
Generating Material-Aware 3D Models from Sparse Views

Shi Mao1,2 Chenming Wu2 Ran Yi3 Zhelun Shen2 Liangjun Zhang2 Wolfgang Heidrich1

1 KAUST 2 Baidu Research 3 Shanghai Jiao Tong University
wuchenming@baidu.com

Abstract

Image-to-3D diffusion models have significantly ad-
vanced 3D content generation. However, existing meth-
ods often struggle to disentangle material and illumina-
tion from coupled appearance, as they primarily focus on
modeling geometry and appearance. This paper introduces
a novel approach to generate material-aware 3D models
from sparse-view images using generative models and effi-
cient pre-integrated rendering. The output of our method
is a relightable model that independently models geome-
try, material, and lighting, enabling downstream tasks to
manipulate these components separately. To fully lever-
age information from limited sparse views, we propose a
mixed supervision framework that simultaneously exploits
view-consistency via captured views and diffusion prior via
generating views. Additionally, a view selection mecha-
nism is proposed to mitigate the degenerated diffusion prior.
We adapt an efficient yet powerful pre-integrated rendering
pipeline to factorize the scene into a differentiable environ-
ment illumination, a spatially varying material field, and
an implicit SDF field. Our experiments on both real-world
and synthetic datasets demonstrate the effectiveness of our
approach in decomposing each component as well as ma-
nipulating the illumination. Source codes are available at
https://github.com/Sheldonmao/MatSparse3D.

1. Introduction

3D model generation is crucial for various industrial appli-
cations such as AR/VR, filming, and gaming. However, the
traditional pipeline for 3D model generation is a laborious
manual task that relies on artistic modeling skills and tech-
nical expertise. Automating the 3D designing process has
the potential to significantly reduce production costs and en-
able faster and more diverse content creation. Inverse ren-
dering, a technique that analyzes captured images to recover
the object’s geometry, material properties, and external illu-
minations, holds promise in assisting this process.

The recent advancements in differentiable rendering and
neural representation have showcased their capabilities not
only in generating novel views [16] but also in tackling in-

verse rendering challenges [17, 29]. However, these meth-
ods requires significant number of input views, preferably
encompassing a 360◦ range, to effectively learn a consistent
model that can disentangle the complex rendering process.
Recent progress in the generative model, especially the 2D
diffusion model, has demonstrated the viability of generat-
ing a 3D model by making use of prior knowledge from
as few as a single image [12, 19]. However, these meth-
ods generate 3D models without disentangling the underly-
ing rendering process and only model the geometry and the
outgoing radiance.

In this work, we present a novel approach for generating
material-aware 3D models from sparse view images, depart-
ing from the conventional practice of generating 3D mod-
els with fixed entangled radiance. Our method produces a
relightable representation that separately models geometry,
material, and lighting, enabling downstream tasks to manip-
ulate these components separately. To achieve this, we pro-
pose a differentiable inverse rendering pipeline that lever-
ages RGB and estimated depth information from captured
images, along with a 3D prior derived from a 2D diffusion
model conditioned on the input images. Given that the 2D
diffusion model imposes supervision for the entire image as
opposed to individual pixels, an efficient rendering pipeline
becomes crucial. We opt for pre-integrated rendering as
it effectively renders the outgoing radiance without limit-
ing the illumination frequency. By representing lighting as
pre-integrated mipmaps and using a split-sum approxima-
tion for rendering, we simultaneously learn all-frequency
direct illumination and compact material properties. For
optimizing smooth surfaces, we incorporate an implicit sur-
face geometry representation into the rendering pipeline,
which demonstrates superior convergence when compared
to its discrete counterpart. Additionally, to address degen-
erated diffusion prior notable for large baseline image gen-
eration, we introduce a simple yet effective view selection
mechanism that mitigates excessive noise from the diffu-
sion model. In summary, the contributions of our work are
as follows:

• A mixed supervision framework that simultaneously ex-
ploits RGB/depth information via captured views and dif-
fusion prior via generating views for sparse view inverse
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rendering.
• An efficient yet powerful pre-integrated rendering

pipeline with implicit surface representation for jointly
optimizing lighting, material and geometry under the
mixed supervision framework.

