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Abstract

Natural scene semantic segmentation is an important
task in computer vision. While training accurate models
for semantic segmentation relies heavily on detailed and
accurate pixel-level annotations, which are hard and time-
consuming to be collected especially for complicated nat-
ural scenes. Weakly-supervised methods can reduce label-
ing cost greatly at the expense of significant performance
degradation. In this paper, we explore the possibility of
introducing hyperspectral imaging to improve the perfor-
mance of weakly-supervised semantic segmentation. We
take two challenging hyperspectral datasets of outdoor nat-
ural scenes as example, and randomly label dozens of points
with semantic categories to conduct a point-supervised se-
mantic segmentation benchmark. Then, a spectral and spa-
tial fusion method is proposed to generate detailed pixel-
level annotations, which are used to supervise the seman-
tic segmentation models. With multiple experiments we
find that hyperspectral information can be greatly help-
ful to point-supervised semantic segmentation as it is more
distinctive than RGB. As a result, our proposed method
with only point-supervision can achieve approximate per-
formance of the fully-supervised method in many cases.1

1. Introduction

Semantic segmentation is a fundamental task in computer
vision, which aims to assign a semantic label to each
pixel in an image, and benefits many practical applications,
e.g., autonomous driving [7, 13, 45], medical image anal-
ysis [4, 25] and remote sensing [15, 27, 44]. However,
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the task usually needs pixel-level annotations for training,
which is expensive, time-consuming and mistakable. The
problem is even worse in the case of natural scenes with
huge number of objects, large scale difference and multiple
occlusions.

To alleviate this problem, weakly-supervised seman-
tic segmentation methods [46] have been proposed, with
image-level supervision [2, 24, 35], box supervision [14,
38], scribble supervision [28] or point supervision [6, 36].
But these methods mainly focus on datasets with simple
scenes, such as PASCAL VOC [16] and faces a severe prob-
lem of significant performance degradation. For example,
point-supervised methods may bring more than 20% perfor-
mance degradation (measured by mIoU) comparing to full
supervision methods [6, 36]. Obviously, it is particularly
challenging if only few points are provided as supervision
for training a semantic segmentation model. The main rea-
son is that RGB images are in nature not distinctive enough.
While same semantics can have huge variety of their RGB
values; different semantics can have the same value.

Inspired by the applications in the field of remote sens-
ing [15, 20, 27, 32, 42, 44] using hyperspectral imaging
to realize accurate pix-level classification, we imagine that
introducing hyperspectral imaging into weakly supervised
semantic segmentation of natural scenes can be beneficial.
Preliminary researches proved that utilizing hyperspectral
information to refine the coarse annotations can improve the
semantic segmentation performance [43]. However, their
method is still limited to using pixel-level weak annotations,
which contain far more information and are yet expensive
and time-consuming; beyond that, they train their classifica-
tion network on the whole dataset, which didn’t take differ-
ent lighting conditions between scenes into consideration.

In this paper, we propose a novel point-supervised se-
mantic segmentation method by utilizing hyperspectral in-
formation. As shown in Figure 1, only few points are an-
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(a) Points used for supervision

(b) Generated pixel-level annotation

Figure 1. Our method: Generate pixel-level annotation with few
annotated points. Left: image from HSICityV2 dataset; Right:
image from LIB-HSI dataset.

notated manually, and other points are classified by training
a classification model according to the point-supervision.
This process is operated on each image independently to
generate accurate pixel-level annotations. Considering that
annotated points are sparse and using only hyperspectral in-
formation may ignore the spatial relations, we further pro-
pose a spectral and spatial feature fusion method to gen-
erate refined and semantically correct annotations. Finally,
the generated annotations can be used to train any semantic
segmentation models in a pixel-level supervision manner. It
is worth noting that only RGB images are required as in-
put to train and inference the semantic segmentation model,
which means that our proposed method is more practical
than directly introducing hyperspectral imaging into the fi-
nal segmentation procedure. We conduct extensive experi-
ments on LIB-HSI [18] dataset and HSICityV2 [22] dataset.
Experiments show that our method can generate pixel-level
annotations with more than 90% accuracy comparing to the
manually labeled ground truth. Using the generated anno-
tations as supervision can achieve nearing performance of
the fully-supervised method (i.e., 62.43% mIoU on LIB-
HSI and 55.2% mIoU on HSICityV2), while keeping com-
putational cost at the same level.

