-
scriptive power of large language models (LLMs) [35, 53],
such as GPT-4 [34] and PaLM?2 [2], to generate frame-by-
frame descriptions from a single user prompt, aiming to en-
rich the narrative across the video sequence. Building upon
this foundation, subsequent research [30, 31] has taken a
step further by instructing LLMs to generate not only de-
tailed descriptions but also explicit spatiotemporal layouts
from a single prompt, which then serve as conditions of the
T2I diffusion models to generate videos frame by frame.
Although the complemented prompts or dynamic layouts
improve the video quality over methods relying on a sin-
gle prompt, it is substantially challenging to ensure motion
coherence particularly when there are large motion shifts.

Motivated by these LLM-assisted methods [9, 20, 21, 30,
31, 36], this paper offers a new perspective to handle the
problem of motion incoherence. Specifically, we propose
GPT4Motion, a training-free framework that leverages the
strategic planning capability of GPT-4, the physical simu-
lation strength of Blender', and the excellent image gener-
ation ability of Stable Diffusion to enhance the quality of
video synthesis. Given a user textual prompt, GPT4Motion
begins by deploying GPT-4 to produce Blender scripts that
drive the creation of essential video scene elements, includ-
ing edges and depth maps. Subsequently, these elements
are then employed as conditions for Stable Diffusion to
generate the final video. This methodology ensures that
the resulting video not only faithfully aligns with the tex-
tual prompt but also exhibits consistent physical behaviors
across all frames, as shown in Figure 1. The contributions
of our work are summarized in the following.

* We demonstrate the powerful planning capability of GPT-

!Blender is a popular open-source 3D creation suite that offers a com-
prehensive set of tools for 3D modeling, animation, and rendering. See
https://www.blender.org/ for details.

4 in driving Blender to accurately simulate basic physical
motion scenes, showing the potential of LLMs to con-
tribute to physics-based video generation tasks.

* We propose GPT4Motion, a training-free framework that
employs scripts generated by GPT-4 for Blender’s scene
simulation, enabling the generation of temporally coher-
ent videos using the pretrained T2I Stable Diffusion.

» Experimental results on three basic physical motion sce-
narios demonstrate that GPT4Motion can efficiently gen-
erate high-quality videos which maintain motion co-
herency and entity consistency.

2. Related Work
2.1. Text-to-Video Generation

Text-to-video (T2V) generation targets at the creation of
videos from textual descriptions. Although significant
progress has been made in text-to-image (T2I) synthesis
[6, 12, 23, 33, 39, 40, 42], T2V techniques are still in the
early stage. The Video Diffusion Model (VDM) [19] adapts
the image diffusion U-Net [41] architecture to a 3D U-Net
for joint image and video training, while Make-A-Video
[44] introduces a novel approach learning from image-text
pairs and unlabelled videos.

While these methods depend on extensive datasets [3,
52, 55] for training, recent research [21, 24] focuses on
training-free T2V to reduce training costs. For instance,
Text2Video-Zero [24] uses pretrained Stable Diffusion [40]
for video synthesis, employing cross-attention with the first
frame for frame consistency. DiffSynth [7] proposes a latent
in-iteration deflickering framework and a video deflicker-
ing algorithm to mitigate flickering and generate coherent
videos. Despite their advancements, many T2V models still
face challenges such as motion incoherence and entity in-
consistency. Addressing these issues, our work introduces a
novel approach that integrates the planning power of LLMs
with the simulation capability of Blender for T2V synthesis.

2.2. LLM-Assisted Visual Generations

Large language models like GPT-4 [34], PaLM [2], and
BLOOM [43] excel in various multimodal tasks[25, 27, 42].
In the field of text-to-image generation, LLMs have been
successfully used to generate prompts [5, 14] or to cre-
ate spatial bounding boxes from textual prompts to control
image generation [9, 29, 36]. Inspired by these develop-
ments, recent efforts [20, 21, 31] have started to incorpo-
rate LLMs into the T2V realm. For instance, Free-bloom
[21] leverages LLMs to generate detailed frame-by-frame
descriptions from a single prompt, thereby enriching the
video’s narrative. Similarly, LVD [30] expands this idea by
not only producing detailed descriptions but also creating
comprehensive spatiotemporal layouts that guide T2I dif-
fusion models in the frame-by-frame video generation pro-

1431

cess. Different from them, this paper instructs GPT-4 to
generate scripts for Blender to generate scene components
which further serve as conditions of Stable Diffusion to syn-
thesize videos.