• A view selection mechanism to mitigate unwanted noise
arising from a degenerated diffusion prior.

2. Related Work

2.1. Neural Inverse Rendering

Inverse rendering has garnered significant attention in com-
puter vision and graphics due to its potential for extract-
ing scene properties from observed images. However, this
task is inherently under-constrained and computationally
demanding, involving the inference of scene geometry, ma-
terial properties, and lighting conditions. NeRFactor [28]
improves upon existing NeRF models by integrating Multi-
layer Perceptrons (MLPs) that describe various surface at-
tributes for inverse rendering, but it is constrained to using
a low-resolution (16 × 32) environment map for lighting
representation. In contrast, PhySG [27] employs up to 128
Spherical Gaussians (SG) to model illumination, extending
the model representation ability. NeRD [1] further extends
this approach to handle varying illumination conditions by
using network to learn 24 Spherical Gaussians represent-
ing the illumination. The Neural-PIL approach [2] offers
a neural pre-integrated lighting method as an alternative to
Spherical Gaussians, enabling accurate estimation of high-
frequency lighting details. However, the lighting for differ-
ent roughness level lacks consistency as they are predicted
independently by the neural network. NVDiffrec [17] ad-
dress this inconsistency by introducing differentiable for-
mulation that build lighting mipmaps of different roughness
levels from the same high-resolution (1024× 512) environ-
ment map. Its successor, NVDiffrecmc [8], introduces ray
tracing and Monte Carlo integration for more realistic shad-
ing. However, both methods adopt discrete deep marching
tetrahedra (DMTET) for geometry reconstruction, which
leads to unstable training performance especially when in-
put views are limited. Our method adopts efficient pre-
integrated rendering techniques similar to [17]. However,
we adapt it using neural implicit surface representation to
ensure stable training that jointly learn high-quality geom-
etry, material, and illumination under sparse view settings,
similar to [15]. NeRO[13] employs a similar geometry rep-
resentation and learning strategy but primarily focuses on
recovering reflective objects. Although NeRO provide valu-
able insights into the intricate lighting effect including indi-
rect illuminations, the introduction of more complex mod-
eling poses additional challenges when only limited, sparse
views are available. The recent progress in 3D Gaussian
Splatting (3DGS) [11] has introduced novel representations

and factorizations in inverse rendering, as demonstrated in
works such as [6, 10, 21]. But obtaining good quality initial
point cloud from sparse-view images remains difficult for
these methods.

2.2. Diffusion Models for 3D Generation

The recent advancements in the 2D diffusion model have
demonstrated its effectiveness as a prior for 3D genera-
tion. Dreamfusion [18] introduced the Score Distillation
Sampling (SDS) loss, enabling text-to-3D generation using
the 2D diffusion model as a prior. Zero123 [12] trained
a diffusion model using a large-scale 3D model dataset
conditioned on posed images, allowing for image-to-3D
generation. They trained the model to generate images
by considering a reference image and the relative cam-
era view position as conditions, which inherently learned
the geometry prior from the large-scale 3D dataset. Sub-
sequent works have further improved upon these results.
Prolific Dreamer [25] introduced the Variation Score Dis-
tillation (VSD) technique, extending the SDS loss with
low-rank adaptation (LoRA) to generate diverse and high-
quality objects. Magic123 [19] proposed a coarse-to-fine
framework (NeuS to DMTET) that utilized both text con-
ditions (2D prior) and image conditions (3D prior) to gen-
erate high-quality objects in a balanced manner. Make-it-
3D [22] also presented a two-stage framework (NeRF to
textured point cloud) for object generation based on the
text-conditioned diffusion model. In recent developments,
Zero123++[20] introduced a multiview diffusion model that
generates multiple images simultaneously and incorporates
attention mechanisms to enforce multi-view consistency.
Similarly, Wonder3D[14] employs a similar approach by
introducing cross-domain normal attention. However, these
methods do not address the entangled environment lights,
which limits their usefulness for downstream tasks. Fan-
tasia3D [3] adopts the modeling technique from NVD-
iffrec [17] and employs a two-stage optimization process
to generate geometry and appearance separately. By utiliz-
ing DMTET as the geometry representation and employing
pre-integrated rendering in the pipeline, they make signifi-
cant progress. However, they always set the metallic factor
as 0 and use a fixed bright environment map, which restricts
their ability in inverse rendering scenarios. On the other
hand, MATLABER [26] presents a solution for generating
material-aware 3D models from text prompts. In our work,
we propose a method to generate material-aware 3D models
using sparse view images. Comparing with text-hinted gen-
eration, our approach enables 3D digitization of real-world
objects in an efficient way.