The main contributions of this paper are as follows:
• We explore the feasibility and effectiveness of introduc-

ing hyperspectral imaging into point-supervised semantic
segmentation.

• We propose a framework to extract and fuse spectral and
spatial information from hyperspectral images and RGB
images, respectively, to generate more accurate annota-
tions for RGB images.

• We prove that point-supervised segmentation can achieve

nearing performance of the fully-supervised methods
with the assist of hyperspectral information.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation models based on deep learning usu-
ally adopt an encoder-decoder [5] architecture, where the
encoder is used to extract features from the input image
and the decoder is used to generate the segmentation map.
The encoder can be a pre-trained model on the ImageNet
dataset, such as ResNet [19], and HRNet [41]. The de-
coder can be a simple up-sampling layer or a deconvo-
lution layer. Starting from the FCN [30], many meth-
ods [8–10, 23, 39, 47] have been proposed to improve
the performance of semantic segmentation. For example,
DeepLab [8–10] uses astrous convolution to enlarge the
receptive field of the network; HRNet [39] uses a high-
resolution representation to extract features.

In this paper, we use semantic segmentation models as
the final consumer of generated annotation.

2.2. Weakly-supervised Semantic Segmentation

Manually annotating pixel-level labels, which is required
for fully-supervised semantic segmentation, is very expen-
sive and time-consuming. It is cheaper to acquire coarse
annotations, such as image-level supervision [2, 24, 35],
box supervision [14, 38, 40], scribble supervision [3, 28]
and point supervision [6, 36]. To the best of our knowledge,
there are few works utilizing point supervision currently, es-
pecially in the field of natural scene semantic segmentation.
In [11], Cheng et al. use point-based annotations along with
bounding boxes to avoid the influence of points outside the
gt boxes and improve the accuracy of supervision. In [17],
Fan et al. use point-based annotations to mark the position
of objects and generates pseudo labels. We also find that
many unsupervised segmentation metrics, such as Classifi-
cation Activation Maps (CAM) [48], Superpixels [1], are
widely used in weakly-supervised semantic segmentation.

2.3. Hyperspectral Imaging

Hyperspectral imaging capture hundreds of bands in the
electromagnetic spectrum. Thus, hyperspectral images can
provide more information than RGB images. Several stud-
ies in the fields of military [26], agricultural [34] and indus-
trial [37] have shown that hyperspectral images have great
potential in many applications.

Currently, there are few works on natural scene semantic
segmentation using hyperspectral images. This is due to the
lack of large-scale datasets. As hyperspectral cameras be-
come more popular and cheaper, some larger-scale datasets
of natural scenes have been released, such as HSIRoad [31],
HSICity [22, 43] and LIB-HSI [18].
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Figure 2. Spectral response of different objects. Object pixel in the
scene and its spectral response are assigned with the same color.

It is found that a few accurate hyperspectral information
of an object can provide more distinctive features for se-
mantic segmentation since different materials have differ-
ent spectrum. As a result, hyperspectral information can
be treated as additional prior knowledge to improve the
performance of weakly-supervised annotations. Huang et.
al[21] proposed a semantic segmentation method on HSICi-
tyV1 [43], which trains a hyperspectral classification model
in advance, and generates more accurate labels for training
semantic segmentation model. We adopt the similar idea to
generate more accurate pseudo labels and use them to train
a segmentation model.

3. Method

3.1. Background

The spectral response of a material is determined by the ma-
terial’s chemical composition and physical structure. Thus,
the spectral response of a material is unique. Figure 2 shows
that objects belonging to the same category share similar
spectral response, while objects belonging to different cate-
gories have different spectral response. Compared to RGB
images that are composed of three bands (i.e., red, green,
and blue), spectral response of a material has a much wider
range. As a result, hyperspectral images own a larger fea-
ture space and have stronger ability to distinguish different
objects than RGB images and can avoid spectral confusion.
Figure 3 shows the t-SNE [29] analysis results of the same
scene in RGB and hyperspectral images. Pixels with the
same label are more clustered in hyperspectral, indicating
that objects belonging to the same class share a more gen-
eral spectral signature.