2.3. Blender in Deep Learning

Blender, an open-source 3D creation suite, offers a compre-
hensive set of tools for 3D modeling, animation, and ren-
dering, enabling the creation of complex and realistic 3D
scenes. Beyond these effects, Blender has also played a key
role in deep learning, particularly for generating synthetic
data crucial for model training [49]. Additionally, 3D-
GPT [48] instructs LLMs to drive Infinigen [38], a Python-
Blender-based library of generation functions, for procedu-
ral 3D modeling. However, the application of Blender on
T2V has not yet been explored. Traditional video creation
utilizing Blender often requires much professional technical
knowledge and involves complex manual procedures such
as texturing, rigging, animation, lighting and compositing.
Our GPT4Motion simplifies this process by introducing
an innovative framework that employs GPT-4 to generate
Blender’s script, which bypasses the need for manual in-
teraction and intricate scene setup. This not only simplifies
the creation process but also ensures the temporal coherence
and textual alignment of the generated videos. Through
the integration of GPT-4-driven scripting with Blender’s ad-
vanced simulation capability, GPT4Motion marks substan-
tial progress in the T2V domain, offering a user-friendly
and efficient approach to producing high-quality videos.

3. Method
3.1. Task Formulation

Given a user prompt about some basic physical motion sce-
nario, we aim to generate a physically accurate video. Phys-
ical phenomena are often associated with the material of the
object. We focus on simulating three common types of ob-
ject materials encountered in daily life: 1) Rigid Objects,
such as balls, which maintain their shapes when subjected
to forces; 2) Cloth, such as flags, characterized by their
softness and propensity to flutter; 3) Liquid, such as water,
which exhibits continuous and deformable motions. More-
over, we give particular attention to several typical motion
modes for these materials, including collisions (direct im-
pacts between objects), wind effects (motion induced by air
currents), and flow (continuously and easily move in one
direction). Simulating these physical scenarios typically in-
volves knowledge of Classical Mechanics [11], Fluid Me-
chanics [26] and other physical knowledge. Current text-
to-video diffusion models struggle to capture this complex
physical knowledge through training, thereby failing to pro-
duce videos that adhere to physical principles.

To address these challenges, we propose a novel

training-free text-to-video generation framework, named
GPT4Motion, which is illustrated in Figure 2. The advan-
tage of our approach is that GPT-4’s semantic understanding
and code generation capabilities are leveraged to translate
the user prompt into a Blender Python script. This script
can drive Blender’s built-in physics engine to simulate the
corresponding physical scene. We then introduce Control-
Net [57], which takes as input the dynamic results of the
Blender simulation and directs Stable Diffusion to generate
each frame of the video. This framework ensures that the
generated video is not only consistent with the user prompt,
but also physically correct. In the next sections, we describe
the details of our framework.

3.2. Blender Simulations via GPT-4

GPT-4 is a large language model pre-trained on huge
amounts of Internet data with great capability for seman-
tic understanding and code generation. We have ob-
served that while GPT-4 has a certain knowledge about
the Blender Python API, it still struggles with generating
Blender Python scripts based on user prompts. On the one
hand, asking GPT-4 to create even a simple 3D model (like
a basketball) directly in Blender seems to be an overwhelm-
ing task [48]. On the other hand, because the Blender
Python API has fewer resources and its API version is up-
dated quickly, GPT-4 can easily misuse certain functions or
make errors due to version differences. To address these
issues, we propose the following schemes:

Leveraging External 3D Models. Creating 3D models
typically requires professional artists to manually craft
them, spending substantial time sculpting details, paint-
ing fine texture maps, and optimizing the model topol-
ogy, which GPT-4 cannot independently accomplish. For-
tunately, there is a large amount of 3D models available on
the Internet’>. Hence, we have collected common 3D ob-
jects from everyday life and can automatically load the 3D
models via scripts corresponding to textual prompts.

Encapsulating Blender Functions. Although GPT-4
possesses the necessary knowledge of the Blender Python
API, writing a lengthy script to render an entire scene re-
mains challenging. We note that for our target scenarios,
Blender Python scripts typically consist of several fixed
steps, including scene initialization, rendering, object cre-
ation and import, and physical effects. Thus, we guide GPT-
4 to encapsulate these reusable functions (see the supple-
ment material). By doing so, we have greatly simplified the
entire process from user prompts to rendering correspond-
ing physical scenarios. These encapsulated functions can be

broadly categorized into three types:
* Scene initialization and rendering functions. These func-

tions are responsible for clearing the default initial scene

Zhttps://www.blenderkit.com/

1432

GPT-4 Planning @ Blender Simulation

" Four bagketballe pin
randomly in the air and fall”

You are an expert in Blender and Python. ..
Functions
def create_floor(elasticity—1). i
i Creates a floor &
Parameters S

Physics Motion Constraint

’- ()

Assets
basketball.obj

mug.obj Ldge Maps
Instruction
Now follow the prompt “{PROMPT}”to write
the corresponding Python script.
Steps:
@ 1. Clear the scene
2. Create a Floor
3.
Here is the Python script for Blender:
Tmport math
Clearing the scene .
clear_scene() Depth Maps
Creating the floor
create_floor(elasticity=0.8)
def'setup basketball(name, position, initial velocity,
initial_rotation) B le n der
Seting up thefour besketbls Physics Engine

setup basketball('Basketbailll', (0, 0. 4), (0, 0, -5), (45,
30, 60))

setup_basketball('Basketball2', (1, 1, 3), (0, 0, -5), (60,
45, 90)

setup_basketball(Basketball3', (-1, -1, 2), (0, 0, -5), (30,
60, 45))

