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Abstract

Knowledge Distillation (KD) has been extensively stud-
ied as a means to enhance the performance of smaller mod-
els in Convolutional Neural Networks (CNNs). Recently,
the Vision Transformer (ViT) has demonstrated remarkable
success in various computer vision tasks, leading to an in-
creased demand for KD in ViT. However, while logit-based
KD has been applied to ViT, other feature-based KD meth-
ods for CNNs cannot be directly implemented due to the
significant structure gap. In this paper, we conduct an anal-
ysis of the properties of different feature layers in ViT to
identify a method for feature-based ViT distillation. Our
findings reveal that both shallow and deep layers in ViT are
equally important for distillation and require distinct dis-
tillation strategies. Based on these guidelines, we propose
our feature-based method ViTKD, which mimics the shallow
layers and generates the deep layer in the teacher. ViTKD
leads to consistent and significant improvements in the stu-
dents. On ImageNet-1K, we achieve performance boosts of
1.64% for DeiT-Tiny, 1.40% for DeiT-Small, and 1.70% for
DeiT-Base. Downstream tasks also demonstrate the superi-
ority of ViTKD. Additionally, ViTKD and logit-based KD
are complementary and can be applied together directly,
further enhancing the student’s performance. Specifically,
DeiT-T, S, and B achieve accuracies of 77.78%, 83.59%,
and 85.41%, respectively, using this combined approach.
Code is available at https://github.com/yzd-
v/cls_KD.

1. Introduction

Knowledge Distillation (KD) [16] utilizes the output of the
teacher model as soft labels to supervise the student model,
bringing the lightweight models impressive improvements
without extra costs for inference. It has been consistently

*This work was done when Zhendong was an intern at IDEA.
†Corresponding authors.

explored for Convolutional Neural Network (CNN) mod-
els and applied to many vision tasks successfully, includ-
ing image classification [3, 19, 40, 47, 50], object de-
tection [2, 17, 33, 41, 44, 48], and semantic segmenta-
tion [15, 21, 26, 39].

Recently, Vision Transformer (ViT) [10] has achieved
great success in image classification and inspired various
transformers [11, 22, 30, 45]. Similar to CNN models,
the ViT models generally need more parameters to achieve
better performance, making them harder to be deployed.
Therefore, boosting the performance of small ViT mod-
els using KD is of great value. In this study, we explore
how to apply KD to ViT-based models. One straightfor-
ward approach would be to transfer the KD methods used
for CNNs to ViTs. In fact, some fundamental distillation
works [16, 25] are structure-independent. For example,
the logit-based distillation directly utilizes the model’s fi-
nal logit, enabling it to be used for both CNNs and ViTs.
This has been confirmed by DeiT [29] and TinyViT [34].

However, most of the KD methods beyond logit-based
distillation are specifically designed for CNN-based models
and rely on intermediate features. Due to the vast architec-
tural differences between CNNs and ViTs, these methods
are not applicable to ViT-based models. While recent work
MiniViT [46] has employed self-attention distillation and
hidden-state distillation for vision transformers with various
stages, such as Swin-Transformer [22], it is still not viable
for models with multiple encoder layers like ViT [10].

Before developing a new feature-based KD method for
ViT, we first conduct simple studies with two structure-
independent methods FitNet [25] and MGD [42]. We ex-
plored distilling knowledge from the last layer like CNN’s
general distillation, the last 6 layers like PKD [27] for
BERT’s [9] distillation, and the whole 12 layers of a teacher
model (DeiT-Small) to a student model (DeiT-Tiny). Sur-
prisingly, the results for all the intuitive feature distillations
shown in Tab. 1 are not satisfactory which consistently de-
grade the performance of the student (DeiT-Tiny). Specifi-
cally, the Top-1 accuracy of the student is just 73.36% when
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Distillation setting T: DeiT Small, S: DeiT Tiny
Top-1 Acc. (%) Top-5 Acc. (%)

baseline 74.42 92.29
MGD [42] 74.46 (+0.04) 92.28(-0.01)

Last layer ([25]) 73.36 (-1.06) 91.88 (-0.41)
Last 6 layers ([25]) 73.76 (-0.66) 92.01 (-0.18)
All 12 layers ([25]) 74.24 (-0.18) 92.23 (-0.06)

Table 1. The distillation results of existing feature-based KD
methods, including recent MGD and classical FitNet on the last
layer, the last 6 layers, and all the 12 layers.

distilling on the last layer with FitNet. This distillation on
the last layer is widely used for CNN’s distillation, but here
it causes a 1.06% accuracy drop. When distilling the whole
12 layers, the accuracy drop reduces to 0.18%. This prelim-
inary study suggests that distillation on the shallow layers
is as crucial as that on the deep layers in ViT’s distillation.