Though hyperspectral images have the same spatial res-

RGB HSI

Figure 3. t-SNE [29] analysis results on the same scene in RGB
and hyperspectral images. NOTE: The number of points are the
same in two sub-figures, while RGB values of many points are the
same making the sub-figure of RGB appear more sparse.

olution as RGB images, it’s relatively hard to extract spatial
information from them efficiently. On the one hand, some
cameras can only capture hyperspectral images with low
spatial resolution and reconstruct them to match the spatial
resolution of RGB images. On the other hand, hyperspec-
tral images are of great size, which makes it extremely hard
to be used to train feature extraction models. By conducting
classification and segmentation experiments respectively on
hyperspectral images and RGB images, we find that the
RGB images contain richer spatial information while hyper-
spectral images contain more accurate spectral information.
Thus in this paper, we propose a novel weakly-supervised
semantic segmentation method, that utilize hyperspectral
information as distinctive prior to generate pixel-level an-
notations with sparse point supervision. Furthermore, both
RGB and hyperspectral images are used for efficient spatial
and spectral feature extraction and fusion.

3.2. Overview

As is illustrated in Figure 4, our method consists of two
parts: (a) Annotation Generation. We extract spectral and
spatial features from hyperspectral images and RGB images
respectively, and fuse them to generate more accurate anno-
tations. (b) Semantic Segmentation. The semantic seg-
mentation module trains a segmentation model on the gen-
erated annotations from (a) using RGB images in a super-
vised manner.

Formally, given RGB image Xr ∈ RH×W×3, where H
and W are the height and width of the image, and a se-
quence of hyperspectral points Xh ∈ R(M+N)×C , where
C is the number of bands and M and N are the number of
annotated and unannotated points. Annotation generation
module Fa first trains classification model fs with point-
based annotation Y ∈ RM×1 using annotated points from
Xh and predicts the onehot labels Yp ∈ {0, 1}(M+N)×D of
Xh, where D is the number of object classes. Then, Fa ex-
tracts spatial features from Xr using Superpixels and gener-
ates spatial feature map Ys ∈ R(M+N)×1 with Xr. Fa then
fuses Yp and Ys to generate annotations Ya ∈ R(M+N)×1.
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Figure 4. Overview of our method. First, RGB image is segmented unsupervisedly into several regions, each of which share similar
spatial features. Second, a HSI classification network is trained to extract spectral semantic information. Third, the outputs are fused
to generate more accurate annotations. Finally, a semantic segmentation network is trained with generated annotations in a supervised
manner.

Finally, Xr and Ya are fed into semantic segmentation mod-
ule Fm to train a segmentation model that contains fused
features from Xr and Xh.

3.3. Annotation Generation

In this section, we adopt a two-stage method to generate
more accurate annotations from RGB images, hyperspectral
images and point-based annotations. In the first stage, we
use supervised learning method to extract spectral features
from hyperspectral images using point supervision and ex-
tract spatial features from RGB images in an unsupervised
manner. In the second stage, we design a fusion module,
which takes both the spectral and spatial features into ac-
count to generate annotations with stronger supervision.

Spectral feature extraction of hyperspectral images.
Given a set of HSI sequences Xh ∈ R(M+N)×C and point-
based annotation Y ∈ RM×1, the spectral feature ex-
traction module fs is trained to map Xh to onehot labels
Yp ∈ {0, 1}(M+N)×D, where D = max(Y ). As a result
of the stable spectral response of different objects, only a
few samples of Xh need to be annotated for fs to generate
reliable annotations for the rest of Xh. The spectral feature
extraction module fs is trained by minimizing the following
loss function:

Ls = Lce(fs(Xh), Yh)

= −
M∑
i=1

Yh,i log(fs(Xh,i))
(1)