3. Method
We present a method to generate material-aware 3D models
from sparse-view images, making use of generative mod-

1401



Figure 1. Our mixed supervision framework. Given the input view
poses of captured images, RGB and depth images are rendered
with trainable illumination, and MSE loss is applied to supervise
these rendered images. Additionally, RGB images from generated
view poses (with a relative camera rotation ∆R, and translation
∆T to the referenced input views) are rendered similarly and su-
pervised using SDS loss from the Zero123 diffusion model.

els and pre-integrated rendering. The output of our method
is a relightable model that models geometry, material, and
lighting separately. We introduce our pipeline in Section
3.1. Then, the modeling of surface geometry is discussed
in detail in Section 3.2, followed by the modeling of ma-
terial and lighting in Section 3.3. The diffusion prior that
supervise the generated views is presented in Section 3.4.

3.1. Method Pipeline

In our proposed method, depicted in Figure 1, we introduce
a framework that jointly optimizes geometry, material, and
environment illumination based on limited sparse view in-
puts, leveraging the prior knowledge provided by the 2D
diffusion model. Given the input views of sparsely cap-
tured images, we employ trainable illumination to render
RGB images. The rendered images are supervised using
the mean squared error (MSE) loss with respect to the cap-
tured images. To make the most of the limited information
available from the captured views, we utilize a monocular
depth estimation algorithm to obtain estimated depth val-
ues, which are then used to supervise the rendered depth.
As the absolute depth values may have arbitrary scaling and
bias, we address this issue by fitting a least-square solution,
minimizing the mean squared error, before calculating the
MSE loss.

In addition to the captured input views, we also leverage
geometry priors from the diffusion model. Specifically, we
utilize the Score Distillation Sampling (SDS) loss with the
Zero123 [12] diffusion model. This loss takes captured im-
ages as reference images and incorporates the relative cam-
era pose as conditions to generate novel view images. By
imposing this SDS loss, we can effectively supervise the
randomly generated views and align them with the geome-
try priors obtained from the diffusion model.

Figure 2. Models for geometry, material and light. Both MLPmat

and MLPpos are multi-layer perceptions that models the corre-
sponding mapping for SDF and material properties respectively.
The lighting model is represented as differentiable environment
map, from which both diffuse and specular irradiance Ld and Ls

can be queried effectively using its pre-computed mipmaps. Fi-
nally, a pre-integrated rendering (PIR) module render the outgoing
radiance I from using the intermediate values.