To gain a better understanding of ViT’s features, we vi-
sualize the attention maps of the student and teacher across
various layers, as shown in Fig. 1. For the shallow layers
(e.g., layers 0 and 1), both the student and teacher mainly
focus on the diagonal, indicating a self-attention pattern.
In contrast, for the deeper layers (e.g., layers 10 and 11),
there is a greater difference between the attention patterns
of the student and teacher. Attention is determined by a few
sparse key tokens, and the student and teacher focus on dif-
ferent tokens. This discrepancy makes it challenging for the
student to mimic the teacher’s final feature directly. There-
fore, our findings suggest that different layers may require
different knowledge distillation methods.

Accordingly, we perform a series of controlled experi-
ments to examine the effects of different distillation meth-
ods and different layers. As a consequence, we pro-
pose a nontrivial way for feature-based ViT distillation,
named ViTKD. ViTKD treats the shallow and deep layers
with different distillation methods, which is shown in Fig. 2.
We conduct extensive experiments to demonstrate its effec-
tiveness. For instance, we boost the student DeiT-Tiny from
74.42% to 76.06%, DeiT-Small from 80.55% to 81.95%
and DeiT-Base from 81.76% to 83.46% on ImageNet-1K.
Besides, all loss functions in ViTKD are only calculated on
feature maps, so it can be easily combined with the logit-
based distillation. With the combination, we can further
advance the students’ Top-1 accuracy to 77.78%, 83.59%
and 85.41%. We also demonstrate the models trained with
ViTKD are beneficial to downstream tasks like object de-
tection, human pose estimation and semantic segmentation.
In a nutshell, the contributions of this paper are:
• We reveal that the feature-based KD method for CNNs

is unsuitable for ViTs. If we align them directly, it will
result in a performance drop. Besides, the distillation on
the shallow layers is also important for ViT, which differs

Figure 1. DeiT-Tiny’s (upper) and DeiT-Small’s (under) attention
maps from shallow to deep layers. The X-axis and Y-axis mean
the key and query tokens, respectively. The attention maps are ob-
tained by softmax and reflects the response between the query and
key tokens. The color is brighter with a larger response between
the query and key tokens.

from the conclusion in KD for CNNs.
• We provide an insight that treats different layers with dif-

ferent distillation methods. Based on this insight, we pro-
pose a simple and effective KD method named ViTKD.

• We verify the effectiveness of our method via extensive
experiments on ImageNet [8], bringing significant per-
formance gains. In addition, we also demonstrate the e
superiority of the models trained with ViTKD for various
downstream tasks on COCO [20] and ADE20K [49].

2. Related work
2.1. Vision Transformer

Vision Transformer [10] was proposed for image classifica-
tion. It applies the self-attention [32] architecture to com-
puter vision tasks successfully. DeiT [29] explores the train-
ing setting and introduces logit-based KD to ViT with an-
other distillation token. CaiT [30] modifies the architecture
and obtains a deeper model. T2T-ViT [45] helps each to-
ken to get a better local feature. Swin Transformer [22]
utilizes shifted windows to brings greater efficiency by lim-
iting self-attention computation. Vision Transformer has
also been applied to other downstream tasks, such as de-
tection [18, 22] and segmentation [1, 37]. However, such
models consume many resources for inferring and need to
be improved for better application.

2.2. Knowledge Distillation

Knowledge distillation (KD) is a method to improve a com-
pact model without extra time cost for inference. It was pro-
posed by Hinton et al. [16], which uses the teacher’s output
to guide the students. The following works can be divided
into the logit-based methods and feature-based methods ac-
cording to the distillation areas. WSLD [50] analyzes soft
labels from a perspective of bias-variance trade-off and dis-
tributes different weights for different samples. DKD [47]
decouple the logit according to the target class. SRRL [40]
utilize the teacher’s linear layer to help the student to get
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Figure 2. Illustration of the proposed ViTKD. ViTKD is a feature-based distillation method that includes shallow layers’ Mimicking and
deep layer’s Generation. It can be directly combined with the output logit-based distillation method together.

better features and logit. NKD [43] decomposes and nor-
malizes classic KD, achieving state-of-the-art performance.