Different from most HSI classification methods, which

usually requires HSI cube with both spatial and spectral in-
formation, our method only requires HSI sequences with
spectral information. As a result, traditional methods for
HSI classification, such as SVM, Logistics regression, can
be adopted as fs. Though these methods are not as pow-
erful as deep learning methods, they are of great efficiency
and satisfying performance when Xh is of small size. When
Xh is of large size, we can use modified classification mod-
els, such as TwoCNN, HybridSN, etc. to train fs. The main
difference between original and modified models is the re-
move of spatial branch, since spatial information are not in-
cluded in Xh. We propose a modified version of TwoCNN
by removing the spatial branch of TwoCNN, and replaced it
with an average pooling branch to extract lightness feature
of HSI sequences. The modified network is of less parame-
ters and stronger ability to extract spectral features.

Spatial feature extraction of RGB images. Given an
RGB image Xr ∈ RH×W×3, the spatial feature extrac-
tion module fp is trained to map Xr to segmented labels
Ys ∈ RH×W×1 in an unsupervised manner. The pixels are
clustered into multiple clusters using Simple Linear Itera-
tive Clustering (SLIC)[1] algorithm. Given a target region
count k, SLIC treats pixel as a 5D vector, which consists
of pixel’s RGB values and spatial coordinates (r, g, b, x, y),
and clusters pixels with similar values into k categories.
The pixels in the same cluster are considered as belonging
to the same object and are assigned the same label. Ys is
composed of the the result category c of each pixel in Xr,
where c ∈ [0, k). Since the result generated by SLIC con-
tains no semantic information, Ys consists of k regions of
pixels with spatial feature extracted from Xr, but lack of
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semantic information.
Feature fusion. Given Yp and Ys, the fusing algorithm

ff utilizes Yp and Ys to annotations Ya ∈ RH×W×1. For
each pixel cluster in Ys, we find the corresponding pixel in
Yp with the same label and assign the label to all pixels in
the cluster. If there are several pixels in the cluster with dif-
ferent labels, we assign the label with the highest probabil-
ity to all pixels in the cluster; if there’s no pixel in the clus-
ter with a label, the pixels in this cluster are assigned with a
special label Ci, which is ignored in loss computation. For
superpixel category c ∈ [0, k), the fusing algorithm can be
formulated as:

Sc = (x, y) s.t. Ys(x, y) = c

Ya(x, y) =

argmax
∑

(x,y)∈S

Yp((x, y)) Sc ̸= ∅

Ci Sc = ∅

(2)

3.4. Semantic Segmentation

In this section, we train a semantic segmentation module
fseg using generated annotations Ya and RGB images Xr

in a supervised manner. The semantic segmentation module
Fs utilizes a semantic segmentation network fseg trained by
minimizing the following loss function:

Lseg = Lce(fseg(Xr), Ya) (3)

Since we use existing semantic segmentation networks,
such as FCN, PSPNet, DeepLab, etc., to train fseg , the se-
mantic segmentation module can be easily adapted to dif-
ferent tasks.

After training, the semantic segmentation module fseg
can be used to segmenting new RGB images. Hyperspec-
tral images are not required during inference, which reduces
the computation cost in real-world applications, making our
method more practical.

4. Experiments
4.1. Datasets

As is mentioned in Section 3.1, we focus on the seman-
tic segmentation of natural scenes with complicated objects
and backgrounds. Thus, we choose LIB-HSI and HSICi-
tyV2 datasets which contains large-scale urban scenes with
both hyperspectral and RGB images for experiments.

LIB-HSI. LIB-HSI is a facade dataset for semantic seg-
mentation, which consists of 513 scenes with both HS and
RGB images. The objects are divided into 9 categories and
44 sub-categories, the first of which contains stuffs for hy-
perspectral data validation such as whiteboard, palette, etc.
Each hyperspectral image is 512× 512 and the spectral res-
olution is 204 bands from 400nm to 1000nm. The spatial
resolution of RGB images is 512× 512.