Video Generation

" Four basketballe spin
randomly in the air and fall "
Canny T Steps
ControlNet
Stable Diffusion
Depth
ControlNet

Temporal Consistency Constraint

Ky = WX[Fy, aF]

Q
: Q 3
1-st I'rame = g
X = 7
S Vi = WYIELF] - SoftmaxCidiyy, o R
§ f= 1l oftmax(Wz Wi I
S =
3 =
Qi =W

i-th I'rame

Figure 2. The architecture of our GPT4Motion. First, the user prompt is inserted into our designed prompt template. Then, the Python
script generated by GPT-4 drives the Blender physics engine to simulate the corresponding motion, producing sequences of edge maps and
depth maps. Finally, two ControlNets are employed to constrain the physical motion of video frames generated by Stable Diffusion, where
a temporal consistency constraint is designed to enforce the coherence among frames.

and performing the rendering. In Blender, one can set up
the simultaneous image outputs of depth, normal, edge,
and segmentation for a video. We find that using edge
and depth images yields good performance in our frame-
work, so we render these edge and depth images for video
generation.
* Object creation and import functions. These functions
offer the capability to create basic objects (such as view-
points, floors, cubes, spheres, etc.) within a Blender
scene. In addition to creating simple objects, we also pro-
vide import functions that allow users to bring external
3D models into Blender.
Physics effect functions. These functions encapsulate the
basic physics and material effect settings within Blender.
For instance, they can assign different physical types
(such as rigid, cloth, or liquid) to objects or set up wind
force effects.

Translating User Prompts into Physics. Figure 3 shows
the general prompt template we design for GPT-4. It in-
cludes encapsulated Blender functions, external assets, and
instruction. We define the dimensions of the virtual world
in the template and provide information about the cam-
era’s position and viewpoint. Such information aids GPT-4
in better understanding the layout of the 3D space. Ulti-

mately, the user prompt becomes part of the instruction, di-
rectly guiding GPT-4 to generate the corresponding Blender
Python script. Finally, with this script, Blender renders the
edge and depth image sequences.

3.3. Video Synthesis with Physical Conditions

Our goal is to generate a consistent and realistic video based
on the user prompt and corresponding physical motion con-
ditions provided by Blender. We adopt Stable Diffusion XL
(SDXL) [37], an upgraded version of Stable Diffusion [40].
We made the following modifications to SDXL.

Physics Motion Constraints. ControlNet [57] is a net-
work architecture that can control the image generation of
a pretrained text-to-image diffusion model with additional
conditions, such as edge or depth. However, a single Con-
trolNet is limited to one type of condition. The generation
of some physical motion videos requires the control of mul-
tiple conditions. For example, when generating a video of
a basketball in free fall, its edges can accurately reflect its
texture changes, but the edges cannot reflect 3D layout of
the scene, resulting in the lack of realism in the video. On
the other hand, the depth map of the scene helps address this
problem but is unable to capture the texture changes of the
basketball. Therefore, we leverage a combination of Canny-

1433

You are an expert in Blender and Python. Next you will see some
encapsulated Blender Python functions. Given a user prompt,
you are asked to use these functions to construct a physical scene
in Blender that matches the user prompt and renders the result.

Functions

These are some of the Python functions that work in Blender.
Note the docstring of the functions to understand what they do.
def create floor(elasticity=1):

Creates a floor plane in Blender, scales it, and sets it up with
collision and rigid body physics.

The created floor is scaled to be large enough to act as a ground
plane for most scenes.

Do not create floors when the physical scene does not involve floors.

Parameters:

- elasticity (float): The restitution or 'bounciness’ of the floor. A
value of | means perfectly elastic, while 0 means no elasticity. Default
is 1.

nn

Assets

Here are some external 3D models, and you may need to import
certain models according to the user prompt:

basketball.obj

mug.obj

chair.obj

Instruction

In Blender, we define the +Y direction as the frontal direction.
The world in which the physical phenomenon takes place needs
to be confined to a 5m x 5m x 5m cube in the +Z direction with
the XY plane as the bottom surface.

When you create objects using the functions above, please set the
parameters according to the functions' docstring to match the user
prompt. When importing models from external sources, if the
object is dynamic, specify the object's size and mass in the real
world, then set both size and mass to 5 times their original values.
If the physical phenomena primarily occur inside the object, set
the object's size to occupy the entire world. You then need to
place the objects in the correct positions according to the
instruction, as well as control the physical properties of the
objects using the physics functions by building setup object
functions. When a user prompt requires an object to appear at a
defined position during motion, use physics-based knowledge to
write the solution procedure for velocity and use the code to
perform the calculations so that the object's motion conforms to
the user prompt.

Now, follow the prompt "{PROMPT}" to write the
corresponding Python script.