Feature-based KD methods calculate the loss on the fea-
ture maps. FitNet [25] distills on the intermediate feature
directly. RKD [23] transfers the relation from the teacher’s
feature. CRD [28] introduces contrastive method for fea-
ture KD. KR [3] distills the knowledge from the teacher’s
multi-level features. MGD [42] forces the student to gen-
erate the teacher’s feature instead of mimicking. However,
these feature-based methods are designed for CNNs.

3. Methodology
In this paper, we analyze the difference between ViT’s dif-
ferent layers and treat them with different distillation meth-
ods. Specifically, for the shallow layers with a small dif-
ference, we force such layers to mimic the teacher’s corre-
sponding layers, learning how to focus on the tokens them-
selves. While for the deep layers with a big gap between
student and teacher, which have stronger semantic informa-
tion, we force the student to generate the teacher’s feature
instead of mimicking directly.

3.1. Mimicking for Shallow Layers

As Fig. 1 shows, the student and teacher’s shallow lay-
ers have similar attention. Besides, the attention appears
mainly on the diagonal. So we force the student to mimic
teacher’s feature of the first two layers. The analysis of
the choice for the shallow layers is in Sec. 5.2. For each
sample, we can denote student’s and teacher’s feature as
FS ∈ RN×DS and FT ∈ RN×DT , respectively. For
the mimicking method on shallow layers, we utilize a lin-

ear layer to align the embedding dimension of the student’s
DS and the teacher’s DT . The mimicking loss for shallow
layers’ distillation is as:

Llr =

N∑
i=1

DT∑
j=1

(
FT

i,j − fc(FS)i,j
)2
, (1)

where fc(·) is a linear layer to reshape the FS to the same
dimension as FT . N,DT denote the number of patch to-
kens and the embedding dimension of the teacher’s feature.

3.2. Generation for Deep Layers

For the deep layers, the student’s and teacher’s features be-
come much more different and mimicking method fails on it,
as shown in Tab. 1. So we try to utilize student’s last feature
to generate the teacher’s last feature, avoiding mimicking
directly. The analysis of the choice for the deep layers is
in Sec. 5.2. The last feature has the best representation of
the original input image. Such feature tokens already con-
tain the information of adjacent tokens to a certain extent.
Therefore, we can use partial tokens to generate the com-
plete feature map. This way aims at generating the teacher’s
feature by student’s masked feature, which can help the stu-
dent achieve a better representation.

We first also use a linear layer to align the student’s and
teacher’s feature embedding dimensions. Then, we set a
random mask Mask ∈ RN×1 and use the learnable masked
tokens to replace the student’s original feature tokens:

F̂S
i =

{
masked token, if ri < λ

original token, Otherwise,
(2)
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Maski =

{
1, if ri < λ

0, Otherwise,
(3)

where ri is a random number uniformly distributed in [0, 1]
and i ∈ [0, N − 1] is the coordinates of the tokens dimen-
sion. λ controls the masked ratio. The masked token is
the parameter to learn and will be updated during training.

Finally, we use the new masked feature F̂S
i to gener-

ate the teacher’s full feature through a generative block G,
which can be formulated as follows:

G(F̂S) −→ FT . (4)

For the generative block G, we apply a convolutional pro-
jector, which includes two 3×3 conventional layers and one
activation layer ReLU . Finally, we only calculate the loss
of the masked tokens. For the generation method for deep
layer, we design the distillation loss Lgen as:

Lgen =

N∑
i=1

D∑
j=1

Maski
(
FT

i,j − G(F̂S
i,j)

)2
. (5)

3.3. ViTKD

Combing the distillation on shallow (first two) and deep
(last) layers, we propose ViTKD, as shown in Fig. 2. When
the number of the student’s and teacher’s layers is different,
we also pick the first two and last layers for distillation. To
sum up, we train the student model with the total loss:

L = Lori + αLlr + βLgen, (6)

where Lori is the original loss for the models. α and β are
two hyper-parameters.

4. Experiment
4.1. Settings

Datasets. We explore ViTKD on ImageNet-1K [8], which
contains 1000 categories. We use 1.2M images for train-
ing and 50k images for testing. For downstream tasks, we
evaluate our model on COCO [20] and ADE20K [49].