3.2. Geometry Modeling

As shown in Figure 2, we use the implicit neural surface for
geometry reconstruction. The implicit neural surface rep-
resents surfaces as the zero-level set of implicit SDF repre-
sentation. Following NeuS[24], we use multi-layer percep-
trons (MLPs) to model the mapping of both the SDF and
material properties from spatial location x ∈ R3. Specif-
ically, the positional mapping MLPpos : x 7→ s that
maps a 3D position x ∈ R3 to a feature f ′ ∈ RM+1,
where the first element of f ′ have a geometrical meaning
of SDF. The gradient of the SDF field is calculated as ∇sdf

and serves as the surface normal n. The material mapping
MLPmat : {f ,∇sdf} 7→ m maps the rest channels of fea-
ture, i.e. f = f ′[1 : M + 1), and the gradient of SDF
field ∇sdf to material properties m ∈ R6. Details on the
material properties will be elaborated in Section 3.3. NeuS
renders an image by accumulating the radiance along the
rays cast by pixels, following the standard volume render-
ing scheme. The occlusion-aware unbiased weight function
is calculated from the SDF value referring to Equations. 5
and 10 in NeuS[24].

3.3. Material and Lighting Modeling

To decompose the radiance field into geometry, mate-
rial, and lighting components, we exploit an efficient pre-
integrated rendering pipeline for differentiable rendering.

Lighting Modeling. The pre-integrated illumination, de-
noted as L(ωr; r) is the integration of incident light radi-
ance according to different surface roughness r. This light-
ing function relies on the reflection direction ωr, which is
calculated using the viewing direction ωv and the surface
normal n as ωr = 2(ωv · n)n − ωv . A trainable envi-
ronment cubemap (6 × 3 × H × W , with 6 faces and 3
color channel) is used to parameterize the lighting condi-
tion. From this cubemap, mipmaps are pre-integrated dif-
ferentiably for various levels of roughness r to enable fast
interpolation when querying the diffuse irradiance Ld =
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L(n; 1) and specular irradiance Ls = L(ωr; r) for spe-
cific surface point [17]. Importantly, the pre-integration and
interpolation procedures remain differentiable, allowing for
the learning of the trainable environment map.

Material Modeling. In our approach, we express the ma-
terial representation as a combination of different compo-
nents. This includes the diffuse color kd ∈ R3, the specular
term ks = r,m ∈ R2, where r represents roughness and m
represents metallic properties, and an additional occlusion
term occ ∈ R. Collectively, these material properties can be
represented as m = kd,ks, occ.

Pre-integrated Rendering. Following NVDiffrec [17], the
rendering equation is a blend of diffuse and specular terms,
and the outgoing radiance I(x,ωv) for RGB color from a
surface point x with viewing direction ωv can be formu-
lated as follows.

I(x,ωv) = (1− occ) [kdLd +Ls (F0Fs + Fb)] (1)

The reflectance of specular irradiance is calculated as the
specular reflectance at normal incidence F0 modulated by
its scale Fs and bias Fb. Both the scaling and bias term
are a function of the roughness r and the cosine value
between viewing direction ωv and surface normal n, i.e.
Fs = Fs (ωv · n, r) and Fb = Fb (ωv · n, r). We adopt
the convention from UE4 that sets F0 as an interpolation
from 0.04 (non-metallic material’s specular reflectance) to
diffuse color kd (metallic material’s specular reflectance)
using the material’s metallic value m.

F0 = 0.04× (1−m) +mkd. (2)

The final outgoing radiance is mediated by (1− occ) to ac-
count for the shadowing and inter-reflection effect that can-
not modeled by the pre-integration rendering.

3.4. Diffusion Prior

To introduce prior knowledge pre-trained in a large-
scale 3D model dataset, we embed Zero123[12] into our
pipeline using SDS loss to supervise generated novel views.
Zero123 is a 2D diffusion model that comes with a learned
denoising function ϵϕ(zt; Ĩ ,∆R,∆T, t) that predicts the
sampled noise ϵ given the noisy image latent zt, noise level
t, and conditions [Ĩ ,∆R,∆T ], where Ĩ is the conditioning
image and [∆R,∆T ] is the relative camera pose between a
generated novel viewpoint to the reference image. The SDS
loss[18] is formulated as:

∇θLsds = Eϵ,t

[
w(t)

(
ϵϕ(zt; Ĩ ,∆R,∆T, t)− ϵ

) ∂I

∂θ

]
(3)

where I = g(θ) is a rendered view with parameter θ in-
cluding all the models of geometry, material, and illumina-
tion, and zt is the noisy latent by adding a random Gaussian
noise of a time step t to the latent of I .