HSICityV2. HSICityV2 is an urban street view dataset
for semantic segmentation, which consists of 1306 scenes
with both hyperspectral and RGB images. Scenes are an-
notated according to Cityscapes dataset, which contains 19
categories, with an additional whiteboard category for hy-
perspectral data validation. Each hyperspectral image is
1889 × 1422 and the spectral resolution is 128 bands from
450nm to 950nm. The spatial resolution of RGB images is
1889× 1422.

4.2. Implementation Details

Pre-processing. As a consequence of light conditions, the
spectral reflectance of HSIs is usually very low and may dif-
fer a lot between different scenes. Thus, a whiteboard cor-
rection and a normalization process is needed to make the
spectral response of hyperspectral images more consistent.
For the whiteboard correction, we calculate the average re-
flectance vector of the whiteboard by averaging the spectral
response of all pixels in the whiteboard area, which are la-
beled as whiteboard in the annotation. Then we divide the
spectral response of each pixel in the HSIs by the average
reflectance vector of the whiteboard. After the whiteboard
correction, HSIs are normalized by dividing the max value
of the spectral response of each pixel.

Annotation. Both LIB-HSI and HSICityV2 datasets
contain hyperspectral and RGB images. However, the con-
tained hyperspectral images are in the form of spectral
cubes instead of points and annotations are at pixel-level.
Thus, we need to collect hyperspectral point sets and point-
based annotations for experiments manually. For this pur-
pose, we divide the full image into N regions spatially, and
then in every region, we randomly sample k points. The
number of regions N and the number of points k are hyper-
parameters. Then, the collected N ×M points are divided
into training set and testing set according to the ratio of p.
The points in the training set should be annotated manu-
ally, while in this paper the annotations are directly obtained
from the two existing datasets with available annotations.
The points in the testing set will be classified by the net-
work training with training set.

Annotation generation. We obtain SVM and modi-
fied TwoCNN models to classify the hyperspectral points.
The SVM model is implemented using scikit-learn[33] and
the TwoCNN model is implemented using PyTorch. The
TwoCNN model is trained with SGD optimizer with learn-
ing rate 0.01 and batch size 32, and training process is
stopped after 40k iterations. For RGB spatial feature ex-
traction, we adopt the SLIC algorithm from OpenCV li-
brary and set the region size to 50. After that, pixel-level
annotations are generated by fusion the results from the two
branches.

Semantic segmentation. We adopt FCN, Deeplab-v3p
and HRNet as semantic segmentation models for training
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with generated annotations. Every model is trained with
default training schedules from MMSegmentation [12] on
each dataset. The batch size is set to 4 and training process
is stopped after 80k iterations. After the models are trained,
we use images from LIB-HSI and HSICityV2 test sets for
inference. We also select Huang et al.’s method [21] for
comparison. Since their method is based on pixel-level an-
notations, we pad pointed-based annotations to original size
and use them as pixel-level annotations for training.

Reproducibility. All the experiments above are
conducted on a server with NVIDIA RTX3090 GPUs.
Code implementation, training configurations and gener-
ated hyperspectral images with point-based annotations
are available at https://github.com/iori2333/
pointseg-hss.

4.3. Results

4.3.1 Annotation generation

Since the final segmentation model is trained using gen-
erated annotations, the performance of the segmentation
model highly depends on the quality of the generated anno-
tations. Table 1 shows the quantitative results of the gener-
ated annotations on LIB-HSI and HSICityV2 train sets with
different classification methods (i.e., SVM and TwoCNN).
The accuracy and mIoU is computed over the manual pixel-
level fine annotations, which are provided by the datasets. It
is obvious that, the generated annotations using our method
can achieve comparable results with the ground truth with
extremely high accuracy and mIoU. It demonstrates that hy-
perspectral information is distinctive enough for generating
accurate pixel-level annotations from sparse labeled points.

To better study the results qualitatively, we compare
the generated annotations using proposed method with the
ground truth (i.e., pixel-level labels annotated manually)
on LIB-HSI and HSICityV2 in Figure 5. Benefiting from
the additional information from hyperspectral information,
generated annotations can achieve almost consistent with
the ground truth. The inconsistency appears almost at am-
biguous boundaries. It is interesting that,the generated an-
notations has more detailed boundaries (e.g., the border be-
tween leaves) than manually labeled ones. This is because
the there may be inaccurate annotations in the ground truth
due to human errors, while our method generates annota-
tions based on the spectral information, which depends on
the physical properties of the object surface and is more ac-
curate.