Figure 3. Our prompt template designed for GPT-4. It contains
information about functions, external assets, and instruction. The
user prompt is inserted into the placeholder “{PROMPT}".

edge-based ControlNet and depth-based ControlNet to pre-
cisely control the generation of the video. Specifically, we
add the intermediate results of the two ControlNets together
to serve as the final conditions for SDXL.

Temporal Consistency Constraint. To ensure temporal
consistency across different frames of a video, we modify
the self attention (SA) in the U-Net of SDXL into cross-
frame attention (CFA). Specifically, the self attention in the
U-Net uses linear projections W<, WX, and WV to project
the feature F; of the i-th frame (for simplicity, we ignore
the time-step t) into Q; = WOF;, K; = WXF;, and V; =
WV F;, and perform the self attention calculation:

SA(Qi, K;,V;) = Softmax(Q, K /Vd)V;, (1)

where d is a scaling factor. To obtain the cross-frame atten-
tion, we concatenate the feature of the frame F;, ¢ # 1, with
the first frame F} for K and V, while keeping () unchanged:

Qi =WCOF;, Ki1 = WEX[F,aF), Vi, =WVY[F, F],
)

and the cross-frame attention operation is:
CFAQi, Kin, Vi) = Softmax(QiK [/Vd)Vi1, (3)

where [-, -] denotes the concatenation, and o € [0,1] is a
hyperparameter. We find that increasing o improves the fi-
delity of the moving object but at the same time brings more
flickering; on the contrary, decreasing « reduces the flicker-
ing but also decreases the fidelity of the moving object. The
cross-frame attention has the effect that the i-th frame pays
attention to not only itself but also the first frame. Surpris-
ingly, by this cross-frame attention design, the generated
video frames exhibit remarkable content consistency. Ad-
ditionally, we employ the same initial noise for SDXL to
generate all the frames of the video, which further enhances
the temporal consistency.

4. Experiments
4.1. Implementation Details

In our experiments, we use the Stable Diffusion XL 1.0-
base model®, along with Canny-edge-based ControlNet*
and depth-based ControlNet’. The « in the rigid object,
cloth, and liquid experiments are set to 0.9, 0.75, and 0.4,
respectively. We use the DDIM sampler [46] with classifier-
free guidance [16] and 50 sampling steps in our experiments
on one NVIDIA A6000 GPU. The version of the Blender is

3https : / / huggingface . co / stabilityai / stable -
diffusion-xl-base-1.0

4https://huggingface.co/diffusers/controlnet -
canny-sdxl-1.0

Shttps://huggingface . co/diffusers/controlnet -
depth-sdx1-1.0

1434

https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0
https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0
https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0
https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0

“Four backetballe “A backetball ic
thrown towarde the

camera”

“A backetball cpine

out of the air and falls” cpin randomly in the
air and fall”

Figure 4. GPT4Motion’s results on basketball drop and collision.
Our homepage website is https://GPT4Motion.github.
io.

“A white flag flaps in " A white flag Flaps in “A white flag flaps in

light wind” the wind” ctrong wind "

Figure 5. GPT4Motion’s results on a fluttering flag.

“A white T-chirt “A white T-chirt “A white T-chirt
flutters in light wind™ flutters in the wind ™ fluttere in ctrong wind”

Figure 6. GPT4Motion’s results on a fluttering T-shirt.

3.6. We generate 80-frame sequences of edge and depth
maps at a resolution of 1920 x 1080 for each prompt. The-
oretically, our method can generate motion video of any
length and resolution. For conciseness, in this paper, we
show the cropped video with 1080 x 1080 resolution. By
the way, the videos in this experimental section may look
slow, which is because too many videos are displayed at the
same time on the same page. To view the motion in these
videos, please use Acrobat Reader®. The original videos
can be found in our supplementary material.

4.2. Controlling Physical Properties

We demonstrate the generative capabilities of our method
across three physical scenarios, highlighting how it en-
ables control over specific physical properties through user

Shttps://www.adobe.com/acrobat/pdf-reader.html

prompts to influence the overall generation results.

Basketball Drop and Collision. Figure 4 displays bas-
ketball motion videos generated by our method with three
prompts. In Figure 4 (left), the basketball maintains a high
degree of realism in its texture while spinning, and accu-
rately replicates the bouncing behavior after collision with
the floor. Figure 4 (middle) demonstrates that our method
can precisely control the number of basketballs and effi-
ciently generate the collisions and bounces that occur when
multiple basketballs land. Impressively, as shown in Fig-
ure 4 (right), when the user requests that the basketball is
thrown towards the camera, GPT-4 calculates the necessary
initial velocity of the basketball based on its fall time in the
generated script, thereby achieving a visually convincing ef-
fect. This demonstrates that our approach can be combined
with the physical knowledge that GPT-4 has to control the
content of the video generation (see the supplementary ma-
terial for more details).