3.5. Regularizations and camera selection

Regularizations In addition to RGB and depth values, the
accumulated opaque density is also supervised by the object
mask by MSE and binary cross entropy loss. To regular-
ize the SDF field, we sampled nearby normal in 3D space
and enforced the 3D smoothness of SDF field by regulariz-
ing the L1 distance between nearby normals. To regularize
the environment cubemap, we apply a white environment
prior and regularize it using its mean absolute error (MAE).
Specifically, MAE is applied to the learned the base envi-
ronment cubemap. For the material, we regularize the oc-
clusion term to be small to limit the outlier of the rendering
model. This is enforced by minimizing the mean value of
the rendered occlusion term.
Camera Selection We observe that the images generated by
Zero123 tend to degrade when the relative camera position
∆T is excessively large. This makes sense as neighboring
views share more information and are are easy to generate,
while the diffusion model is more likely to go wrong for a
drastically different view. Therefore, during training, we se-
lect the closest captured view as a reference image for each
generated view. We perform an ablation study in Section
4.7.

4. Experiments
4.1. Dataset

We generated a synthetic dataset using Blender, which con-
sisted of 10 models sampled from NeRFactor [28], RefN-
eRF [23], and the large open-source 3D dataset Objaverse
[5]. To create the training dataset, we randomly sampled
a collection of 10 environment maps to render the scenes.
For each scene, we randomly selected 5 positions in the up-
per hemisphere to render the sparse-view images. To eval-
uate the relighting performance, we relit each scene using
10 different environment maps from 10 evenly distributed
circling views, resulting in 100 relighting images. The cor-
responding albedo images were also rendered as reference.
Additionally, we synthesized images using positions from
the testing set and illuminations from the training set to
evaluate novel view synthesis. The reported results are the
average over 10 scenes. Furthermore, we assessed the gen-
eralization capabilities of our method by evaluating it on the
real-world DTU dataset [9], demonstrating how well our ap-
proach can extrapolate to real-world scenarios beyond the
synthetic dataset.

4.2. Implementation Details

The rendered data in our experiments has a resolution of
800 × 800. During training, we downscale the scene to a
resolution of 200 × 200 for the generated views. For each
captured view, we sample 4096 rays. The training process
alternates between the captured and generated views, taking
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Figure 3. Qualitative comparison on novel view synthesis and geometry reconstruction for different methods. The suffix -n denotes the
number of sparsely sampled input views.

Method-Views Novel View Geometry
PSNR↑ SSIM ↑ Chamfer Dist. ↓

Zero123-1 [12] 15.14 0.817 7.31
NVDiffrec-5 [17] 15.92 0.817 3.55

Zero123-5 20.93 0.870 2.33
ours-5 20.94 0.866 2.09

Table 1. Novel view synthesis and geometry reconstruction. (In
bold: best; underline: second best)

them one by one. To generate random views, we sample
positions from the upper hemisphere with a random radius
ranging from 1 to 1.5. We employ the Adam optimizer with
a learning rate of 0.01 to train our model. The training pro-
cess consists of 10,000 steps, and on a single V100 GPU, it
typically takes less than 2 hours to train a model.

4.3. Baseline Methods

We compare our method with Zero123[12], a diffusion-
based image-to-3D method that can generate 3D shapes
from a single image. We use the updated Zero123-XL[4]
as the diffusion prior and use the neural surface as the
geometry backbone following the implementation of [7].
Using our framework, we extend it to a multi-view set-
ting and term it Zero123-n, where n denotes the num-
ber of input views. We additionally evaluate the relight-
ing and material reconstruction results by comparing them
with NVDiffrec[17], an inverse rendering method adopting
a similar pre-integrate rendering pipeline.