4.3.2 Semantic segmentation

LIB-HSI Table 2 shows the quantitative results on LIB-
HSI of semantic segmentation using generated annotations.
We can see that the semantic segmentation results using
the generated annotations are close to the fine labels, which

LIB-HSI HSICityV2
Acc mIoU Acc mIoU

SVM (RGB) 66.22 51.04 35.12 18.41
SVM (HS) 90.50 85.28 87.13 72.99

TwoCNN (RGB) 83.21 75.91 60.64 54.76
TwoCNN (HS) 91.44 86.64 92.55 89.25

Table 1. Quantitative performance of generated annotations.

(a) Image (b) Manual (c) Ours (TwoCNN)

Figure 5. Different annotations of LIB-HSI and HSICityV2 train
set. (a) Original Image in RGB format; (b) Manual annotation
at pixel-level; (c) and (d) Generated annotations using sampled
point-based annotations with our method. The whiteboard and
palette categories are omitted as only used for HSI data valida-
tion.

Annotations FCN DeepLab-v3p HRNet
Point-based 24.24 20.48 28.81

TwoCNN+SLIC 60.04 56.65 62.43
SVM+SLIC 55.60 54.32 57.91

GT 61.22 59.98 62.22

Table 2. Quantitative performance (mIoU) of semantic segmenta-
tion using generated annotations on LIB-HSI test set

Annotations FCN DeepLab-v3p HRNet
Point-based 25.75 21.39 27.30

TwoCNN+SLIC 49.44 51.39 55.20
SVM+SLIC 43.46 47.14 50.01

GT 56.22 60.55 60.29

Table 3. Quantitative performance (mIoU) of semantic segmenta-
tion using generated annotations on HSICityV2 test set

means our method can generate annotations with similar se-
mantic segmentation results, especially for the categories
with more training samples. The final result is convinc-
ing, outperforming the original point-based annotations by
a large margin of 33.62% mIoU.

HSICityV2 Table 3 shows the comparison results on
HSICityV2. The results are similar to LIB-HSI, however,
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(a) Image (b) Ground Truth (c) Points Only (d) Huang’s [21] (e) Ours (SVM) (f) Ours (TwoCNN) (g) Full Supervision

Figure 6. Semantic segmentation results on LIB-HSI and HSICityV2 test set. All models adopts HRNet-w48 as backend, and are trained
using different annotations including (c) point-based annotations sampled from gt, (d) generated annotations using our method with SVM,
(e) generated annotations using our method with TwoCNN, (f) Huang’s method [21] and (g) pixel-level annotations with full supervision.

the performance is not as good as LIB-HSI. The reason is
that the scenes in HSICityV2 contain much more small ob-
jects (e.g. traffic lights, pole), which may be missed by the
point annotations and also missed by the generated anno-
tations. Besides, the manual annotation of the dataset is
labeled based on the semantic category instead of the mate-
rial of the object surface, making the semantic supervision
less accurate. Despite these disadvantages, the final results
are still convincing, outperforming the original point-based
annotations by a large margin of 27.9% mIoU.

Figure 6 shows the results of semantic segmentation us-
ing different annotations. We can observe that using gener-
ated annotations for training can achieve better performance
than using point-based annotations, while some categories
with few samples (e.g. poles in HSICityV2) are less accu-
rate. This is because the performance of semantic segmen-
tation highly depends on the generated annotations, which
is less accurate on few-shot categories. But in general,
our method can achieve comparable performance with the
fully-supervised method on categories with sufficient train-
ing samples, which is promising.