Implementation details. ViTKD uses α and β to bal-
ance the distillation loss in Eq. 6. Another hyper-parameter
λ is used to adjust the masked ratio for deep layer dis-
tillation in Eq. 2. We adopt the hyper-parameters {α =
3 × 10−5, β = 3 × 10−6, λ = 0.5} for all the experi-
ments. Besides, to keep the model to be the same for the
feature and logit distillation, we remove the extra distilla-
tion token which is used for logit distillation in DeiT. The
image resolution for all the experiments is 224×224. The
experiments are conducted on 8 Nvidia 3090 GPUs with
MMClassification [6] in Pytorch [24]. Unless specified, we
evaluate the model with the last epoch. The training setting
follows DeiT [29] , which is trained with Mixup, Cutmix,

RandAugment and Erasing. We use Adamw as the opti-
mizer with 1024 batch size. The learning rate with warm
up decays as cosine. We take larger DeiT [29] and DeiT
III [31] models as the teacher to distill lighter DeiT models.
The DeiT teacher is trained from scratch on ImageNet-1K,
and DeiT III teacher is pre-trained on ImageNet-21K.

4.2. Main Results

Our ViTKD can bring ViTs better performance via feature
distillation. To prove this, we first conduct experiments
with different teacher-student distillation pairs, as shown in
Tab. 2. We compare our ViTKD with two other methods, in-
cluding FitNet [25] and recent MGD [42]. To further show
the effectiveness of ViTKD, we also compare it with orig-
inal KD [16] and Hard KD [29] from DeiT. As shown in
Tab. 2, ViTKD surpasses other feature-based methods sig-
nificantly and brings remarkable accuracy gains, e.g., the
DeiT III-Small [31] teacher boosts the student’s Top-1 ac-
curacy from 74.42% to 76.06%. Besides, ViTKD brings
comparable improvements as DeiT’s Hard KD and even sur-
passes the classic KD method. Comparing the results be-
tween different teachers, we find the student achieves better
performance with a stronger teacher, e.g., the student DeiT-
Tiny achieves 75.40% and 76.06% Top-1 accuracy with the
DeiT-Small and DeiT III-Small teacher, respectively.

We also conduct experiments with more and larger mod-
els to show the generalization of ViTKD, as shown in Tab. 3.
For larger models such as Swin-T [22], DeiT-S and DeiT-
B, ViTKD can also bring them significant improvements,
helping it to achieve 81.70%, 81.95% and 83.46%, respec-
tively. Besides, ViTKD is a feature-based method and can
be combined with other logit-based methods to further im-
prove the student. This is also one of the feature-based
methods’ advantages. Therefore, we try to add the state-of-
the-art logit-based method NKD [43] to ViTKD, as shown
in Fig. 3. In this way, different students all get another sig-
nificant accuracy improvement, e.g., the student DeiT-Small
gets another 1.64% gains and achieves 83.59% Top-1 accu-
racy with a DeiT III-Base teacher. Surprisingly, the student
DeiT-Small is just trained on ImageNet-1K, but its perfor-
mance surpasses DeiT III-Small’s 82.76%, which needs to
be pre-trained on ImageNet-21K.

4.3. Downstream Tasks

The model trained with ViTKD achieves significant im-
provements for classification. To further evaluate the effec-
tiveness of the model with ViTKD, we try to apply it to var-
ious downstream tasks. For object detection on COCO [20],
we use Mask-RCNN [13] as the detector and follow the set-
ting from ViTDet [18] on detectron2 [35]. For pose estima-
tion, we use ViTPose [38] for the 17 body key points. For
segmentation on ADE20K [49], we use UPerNet [36] and
train it on MMSegmentation [7].
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Teacher Type Student Top-1 Accuracy Top-5 Accuracy

DeiT-Small
(80.69)

baseline DeiT-Tiny 74.42 92.29

logit KD 75.01 (+0.59) 92.52
Hard KD 75.10 (+0.68) 92.55

feature
FitNet 73.36 (-1.06) 91.88
MGD 74.46 (+0.04) 92.28
ViTKD (Ours) 75.40 (+0.98) 92.66

DeiT III-Small∗

(82.76)

baseline DeiT-Tiny 74.42 92.29

logit KD 76.01 (+1.59) 93.26
Hard KD 76.08 (+1.66) 93.30

feature
FitNet 73.72 (-0.70) 91.88
MGD 74.53 (+0.07) 92.28
ViTKD (Ours) 76.06 (+1.64) 93.16

Table 2. We reproduce the results of DeiT with MMClassification on ImageNet-1K. ∗ indicates the teacher is pre-trained on ImageNet-21K.
We compare with two other feature-based distillation methods that can be applied to ViTs.