Cloth Fluttering in Wind. Figures 5 and 6 validate our
method’s capability in generating the motion of cloth ob-
jects influenced by wind. Utilizing existing physics engines
for simulation, GPT4Motion generates the fluctuations and
waves of cloth under different wind strengths. In Figure 5,
we present the generated results of a flag fluttering. The flag
exhibits complex ripple and wave patterns under different
wind strengths. Figure 6 shows the motion of an irregular
cloth object, T-shirt, under different wind strengths. Influ-
enced by the physical properties of the fabric, such as elas-
ticity and weight, the T-shirt undergoes flapping and twist-
ing, with visible changes in creases and wrinkles.

Water Pouring into a Mug. Figure 7 shows three videos
of water of different viscosities being poured into a mug.
When the viscosity is low, the flowing water collides and
merges with the water in the mug, creating complex turbu-
lence on the surface. As the viscosity increases, the flow
becomes slower and the water begins to stick together.

4.3. Comparisons with Baselines

We compare our GPT4Motion against four baselines: 1)
AnimateDiff [13], which combines Stable Diffusion with
a motion module, augmented by Realistic Vision Dream-
Booth’; 2) ModelScope [50], incorporating spatial-temporal
convolution and attention mechanisms into Stable Diffusion
for T2V tasks; 3) Text2Video-Zero [24], which leverages
Stable Diffusion’s image-to-image capabilities for generat-
ing videos through cross-attention and modified latent code
sampling; 4) DirecT2V [20], employing a LLM for frame-
level descriptions from prompts, with rotational value map-
ping and dual-softmax for continuity. To maintain the size

Thttps / / civitai
modelVersionId=29460

com / models / 4201 2

1435

https://GPT4Motion.github.io
https://GPT4Motion.github.io
https://www.adobe.com/acrobat/pdf-reader.html
https://civitai.com/models/4201?modelVersionId=29460
https://civitai.com/models/4201?modelVersionId=29460

“Water flows into a
white mug on a table,
top-down view

“Viecoue water flows “Very viccous water
into a white mug on a flowe into a white mug on
table, top-down view” & table, top-down view”

Figure 7. GPT4Motion’s results on the water pouring.

of the paper, we only compare GPT4Motion with these
baselines on three examples. More comparisons are given
in the supplementary material.

A Basketball Free Falls in the Air. As shown in Fig-
ure 1, the baselines’ results do not match the user prompt.
DirecT2V and Text2Video-Zero face challenges in texture
realism and motion consistency, whereas AnimateDiff and
ModelScope improve video smoothness but struggle with
consistent textures and realistic movements. In contrast to
these methods, GPT4Motion can generate smooth texture
changes during the falling of the basketball, and bouncing
after collision with the floor, which appear more realistic.

A White Flag Flaps in the Wind. As shown in Fig-
ure 8 (1st row), the videos generated by AnimateDiff and
Text2Video-Zero exhibit artifacts/distortions in the flags,
whereas ModelScope and DirecT2V are unable to smoothly
generate the gradual transition of flag fluttering in the wind.
However, as shown in the middle of Figure 5, the video gen-
erated by GPT4Motion can show the continuous change of
wrinkles and ripples on the flag under the effect of gravity
and wind.

Water Flows into a White Mug on a Table, Top-Down
View. As shown in Figure 8 (2nd row), all the baselines’
results fail to align with the user prompt. While the videos
from AnimateDiff and ModelScope reflect changes in the
water flow, they cannot capture the physical effects of water
pouring into a mug. The videos generated by Text2Video-
Zero and DirecT2V, on the other hand, show a constantly
jittering mug. In comparison, as shown in Figure 7 (left),
GPT4Motion generates the video that accurately depicts the
surge of water as it collides with the mug, offering a more
realistic effect.

Quantitative Evaluation and User Study. We se-
lect three metrics for quantitative comparisons: Motion
Smoothness [22], which represents the fluidity of video mo-
tion and reflects the physical accuracy to some extent; CLIP
scores [32], indicative of the alignment between the prompt
and the video; and Temporal Flickering [22], which illus-
trates the flickering level of the generated videos. Please

“A white flag flaps in the wind "

AnimateDiff ModelScope Text2Video-Zero DirecT2V

“Water flows into a white mug on a
table, top-down view”

@r ®.

ModelScope Text2Video-Zero DirecT2V

AnimateDiff

Figure 8. Videos generated by four text-to-video baselines with
two user prompts.