4.3.3 Comparison with related works

Table 4 shows the comparison results between our method
and several related works. Results are evaluated on test
sets of LIB-HSI and HSICityV2 with different backbones
and different inputs. Note that P indicates point-based an-

notation, F indicates full mask annotations, and M indi-
cates weak mask annotations with only sampled points from
F . Compared with vanilla semantic segmentation, gener-
ated annotations can provide richer supervision than point-
based annotations and thus improving the performance sig-
nificantly. It demonstrates that the usage of hyperspectral
information can provide promising supervision for learning.
Compared with vanilla hyperspectral classification models,
our method take spatial context of the scenes into consid-
eration, which improves the feature exploitation through-
out different scenes. Compared with Huang’s weakly-
supervised hyperspectral semantic segmentation method,
which uses full size hyperspectral image along with RGB
image, our method can better exploit the spatial features and
achieve much better performance. Compared with fully-
supervised learning methods, our method can also achieve
competitive performance without the need of accurate an-
notations.

To emphasize the necessity of using hyperspectral infor-
mation as additional supervision, we compare the perfor-
mance of our method with that using only RGB images. To
adopt only RGB inputs, we treat RGB pixel values as spec-
tral image with 3 bands only and adapt the same learning
tragedies. We can see that our method using both hyper-
spectral and RGB inputs can achieve 20% and 15% higher
mIoU respectively on LIB-HSI and HSICityV2 datasets,
denoting that hyperspectral information is necessary in our
method. The result is also included in Table 4.
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Methods Backbone Inputs Supervision LIB-HSI HSICityV2
mIoU Acc mIoU Acc

HRNet HRNet-48 RGB M 28.81 38.24 27.30 32.89
FCN FCN-50 RGB M 24.24 31.43 25.75 30.53

RSSAN RSSAN-w17 HS P 6.58 12.18 23.86 31.41
JigSawHSI JigSawHSI-w17 HS P 5.09 8.69 18.17 24.11

Huang et al. (2019) ResNet-50 + HRNet-48 HS+RGB M 3.46 8.15 13.17 21.14
FCN (sup) FCN-50 RGB F 61.22 71.27 56.22 74.57

HRNet (sup) HRNet-48 RGB F 62.22 71.24 60.29 77.74
Ours TwoCNN + HRNet-48 HS+RGB P 62.43 69.52 55.20 66.18
Ours SVM + HRNet-48 HS+RGB P 57.91 65.57 50.01 60.94
Ours TwoCNN + HRNet-48 RGB P 48.18 60.21 32.63 37.58
Ours SVM + HRNet-48 RGB P 38.07 53.39 16.31 25.43

Table 4. Comparison with related works on LIB-HSI and HSICityV2 datasets. NOTE: HS is abbreviation for Hyperspectral

Figure 7. Comparison of our method using different α. All
results uses TwoCNN + SLIC to generate annotations and HRNet-
w48 to perform semantic segmentation.

4.4. Ablation Study

Annotated Ratio. The spectral information extraction
highly depends on the number of annotated points. With
more supervised points, the classification model can extract
more accurate spectral information, but it will certainly in-
crease the workload of annotation. In experiments above,
the ratio of training samples to validation samples α is set to
1:4. In this experiment, we test the performance of α from
1:4 to 1:32 (Figure 7). We can see that the performance of
semantic segmentation increases with the ratio of training
samples to validation samples. It’s important to find a bal-
ance between the performance and workload of annotation.

Computational Complexity. We compared the train-
ing memory cost and inference time of our method and oth-
ers. As shown in figure 8a, the training memory cost of our
method is a bit higher than training using only RGB im-
ages, but much lower than training using full hyperspectral
images. The reason is that our method only uses a small
number of spectral points, which reduces the memory cost
of training. Figure 8b shows that the inference time of our
method is almost same as inference using only RGB im-
ages, but much lower than inference using full hyperspec-

(a) Memory Cost (b) Inference Time

Figure 8. Training performance of our method. We compare
the performance at two aspects: (a) max GPU memory allocation
during training progress; (b) inference time on the whole test set.
All experiments are conducted using SVM/TwoCNN + SLIC to
generate annotations and HRNet-48 to perform semantic segmen-
tation.

tral images. The reason is that reading full hyperspectral
images from hard disk and unzipping them is very time-
consuming, while our method only uses a small number of
spectral bands, which reduces the inference time.