Teacher Student Baseline + ViTKD
Swin-B∗ Swin-T 81.18 81.70 (+0.52)
DeiT III-B∗ DeiT-S 80.55 81.95 (+1.40)
DeiT III-L∗ DeiT-B 81.76 83.46 (+1.70)

Table 3. Results of distilling more and larger models on ImageNet-
1K. ∗ indicates the teacher is pre-trained on ImageNet-21K.

Dataset Metric DeiT-S + ViTKD
ImageNet Top-1 Acc. 80.55 81.95 (+1.40)

COCO
APbox 45.07 46.28 (+1.21)

APmask 40.14 41.05 (+0.91)
APpose 71.80 72.80 (+1.00)

ADE20K mIOU 42.96 44.94 (+1.98)

Table 4. The downstream tasks results with ViTKD.

Figure 3. Results of combing ViTKD with logit-based KD on
ImageNet-1K. The teacher for DeiT-T, S and B is DeiT III-S, B,
and L, respectively. The teachers are pre-trained on ImageNet-
21K.

As the results in Tab. 4, DeiT-Small trained with ViTKD
brings the detector 1.21 Box mAP and 0.91 Mask mAP
gains. For human pose estimation, ViTKD brings 1.00 AP
gains. For segmentation, ViTKD boosts the mIoU perfor-
mance from 42.96 to 44.94. The results demonstrate the
model trained with ViTKD has not only better performance
for classification but also stronger semantic information for
various downstream tasks.

5. Analyses

5.1. Student’s Attention after Distillation

ViTKD combines mimicking and generation methods for
different layers for ViT-based models. In this subsection,
we present a visualization and comparison of the average
attention maps from the teacher, student, and student with
ViTKD to explore how ViTKD influences the student, as
shown in Fig. 4. Comparing the attention maps between
the original student and teacher, we observe a significant
and much smaller difference in the deep and shallow lay-
ers, respectively. After distillation with ViTKD, the stu-
dent’s shallow layers have attention maps similar to those
of the teacher. However, for the deep layer, as described
in Sec.1, the significant gap between the attention maps of
the teacher and student makes it difficult for the student
to mimic the teacher directly. ViTKD forces the learnable
masked tokens to be similar to those of the teacher, instead
of using the original tokens of the student. As a result, after
our ViTKD’s generation, the student’s deep features are still
dissimilar to those of the teacher. However, ViTKD helps
the student generate the teacher’s features with its random
masked tokens, resulting in the student’s deep layer having
stronger semantic information. We demonstrate this by us-
ing the deep layer for downstream tasks in Sec. 4.3, includ-
ing detection, human pose estimation, and segmentation.
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Figure 4. Visualization of the average attention map from the DeiT-Tiny (student), DeiT III-Small (teacher) and DeiT-Tiny after distillation
with ViTKD. For a convenient comparison, the two visualizations in the second row are both DeiT-Tiny with ViTKD.

Layers Top-1 Acc. (%)

shallow

0 75.01
0,1 75.12
5,6 75.01

0,1,6 75.14
0,1,2,3,4,5,6 75.16

deep 11 74.72
10,11 74.70

Table 5. The effects of distillation on different layers.

Losses DeiT-Tiny (Student)
Llr - ✓ - ✓
Lgen - - ✓ ✓

DeiT-S (T) 74.42 75.12 74.72 75.40
DeiT III-S∗ (T) 74.42 75.31 74.79 76.06

Table 6. Ablation study results of the losses of shallow layers’
Mimicking and deep layer’s Generation. ∗ means the teacher is
pre-trained on ImageNet-21K.

5.2. Different Layers for Distillation

As shown in Fig. 1, the attention distributions of the mid-
dle layers are also similar to that of shallow layers. Ac-
cordingly, we first explore the effects of distillation on such
layers in Tab. 5. In general, distillation on either the shal-
low or middle layers can benefit the student. Besides com-
paring the improvements from different layers, we find that
the knowledge from the shallow layers is much more help-
ful than that from the middle layer for distillation. Fur-
thermore, when distilling the whole first seven layers to-
gether, the accuracy improvement is just 0.04% above the
first two layers. Considering the trade-offs between time
consumption and performance, we choose the first two lay-
ers for shallow distillation eventually. While for the deep
layer’s distillation, calculating distillation loss on the last
layer takes less time but brings more improvement.