4.4. Novel View Synthesis and Geometry Recon-
struction

We conducted a comparative analysis of different methods
based on their performance in novel view synthesis and ge-
ometry reconstruction. To evaluate how accurately the re-
constructed geometry aligns with the ground truth model,
we first extracted the mesh from the implicit signed distance
function (SDF) using the marching cubes algorithm. Sub-
sequently, we sampled 50,000 points uniformly from the
mesh and calculated the Chamfer distance between these
points and the corresponding points on the ground truth
mesh. For simplicity, we multiplied the vertex positions
by 10 in the result. For novel view synthesis, PSNR and
SSIM are reported. The results, presented in Table 1, in-
dicate that under 5-view setting, our method achieves com-
parable performance to Zero123-5 on both novel view syn-
thesis and geometry reconstruction, while significantly bet-
ter than NVDiffrec-5. It is worth noting that we share the
same training framework as Zero123-5 but differ in mod-
eling approaches. This suggests that although we impose
a more complex material-illumination factorization model,
the overall geometry and visual quality are not degraded.

A more detailed qualitative comparison is illustrated
in Figure 3. When solely relying on captured images,
NVDiffrec-5 tends to reconstruct noisy surfaces with float-
ing artifacts. In contrast, solely rely on diffusion prior
without multi-view cross-reference, Zero123-1 generates
smoother geometry, but it is often incorrect due to the lim-
ited information provided by a single image. This indicates
the effectiveness of the mixed supervision framework that
simultaneously exploits captured views and diffusion prior
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Figure 4. Material and illumination factorization on synthetic Porsche and Cartoon Car scene. Our method correctly learned the blue an
yellow highlights in the environment map for cartoon car scene. Material, roughness and occlusion are visualized using jet colormap.

via generating views adopted by our method and zero123-5.
Our model performs similarly to the NeuS-based Zero123-
5 approach, but shows better performance in reconstruct-
ing the shiny convex-shape Porsche car, while it slightly
underperforms in the concave-shape Gramophone. We at-
tribute these variations to our illumination modeling, which
assumes occlusion-free visibility to the environment map
from every point on the surface. Although occlusion terms
can partially compensate for this, the inherent modeling en-
courages a convex shape.

4.5. Material Reconstruction and Relighting

We conducted further evaluation to assess the reconstruc-
tion quality of material and illumination through relighting.
The model was relighted using 10 testing environment maps
for each testing camera pose and compared against ground
truth renderings. To evaluate the material reconstruction,
we rendered the albedo image by ray marching the kd val-
ues and compared it with the diffuse color rendered by
Blender. Both comparisons were quantitatively measured
using PSNR and SSIM metrics. It is important to note that
the material and illumination can only be resolved up to a
relative scale. To account for this, we adopted a conven-

Method-Views Relight Albedo
PSNR↑ SSIM ↑ PSNR↑ SSIM ↑

NVDiffrec-5 [17] 16.21 0.754 15.22 0.806
ours-5 19.06 0.878 17.81 0.857

ours-wo-depth-5 18.79 0.874 17.17 0.853
ours-random-5 18.38 0.840 16.28 0.808

Table 2. Relighting and albedo reconstruction

tion that scales the predicted albedo image by a factor that
matches the average ground-truth albedo. The results, pre-
sented in Table 2, demonstrate that our method outperforms
NVDiffrec, which struggles to generate reasonable geome-
try under limited views. The material and illumination fac-
torization is visualized in Figure 4. Our method reconstruct
the environment maps better, especially correctly learning
the blue an yellow highlights for Cartoon Car scene. Com-
paring with NVDiffrec, more consist material properties are
reconstructed for different parts of the objects. Addition-
ally, a qualitative assessment of the relighting results, de-
picted in Figure 5, reveals that our model aligns better with
the ground truth rendering.
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Figure 5. Relight Hot Dog and Cartoon Car model using 10 different environment maps of the test set. Both ground truth rendering and
the results of our models and NVDiffrec are shown.

