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Photography and Enhancement

Supplementary Material

In this supplementary document, we provide detailed
settings for hyper-parameters in our experiments along with
computational cost of each model, a theoretical explanation
for our experiment results, additional evaluations and visu-
alizations, as well as a summary of all other resources that
are available on our Project page.

A. Hyper-parameter Settings and Computa-
tional Costs

For RVRT [9], training inputs have the same spatial dimen-
sion, 256 pixels, as original paper, while temporal length
is scaled down from 16 frames to 8, due to memory lim-
its. Batch size is set to 4, with iteration number and initial
learning rate remaining unchanged from the paper.

For BasicVSR++ [4], although slightly different hyper-
parameter settings are used for denoising and deblurring
datasets in the original paper [5], considering possibilities
of those choices being dataset-specific and our goal of com-
paring 3 strategies on the same ground, batch size is set to 8
and training input frame number to 25 for all BasicVSR++
experiments, which proceed 200k iterations with all other
hyperparameters set to default values. For the same reason,
we kept parameters the same as their original denoising task
for Restormer [15], except for progressive training scheme,
which was changed to the schedule in Table 6. Based on its
denoising settings, Uformer [13] was trained for 500 epochs
with patch size being 256 and batch size 16 for all experi-
ments. LEDNet [16] was trained with GAN structure for
200k iterations.

Reported in Table 7 are computational costs and process-
ing speed of the models restoring full resolution (640×480)
test frames.

Table 6. Progressive training schedule for Restormer [15]

Stage 1 2 3 4 5 6

Mini-batch size 8 5 2 1 1 1
Iteration number 46000 32000 24000 18000 18000 12000

Patch size 128 160 192 256 288 320

Table 7. Computational cost and speed for each model.

FLOPs (G) Params (M) Speed (fps)

RVRT 2500.2 12.785 4.6764
BasicVSR++ 1300.0 9.7602 31.374

Restormer 660.89 26.112 8.1294
Uformer 825.55 50.881 6.5128
LEDNet 180.88 7.4089 91.283

B. Theoretical Justification
In our main paper, we concluded that with an increase
in the enhancement ratio, superiority of performance can
shift from Gain-first to Exposure-first strategy. At ratio100,
though in order to heat up the competition fairly our camera
settings blur the lines between each strategy so that they all
fall into a mixture of being enhanced by gain and exposure,
it can be noticed that Mixed strategy has relatively better
and more robust performances than the other two. We in-
tend to offer insights for these phenomena from the forma-
tion of noise and blurriness in this section.

B.1. Basics

Previous works [7, 10, 11] that delivered analysis on re-
lated topics, i.e., HDR and denoising vs. deblurring, are
inherently different from ours in the way that they either
ignored complexity of low-light noises, formulating cal-
culations based on simplified Gaussian noise, or failed to
compare strategies on fair grounds, leaving deterioration in-
duced by short exposure uncompensated by cameras’ native
gain. Therefore, we propose to attack this topic from a dis-
tinct view which should be much closer to our experiment
settings than precedent analyses.

Starting from the image formation details for low-light
frames. As much as we want to include every minutiae of
digital camera circuit designs as described in [12], it will
be a herculean task to carry the weight of all those elements
for further analysis. In the meantime, recent works [3, 6, 14]
provide simplified models for noises generated by a camera
from pragmatic viewpoints without loss of much details for
enhancement tasks. Models proposed by Feng et al. [6] and
Cao et al. [3] are similar to the one by Wei et al. [14] but
merely with more accurate calibration and data augmenta-
tion techniques. Thus, for simplicity, we borrow notations
from the latter for following derivations.

According to [14], acquisition of a digital image D can
be formulated as follows,

D = ISP (KI +N), (1)

where I is the number of photoelectrons induced by inci-
dent light, K being overall system gain, N being noise com-
ponents, and ISP stands for image signal processing that
transforms raw sensor data into sRGB domain with demo-
saicing, gamma correction, white-balancing, etc. The noise
N mainly contains 4 parts, as shown in Equation 2: pho-
ton shot noise NP that, combined with I , follows a Poisson
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distribution due to the wave-particle duality of photons, i.e.,
(I +NP ) ∼ P(I); read noise NTL that can be modeled by
a Tukey lambda distribution, NTL ∼ TL(λ; 0, σTL); row
noise Nr which imposes bias on each row by a zero-mean
Gaussian distribution, Nr ∼ N (0, σr); and quantization
noise Nq for rounding error introduced by ADC converter,
Nq ∼ U(−1/2q, 1/2q).

N = KNP +NTL +Nr +Nq (2)

The logarithm of parameters for NTL and Nr is loga-
rithmically proportional to K, i.e., log(σTL) ∝ log(K),
log(σr) ∝ log(K), with a Gaussian perturbation term of
fixed standard deviation (σ̄TL, σ̄r) added to each of them
separately. For more details, please see equation 12 in [14].

As for exposure, we establish our foundation from the
work of Cao et al. [2], for their consideration of authen-
tic blurry image synthesis. Ideally, raw signal of a blurry
image Breal with an exposure time τ should be Breal =∫ τ

0
I(t) dt. Yet, as reconstructing temporal continuous light

signals from discontinuous ground truths is not a trivial step,
we adopt the discrete form for the formation as in Equa-
tion 3 to keep our model tractable.