Method Motiont CLIPT Flickering?
GPT4Motion 0.993 + 0.003 0.260 + 0.022 0.990 + 0.006
AnimateDiff 0.991 £0.002 0.257 £0.020 0.988 + 0.002
ModelScope 0.937 £0.051 0.252+£0.036 0.924 + 0.059

Text2Video-Zero 0.946 = 0.015 0.252 £ 0.024 0.928 £ 0.009
DirecT2V 0.879 £0.067 0.253 +£0.033 0.870 & 0.071

Table 1. Quantitative comparison across various methods. The
best performances are denoted in bold.

refer to the supplementary material for details on each met-
ric. The results, as shown in Table 1, demonstrate that our
GPT4Motion, leveraging GPT-4 for understanding and in-
voking Blender to simulate physical scenes, outperforms
the other four methods on all the metrics. However, these
metrics might not encompass the entire scope of video gen-
eration quality, leading us to undertake a user study for a
more comprehensive evaluation. We also conduct a user
study with 30 participants, where we show videos gener-
ated by different methods under the same prompt and ask
the participants to vote for the best video based on three
evaluation criteria: physical accuracy, text-video alignment,
and the least amount of video flickering. Remarkably, our
GPT4Motion’s results obtain 100% of the votes.

4.4. Ablation Study

We perform an ablation study to evaluate the importance of
control conditions, cross-frame attention, and « values in
Eq. 2, analyzing the effect of each design separately. Ex-
periments are conducted with the user prompt “A white flag
flaps in the wind”, and the video of the complete model is
shown in Figure 5 (middle).

Control Conditions. Figure 9 exhibits the results across
frames under different controlling conditions, which shows
that the model without the edge condition (w/o edge) fails

1436

w/o edge

w/o depth

FFA

i 1+ 1 142 143
Figure 9. Ablation experiments on various control conditions and
cross-frame attention. Four consecutive frames are shown.

to generate correct object edges (see the first row). Addi-
tionally, the model without the depth condition (w/o depth)
not only adds extra cloth to the flag, but also mixes the flag
and the cloud due to the lack of depth-of-field information.
The result of Figure 5 (middle) demonstrates that the joint
use of both control conditions preserves the integrity of the
object edges and well handles the problem of mixing up the
flag with the sky.

First-Frame Attention (FFA). In this setting, K; i is
replaced with K| = WHXE,, and Vi1 is replaced with
Vi = WV F, during the generation of the i-th frame in
Eq. 3. This means that the i-th frame only attends to the
first frame (without paying attention to itself). As shown in
Figure 9 (3rd row), the model FFA results in incomplete flag
generation, where part of the flag merges with the sky and
white clouds. Conversely, our cross-frame attention allows
the i-th frame during its generation to focus not only on the
features of the first frame but also on its own characteristics,
thereby maintaining temporal consistency and ensuring the
completeness of the generated object.

Different o« Values. To explore the balance of the first
frame and current frame in keeping temporal consistency,
we select three different « values for comparison. Figure 10
presents four generated consecutive frames. It is clear that
when the « value is too small, the generated results suffer
from distortion, while a large « value causes flickering (in-
consistent flag color intensity). By adjusting the « value to
an appropriate level (i.e., 0.75), the generated results main-
tain the fidelity of the flag and reduce the flickering.

5. Limitations and Future Work

Although GPT4Motion advances the field of T2V synthe-
sis, it has several limitations that set the directions for fu-

a=0.1

a=0.75

a=1.0

1 i+ 1 1+ 2 t+3

Figure 10. Ablation experiments on different o values. Four con-
secutive frames are shown.

ture research. While GPT4Motion successfully handles ba-
sic physical motions related to specific object materials, we
have not extended it to more complex motion scenarios. We
hypothesize that complex motions could be decomposed
into a series of basic motions, requiring more refined in-
structions for LLMs. Another limitation is that sometimes
the generated videos still have flickering in some frames.
Despite these limitations, we believe that GPT4Motion pro-
vides a promising way for T2V generation.

6. Conclusions

This paper proposes GPT4Motion, a new training-free
framework that effectively combines the advanced plan-
ning capability of Large Language Models (LLMs) with
the robust simulation tool, Blender, for efficient text-to-
video (T2V) synthesis. By generating Blender’s scripts via
GPT-4, GPT4Motion significantly simplifies the video gen-
eration process, making it more accessible and less reliant
on extensive manual effort or a deep, specialized techni-
cal knowledge in 3D modeling. Experimental results on
three basic physical motion scenarios, including rigid object
drop and collision, cloth draping and swinging, and liquid
flow, demonstrate GPT4Motion’s impressive capability to
efficiently generate high-quality videos with temporal co-
herence, surpassing previous T2V methods. GPT4Motion
opens up new perspectives for T2V generation. Its integra-
tion of LLM-driven scripting and advanced Blender simu-
lation paves a promising path for tackling more complex
scenes in future research.

Acknowledgement This work was supported by Shen-
zhen Science and Technology Innovation Commission
(JSGG20220831105002004, JCYJ20200109114835623).