Figure 6. Material and illumination factorization on real-world DTU [9] scans using our method. For each real-world scan, sparsely
sampled 5 views are taken as input. Material, roughness and occlusion are visualized using jet colormap.

4.6. Real-world Evaluation

To assess the generalization capability of our proposed
method, we conducted a comprehensive evaluation using 5
scans from the real-world DTU dataset. For each scan, we
sparsely sampled 5 views as input and tested the model on

the remaining views. The evaluation results, shown in Fig-
ure 6, demonstrate that our method exhibits strong general-
ization capabilities to real-world scenes. It successfully re-
constructs geometry and accurately captures material prop-
erties when provided with only 5 input views. In contrast,
as depicted in Figure 7, NVDiffrec encounters difficulties in
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Figure 7. Novel views synthesis and geometry reconstruction comparison on real-world DTU [9] scans, For each real-world scan, sparsely
sampled 5 views are taken as input.

Figure 8. Novel view synthesis and geometry reconstruction achieved using NVDiffrec in combination with depth information and diffusion
prior, with 5 views provided as input.

converging towards a satisfactory level of geometry recon-
struction. Furthermore, our method achieves notable per-
formance in novel view rendering, with an average PSNR of
21.78 and SSIM of 0.87. These results surpass the perfor-
mance of NVDiffrec, which achieves a comparatively lower
PSNR of 9.31 and SSIM of 0.67. These findings affirm
the effectiveness and superior performance of our method
in generalizing to real-world scenes.

4.7. Ablation Study

Baseline Comparison. To assess the effectiveness of utiliz-
ing the neural surface as a geometry representation, we con-
ducted additional comparisons using DMTET as a baseline
for geometry. In the case of NVDiffrec, we incorporated
depth cues and generated views during training. To ad-
dress the non-differentiability issue associated with raster-
ized z/w values during rendering, we manually converted
the vertex positions to camera space depth and rasterized
it as a feature to ensure differentiability. The qualitative
assessment of the novel view synthesis and geometry re-
constructions, following the same protocols, are presented
in Figure 8. These results highlight the challenges asso-
ciated with optimizing the discrete DMTET representation
and validates our decision to employ the neural surface as
the geometry representation, as it offers superior optimiza-
tion capabilities and avoids the degradation caused by noise
introduced by alternative representations such as DMTET.
Generated View Conditioning. We performed the ablation
study that randomly selected a reference frame instead of
selecting the nearest captured images as a reference frame.
This method is termed ours-random-5 in Table 2. The re-
sults demonstrate a significant decrease in both relighting

and albedo reconstruction performance. This indicates that
the diffusion prior plays a crucial role in providing higher-
quality information, particularly when the relative view dif-
ference is small.

Depth Supervision. To assess the necessity of supervis-
ing the scene using estimated depth, we conducted an abla-
tion study where we removed the depth supervision. This
variant is referred to as ours-wo-depth-5 in Table 2. The re-
sults indicate a decrease in both relighting and albedo recon-
struction performance, although the drop is relatively small.
This suggests that the diffusion model already incorporates
geometry priors that mitigate the requirement for explicit
depth supervision.

5. Conclusion

This paper presents a novel approach to generate material-
aware 3D models using sparse view images. Our proposed
mixed supervision framework combines RGB and depth in-
formation from captured views and leverages the diffusion
prior obtained through generating views for sparse view in-
verse rendering. To effectively represent each component,
we utilize adapted pre-integrated rendering and implicit sur-
face techniques within the framework. These techniques
enable efficient supervision and reconstruction of geome-
try, material, and illumination. The experimental on both
synthetic and real-world demonstrate the model’s ability to
reconstruct each component and highlight the effectiveness
of the camera selection mechanism. While the current re-
sults are promising, there is a need for more detailed ge-
ometry reconstruction, as well as the accounting for more
complex indirect illumination.
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