5.3. Effects of Shallow and Deep Layers’ Losses

As described in the method, we distill the shallow layers and
deep layers by mimicking and generation, respectively. In
this subsection, we conduct experiments of Mimicking loss
Llr and Generation loss Lgen to investigate their influences
on the student with DeiT-Tiny. As shown in Tab. 6, both
the knowledge from shallow and deep layers are helpful for
the student. When just applying a single loss, the Llr on
shallow layers benefits the student much more than Lgen on
the deep layer. This phenomenon shows that incipient atten-
tion knowledge really matters for ViT’s feature distillation,
which is completely different from the CNN-based model’s
feature distillation. Furthermore, these two losses are com-
plementary to each other. For example, when combing Llr

and Lgen together, the student with a DeiT III-Small teacher
achieve 76.06% Top-1 Accuracy, which is much higher than
just applying Llr’s 75.31% and Lgen’s 74.79%.

5.4. Different Generative Block for Deep Distillation

For generation, we randomly mask the student’s tokens
and utilize a generative block to restore the feature. In
this section, we discuss the effects of different generative
blocks, including cross-attention block [5], self-attention
block [14], and convolutional projector [42]. We use two
teachers to distill the student DeiT-Tiny on ImageNet-1K.
As our results shown in Tab. 7, the cross-attention blocks
impair the student’s performance noticeably. Instead, the
self-attention and convolutional block can improve the ac-
curacy of the student. The largest gains are obtained by
using the convolutional projector as the generative block.

5.5. Different Alignments for Shallow Distillation

When using mimicking, we align the embedding dimensions
of the student and teacher by a linear layer. Here we try
another alignment way called correlation matrix to describe
the response among different tokens and force the student
to learn the correlation matrix of the teacher. In this case,
we do not need the adaption layer to align the embedding
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Teacher DeiT-Small (80.69) DeiT III-Small∗ (82.76)
Student DeiT-Tiny (74.42) DeiT-Tiny (74.42)

Generation
Cross-attention 73.77 (-0.65) 73.98 (-0.44)
Self-attention 74.61 (+0.19) 74.65 (+0.23)

Conv. projector 74.72 (+0.30) 74.79 (+0.37)

Table 7. The comparisons of different generative blocks for deep layer’s distillation on ImageNet-1K.

Teacher DeiT III-S∗ (82.76) DeiT-B (81.76)
Student DeiT-T (74.42) DeiT-T (74.42)

Mimicking Linear layer 75.31 (+0.89) 75.15 (+0.73)
Correlation matrix 74.94 (+0.52) 75.01 (+0.59)

Table 8. The comparisons of different alignments for shallow layers’ distillation on ImageNet-1K.

Teacher DeiT-S (80.69) DeiT III-S (82.76)
MHA 75.06 75.02
FFN 75.12 75.31

Table 9. Different modules for shallow layers.

λ baseline 0 0.3 0.5 0.7 0.9
Acc. 74.42 75.77 75.86 76.06 75.94 75.83

Table 10. Sensitivity study of hyper-parameter λ, the masked ratio
in deep layer’s distillation.

dimension. The correlation matrix can be calculated as:

M =
FFTr

√
D

, (7)

where F ∈ RN×D denotes the student or teacher’s feature.
D is embedding dimension and Tr denotes transposition,
so FTr ∈ RD×N . In this case, the student’s and teacher’s
relation matrices have the same shape M ∈ RN×N and
describe the response between different tokens.

We pick the first two layers for distillation by mimicking
in Tab. 8. Both alignments for transferring the knowledge
from the shallow layer by directly mimicking make great
progress. Mimicking by ‘linear layer’ performs better than
the ‘correlation matrix’ way. When the teacher performs
better, the ‘linear layer’ way benefits the student much more
than the ‘correlation matrix’ way.

5.6. Different Modules for Distillation

ViTs are built by stacking several encoder layers. Each en-
coder layer consists of a multi-head attention (MHA) mod-
ule and a feed-forward network (FFN) module. We further
conduct experiments on the shallow layers of DeiT-tiny to
explore how to choose the modules. The results in Tab. 9
demonstrate that distilling on the MHA-out or FFN-out fea-

ture both benefit the student and the knowledge from FFN-
out feature is better than that from MHA-out feature.