1437

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

Jie An, Songyang Zhang, Harry Yang, Sonal Gupta,
Jia-Bin Huang, Jiebo Luo, and Xi Yin. Latent-
shift: Latent diffusion with temporal shift for ef-
ficient text-to-video generation. arXiv preprint
arXiv:2304.08477,2023. 1

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos, Sia-
mak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023. 2

Max Bain, Arsha Nagrani, Giil Varol, and Andrew
Zisserman. Frozen in time: A joint video and image
encoder for end-to-end retrieval. In ICCV, 2021. 1, 2

Andreas Blattmann, Robin Rombach, Huan Ling,
Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution
video synthesis with latent diffusion models. In
CVPR, 2023. 1

Tim Brooks, Aleksander Holynski, and Alexei A
Efros. Instructpix2pix: Learning to follow image edit-
ing instructions. In CVPR, 2023. 2

Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. In NeurIPS,
2021. 1,2

Zhongjie Duan, Lizhou You, Chengyu Wang, Cen
Chen, Ziheng Wu, Weining Qian, Jun Huang, Fei
Chao, and Rongrong Ji. Diffsynth: Latent in-iteration
deflickering for realistic video synthesis. arXiv
preprint arXiv:2308.03463, 2023. 2

Patrick Esser, Johnathan Chiu, Parmida Atighehchian,
Jonathan Granskog, and Anastasis Germanidis. Struc-

ture and content-guided video synthesis with diffusion
models. In ICCV, 2023. 1

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jam-
pani, Arjun Akula, Xuehai He, Sugato Basu, Xin Eric
Wang, and William Yang Wang. Layoutgpt: Com-
positional visual planning and generation with large
language models. arXiv preprint arXiv:2305.15393,
2023. 2

Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon,
Andrew Tao, Bryan Catanzaro, David Jacobs, Jia-Bin
Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve
your own correlation: A noise prior for video diffu-
sion models. In ICCV, 2023. 1

Herbert Goldstein, Charles Poole, and John Safko.
Classical mechanics, 2002. 3

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen,
Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
Guo. Vector quantized diffusion model for text-to-
image synthesis. In CVPR, 2022. 2

[13]

[22]

1438

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang,
Yu Qiao, Dahua Lin, and Bo Dai. Animated-
iff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint
arXiv:2307.04725,2023. 1,6

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Op-
timizing prompts for text-to-image generation. arXiv
preprint arXiv:2212.09611, 2022. 2

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan,
and Qifeng Chen. Latent video diffusion models for
high-fidelity video generation with arbitrary lengths.
arXiv preprint arXiv:2211.13221, 2022. 1

Jonathan Ho and Tim Salimans. Classifier-free dif-
fusion guidance. arXiv preprint arXiv:2207.12598,
2022. 5

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. In NeurIPS, 2020. 1
Jonathan Ho, William Chan, Chitwan Saharia, Jay
Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J
Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint
arXiv:2210.02303,2022. 1

Jonathan Ho, Tim Salimans, Alexey Gritsenko,
William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In NeurIPS, 2022. 1,2
Susung Hong, Junyoung Seo, Sunghwan Hong,
Heeseong Shin, and Seungryong Kim. Large language
models are frame-level directors for zero-shot text-to-
video generation. arXiv preprint arXiv:2305.14330,
2023. 1,2,6

Hanzhuo Huang, Yufan Feng, Cheng Shi, Lan Xu,
Jingyi Yu, and Sibei Yang. Free-bloom: Zero-shot
text-to-video generator with 1lm director and ldm ani-
mator. In NeurIPS, 2023. 2

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang,
Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al.
Vbench: Comprehensive benchmark suite for video
generative models. arXiv preprint arXiv:2311.17982,
2023. 7

Betker James, Goh Gabriel, Jing Li, Brooks Tim,
Wang Jianfeng, Li Linjie, Ouyang Long, and et.al. Im-
proving image generation with better captions. 2023.
2

Levon Khachatryan, Andranik Movsisyan, Vahram
Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. Text2video-
zero: Text-to-image diffusion models are zero-shot
video generators. In ICCV, 2023. 1,2, 6

Yuma Koizumi, Yasunori Ohishi, Daisuke Niizumi,
Daiki Takeuchi, and Masahiro Yasuda. Audio cap-
tioning using pre-trained large-scale language model

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

guided by audio-based similar caption retrieval. arXiv
preprint arXiv:2012.07331, 2020. 2

Pijush K Kundu, Ira M Cohen, and David R Dowling.
Fluid mechanics. Academic press, 2015. 3

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and gener-
ation. In ICML, 2022. 2

Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan,
Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng,
Errui Ding, and Jingdong Wang. Videogen: A
reference-guided latent diffusion approach for high
definition text-to-video generation. arXiv preprint
arXiv:2309.00398, 2023. 1

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell.
Llm-grounded diffusion: Enhancing prompt under-
standing of text-to-image diffusion models with large
language models. arXiv preprint arXiv:2305.13655,
2023. 2

Long Lian, Baifeng Shi, Adam Yala, Trevor Darrell,
and Boyi Li. Llm-grounded video diffusion models.
arXiv preprint arXiv:2309.17444, 2023. 2

Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal.
Videodirectorgpt: Consistent multi-scene video gen-
eration via llm-guided planning. arXiv preprint
arXiv:2309.15091, 2023. 2