5. Conclusions

In this paper, we propose a novel and simple framework
of weakly-supervised semantic segmentation for natural
scenes. We adopt point-based annotations to reduce cost,
and use hyperspectral information which are easier to ac-
quire as additional information to improve the performance
of point-supervised semantic segmentation. Our approach
provides a new perspective for using hyperspectral infor-
mation as prior knowledge in semantic segmentation, and
improves the performance without increasing the cost of an-
notation. In the future, we will explore more effective meth-
ods to extract semantic information from HS sequences,
and try to use hyperspectral information to improve the per-
formance of other weakly-supervised and semi-supervised
tasks.
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building façade segmentation. In European Confer-
ence on Computer Vision, pages 258–267. Springer,
2022.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[20] Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing
Zhang, Antonio Plaza, and Jocelyn Chanussot. Spec-
tralformer: Rethinking hyperspectral image classifica-
tion with transformers. IEEE Transactions on Geo-
science and Remote Sensing, 60:1–15, 2022.

[21] Lingbo Huang, Yushi Chen, and Xin He. Weakly su-
pervised classification of hyperspectral image based
on complementary learning. Remote Sensing, 13(24):
5009, 2021.

[22] Yuxing Huang, Tianqi Ren, Qiu Shen, Ying Fu, and
Shaodi You. HSICityV2: Urban Scene Understanding
via Hyperspectral Images, 2021.

[23] Zilong Huang, Xinggang Wang, Lichao Huang,
Chang Huang, Yunchao Wei, and Wenyu Liu. Cc-
net: Criss-cross attention for semantic segmentation.

1365



In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 603–612, 2019.

[24] Longlong Jing, Yucheng Chen, and Yingli Tian.
Coarse-to-fine semantic segmentation from image-
level labels. IEEE transactions on image processing,
29:225–236, 2019.

[25] Mithun Kumar Kar, Malaya Kumar Nath, and De-
banga Raj Neog. A review on progress in semantic
image segmentation and its application to medical im-
ages. SN computer science, 2(5):397, 2021.

[26] Chen Ke. Military object detection using multiple in-
formation extracted from hyperspectral imagery. In
2017 International Conference on Progress in Infor-
matics and Computing (PIC), pages 124–128. IEEE,
2017.

[27] Rui Li, Shunyi Zheng, Ce Zhang, Chenxi Duan, Jian-
lin Su, Libo Wang, and Peter M Atkinson. Multi-
attention network for semantic segmentation of fine-
resolution remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 60:1–13, 2021.

[28] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian
Sun. Scribblesup: Scribble-supervised convolutional
networks for semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 3159–3167, 2016.

[29] George C. Linderman and Stefan Steinerberger. Clus-
tering with t-sne, provably, 2017.

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmen-
tation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–
3440, 2015.

[31] Jiarou Lu, Huafeng Liu, Yazhou Yao, Shuyin Tao,
Zhenming Tang, and Jianfeng Lu. Hsi road: A hy-
per spectral image dataset for road segmentation. In
2020 IEEE International Conference on Multimedia
and Expo (ICME), pages 1–6. IEEE, 2020.

[32] Jaime Moraga and H Sebnem Duzgun. Jigsawhsi: A
network for hyperspectral image classification. arXiv
preprint arXiv:2206.02327, 2022.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[34] Robert Pike, Guolan Lu, Dongsheng Wang,
Zhuo Georgia Chen, and Baowei Fei. A mini-
mum spanning forest-based method for noninvasive
cancer detection with hyperspectral imaging. IEEE
Transactions on Biomedical Engineering, 63(3):
653–663, 2015.

[35] Xiaojuan Qi, Zhengzhe Liu, Jianping Shi, Heng-
shuang Zhao, and Jiaya Jia. Augmented feedback
in semantic segmentation under image level supervi-
sion. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, Oc-
tober 11-14, 2016, Proceedings, Part VIII 14, pages
90–105. Springer, 2016.

[36] Rui Qian, Yunchao Wei, Honghui Shi, Jiachen Li, Ji-
aying Liu, and Thomas Huang. Weakly supervised
scene parsing with point-based distance metric learn-
ing. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pages 8843–8850, 2019.
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