5.7. Sensitivity Study of Hyper-parameters

We use two hyper-parameters α and β in Eq. 6 to bal-
ance the shallow layer’s loss Llr and the deep layer’s loss
Lgen, respectively. To explore the sensitivity of them, we
conduct experiments by adopting DeiT III-Small to distill
DeiT-Tiny. As shown in Fig. 5a and Fig. 5b, ViTKD is
not sensitive to α or β which is just used for balancing the
loss. Specifically, when α varies from 2 to 6, the student’s
worst accuracy is 76.03%, which is just 0.12% lower than
the highest accuracy. Besides, it is still 1.61% higher than
the baseline, demonstrating ViTKD is not sensitive to the
hyper-parameters for loss scale. As for the masked ratio λ
in Eq. 2, it is used to control the ratio of masked tokens.
We conduct experiments to explore it, as shown in Tab. 10.
When λ is 0, it means there are no masked tokens and the
performance is poor. When it is too large, e.g., 0.9, the left
tokens are too poor to generate the teacher’s feature and the
performance is also affected. Besides, λ is applied just for
deep distillation. So the influence of ViTKD is limited. The
lowest performance is still 1.35% higher than the baseline.

5.8. Different Methods for Different Layers

Our ViTKD applies mimicking way to shallow layers and
generation way to deep layer, respectively. Here we try to
apply the mimicking or generation way to the shallow and
deep layers together. As shown in Tab. 11, both mimick-
ing and generation ways bring the student limited improve-
ments. Our ViTKD achieves significant results and boosts
the student from 74.42% to 76.06%.

5.9. Comparison with More Methods

We also compare our ViTKD with more methods which in-
clude both feature and logits distillation for ViT-liked mod-
els, as shown in Tab. 12. Our ViTKD achieves compa-
rable results via feature distillation. When combining the
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Figure 5. Sensitivity study of hyper-parameters α (a) and β (b).

Methods Layers Top-1 Acc. (%)
baseline - 74.42

Mimicking
shallow 75.31

deep 73.72
shallow + deep 74.65

Generation
shallow 74.69

deep 74.79
shallow + deep 75.02

ViTKD shallow + deep 76.06

Table 11. Results of applying different methods to different layers.

logit-based kd together, the performance gets another sig-
nificant improvement. The results demonstrate our ViTKD
surpasses other methods in a fair setting.

5.10. Time Cost of ViTKD

We report the time for a training epoch on 8 Nvidia 3090
GPUs in Tab. 13. We test DeiT-Tiny with a DeiT-Small
teacher. The logit-based method also needs to obtain inter-
mediate features before final logits. Therefore, it’s reason-
able to utilize features and logits together for distillation.

Methods Type Top-1 Acc. (%)
DearKD [4] feature + logit 81.5

Manifold [12] feature + logit 82.2
ViTKD feature 82.0

ViTKD + logit-kd feature + logit 83.6

Table 12. The comparisons of more methods on ImageNet-1k.

Methods Type Time (min) Acc. (%)
NKD logit 7.6 75.48

ViTKD feature 7.8 75.40
ViTKD + NKD feature + logit 7.9 76.18

Table 13. The time coset of ViTKD.

Methods Type COCO Det mAP
baseline - 47.23
ViTKD feature 48.13

ViTKD + logit-kd feature + logit 48.83

Table 14. The downstream tasks of larger models DeiT-Base.

For both settings, ViTKD’s time consumption is similar to
the logit-based method.

5.11. Downstream Tasks of Larger Models

In Sec. 4.3, we report the downstream results of DeiT-
Small. Here we add the object detection results of a larger
model DeiT-Base with our distillation method, as shown in
Tab. 14. The student also achieves consistent improvements
and can be further improved with logit-based KD together.

6. Conclusion
In this paper, we propose a feature-based distillation method
for ViTs. We point out that distillation on the shallow layers
is also important for ViTs and different layers need differ-
ent distillation methods. Based on this insight, we propose
a simple and effective method ViTKD, which includes the
distillation on shallow layers via mimicking and deep lay-
ers via generation. ViTKD brings significant improvements
on image classification and also benefits the downstream
tasks. Besides, ViTKD is truly a feature-based method and
can be easily combined with other logit-based methods to
further improve the performance. ViTKD attempts to ap-
ply feature-based KD for ViTs. We believe the insight that
treating different layers with different methods can still be
further explored and be extended to other tasks.
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