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao
Wang, Yong Zhang, Haoxin Chen, Yang Liu, Tieyong
Zeng, Raymond Chan, and Ying Shan. Evalcrafter:
Benchmarking and evaluating large video generation
models. arXiv preprint arXiv:2310.11440, 2023. 7
Alex Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photore-
alistic image generation and editing with text-guided
diffusion models. In ICML, 2022. 2

OpenAl. Gpt-4 technical report. arXiv 2303.08774,
2023. 2

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. In NeurIPS, 2022. 2

Quynh Phung, Songwei Ge, and Jia-Bin Huang.
Grounded text-to-image synthesis with attention refo-
cusing. arXiv preprint arXiv:2306.05427, 2023. 2
Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Miiller, Joe Penna,
and Robin Rombach. Sdxl: Improving latent diffusion
models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023. 4

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie
Mei, Mingzhe Wang, Yiming Zuo, Karhan Kayan,

[39

—

[40]

[43

[}

[45]

[50]

1439

Hongyu Wen, Beining Han, Yihan Wang, et al. Infinite
photorealistic worlds using procedural generation. In
CVPR, 2023. 3

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125,2022. 1,2

Robin Rombach, Andreas Blattmann, Dominik
Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion mod-
els. In CVPR,2022. 1,2,4

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In MICCAI, 2015. 2

Chitwan Saharia, William Chan, Saurabh Saxena,
Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara
Mahdavi, Rapha Gontijo Lopes, et al. Photorealis-
tic text-to-image diffusion models with deep language
understanding. In NeurIPS, 2022. 1, 2

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, et al. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022. 2

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin,
Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, et al. Make-a-video: Text-
to-video generation without text-video data. In ICLR,
2023. 1,2

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
ICML, 2015. 1

Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. In /CLR, 2021.
5

Yang Song, Jascha Sohl-Dickstein, Diederik P
Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through
stochastic differential equations. /CLR, 2021. 1
Chunyi Sun, Junlin Han, Weijian Deng, Xinlong
Wang, Zishan Qin, and Stephen Gould. 3d-gpt: Proce-
dural 3d modeling with large language models. arXiv
preprint arXiv:2310.12945, 2023. 3

Hui Tang and Kui Jia. A new benchmark: On the
utility of synthetic data with blender for bare super-
vised learning and downstream domain adaptation. In
CVPR, 2023. 3

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya
Zhang, Xiang Wang, and Shiwei Zhang. Mod-

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

elscope text-to-video technical report. arXiv preprint
arXiv:2308.06571,2023. 1,6

Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen
Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He,
Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality
video generation with cascaded latent diffusion mod-
els. arXiv preprint arXiv:2309.15103, 2023. 1

Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo
Yu, Xin Ma, Xinyuan Chen, Yaohui Wang, Ping Luo,
Ziwei Liu, et al. Internvid: A large-scale video-text
dataset for multimodal understanding and generation.
arXiv preprint arXiv:2307.06942, 2023. 1,2

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language
models are zero-shot learners. In ICLR, 2021. 2

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang,
Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-
a-video: One-shot tuning of image diffusion models
for text-to-video generation. In ICCV, 2023. 2
Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yu-
chong Sun, Bei Liu, Huan Yang, Jianlong Fu, and
Baining Guo. Advancing high-resolution video-
language representation with large-scale video tran-
scriptions. In CVPR, 2022. 1,2

Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng
Wang, Xiaodong Wang, Minheng Ni, Zhengyuan
Yang, Linjie Li, Shuguang Liu, Fan Yang, et al. Nuwa-
xl: Diffusion over diffusion for extremely long video
generation. arXiv preprint arXiv:2303.12346, 2023. 1
Lvmin Zhang and Maneesh Agrawala. Adding condi-
tional control to text-to-image diffusion models. arXiv
preprint arXiv:2302.05543, 2023. 3, 4

Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei
Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo: Efficient
video generation with latent diffusion models. arXiv
preprint arXiv:2211.11018, 2022. 1

1440

	. Introduction
	. Related Work
	. Text-to-Video Generation
	. LLM-Assisted Visual Generations
	. Blender in Deep Learning

	. Method
	. Task Formulation
	. Blender Simulations via GPT-4
	. Video Synthesis with Physical Conditions

	. Experiments
	. Implementation Details
	. Controlling Physical Properties
	. Comparisons with Baselines
	. Ablation Study

	. Limitations and Future Work
	. Conclusions

	anm24:
	24.0:
	anm23:
	23.0:
	anm22:
	22.0:
	anm21:
	21.0:
	anm20:
	20.0:
	anm19:
	19.0:
	anm18:
	18.0:
	anm17:
	17.0:
	anm16:
	16.0:
	anm15:
	15.0:
	anm14:
	14.0:
	anm13:
	13.0:
	anm12:
	12.0:
	anm11:
	11.0:
	anm10:
	10.0:
	anm9:
	9.0:
	anm8:
	8.0:
	anm7:
	7.0:
	anm6:
	6.0:
	anm5:
	5.0:
	anm4:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