Braw =
1

M

M∑
t=0

S(t) +N (3)

In the above equation, M is the number of latent sharp
frames during the exposure time τ . S(t) is the latent sharp
and bright frames at moment t, i.e., raw ground truth images
at high frame rates, which we will synthesize later. The re-
lationship between S and I in Equation 1 can be written as
I(t) = S(t)/gain, where camera gain is in linear scale, not
logarithmic. For Gain-first, M = 1, whereas for Exposure-
first M = ratio while ratio, referring to the environmental
light intensity reduction ratio, varies between 1 and 100 in
our analysis, covering 4 categories of experiment conditions
in our main paper.

When combining Equation 2 and 3 together, we care-
fully examined the hidden premises for all the simplifica-
tions. Because NTL is a unified term that absorbs dark cur-
rent noise, thermal noise and source follower noise, which
are all constantly present during an exposure time, this term
should be amalgamated into the summation of sharp frames,
and similarly, photon shot noise NP as well. The rest of
the noise, Nr, which is a representation of banding pattern
noise, mainly comes from sensor readout, downstream am-
plification, and ADC [12], thus treated as a one-time factor
rather than an accumulating term. Therefore, a complete
formula for a digital image produced by our strategies can
be written as:

D = ISP

(
1

M

M∑
t=0

[(
Sraw(t)

gain
+NP

)
· gain+NTL

]

+Nr +Nq

)
(4)

with M × gain ≡ ratio for M ∈ [1, ratio] to cover Gain-
first, Exposure-first, and all possible Mixed strategies.

B.2. Metric

Instead of measurements that directly depict how far an im-
age deviates from GT, like PSNR, SSIM, and LPIPS, here
we want to evaluate the potential of recovering target sig-
nals, an upper bound for deep learning algorithms’ perfor-
mances. Hence, seeking help from information theory, we
find it suitable to evaluate mutual information [8] between
degraded inputs and GTs. It can be defined as follows:

MI(D,S) =
∑
y∈S

∑
x∈D

P(D,S)(x, y)log

(
P(D,S)(x, y)

PD(x)PS(y)

)
(5)

Joint distribution P(D,S)(x, y), and marginal distributions
PD(x), PS(y) can be acquired by 2D and 1D histograms
on synthetic degraded input D and ground truth S, both of
which are in sRGB format.

Figure 9. Authenticity of our synthetic images. Synthesized ra-
tio30 Exposure-first blurry image can reach a PSNR of 33.37,
while a synthetic Gain-first noisy image has a marginal KL-
divergence of 0.03075 from the best parameter combination found
by the grid search. As a frame of reference, test input PSNRs at
this ratio is 26 ∼ 27 for G-first, 18 ∼ 26 for E-first, as reported in
Table 8.



Figure 10. 3D plot of mutual information for G-first and E-first w.r.t. ratio and inter-frame pixel displacement. As can be seen from the
pictures, increasing ratio and movement would impose damages on G-first and E-first respectively, showing separate areas where either
one of them could be above the other. Better viewed in interactive 3D plot that can be generated from our submitted code.

B.3. Synthesis

Though it is possible to directly calculate mutual infor-
mation of Gain-first images, such metric on Exposure-first
and Mixed ones would depend largely on relations between
frames, i.e., distributions and correlations of Sraw(t) across
time among all pixels, which can easily become intractable
when complicated scene or object motion exists. There-
fore, to present evidence for our conclusions holding true in
complicated real-world situations, we aim to prove our con-
clusions on a controllable synthetic movement, providing a
simple instantiation without loss of generality.

Specifically, we translate a sharp image S horizontally
and vertically through affine transformation matrix applied
to each channel of RGGB separately to maintain correct
color pattern in raw domain. Noise parameters at specific
gain levels are calibrated by a grid search of possible values
to minimize mean square error between generated images
and image quadruplets in our dataset. For those parameters
that capture essence of linearity between noises and K, as
well as their uncertainty, i.e., σ̄TL and σ̄r, we use published
results from [14] on a SonyA7S2 camera, which was then
linearly stretched to fit data points from our camera found
by the grid search. Utilizing this model, we are able to cre-
ate samples that can have PSNR over 33 and marginal KL-
divergence [1] below 0.04 when compared to captured real
images, as shown in Figure 9, proving the validity of per-
forming further analysis based on this synthesizing frame-
work.

B.4. G-first vs E-first

In Equation 4, M = 1 corresponds to Gain-first, while
M = ratio corresponding to Exposure-first. We vary ratio
from 1 to 100, and in the meantime change inter-frame dis-

placements that are used to control speed of artificial move-
ments in long-exposure images from 0 to 50 pixels. Result-
ing mutual information for both strategies can be viewed in
Figure 10. An interactive 3D plot is available on our Project
page to provide better sight for their geometry.

From the figure, it can be seen that increasing ratio could
wreak havoc on G-first images, as its mutual information
dives below E-first when ratio goes above 50 (middle one
in Figure 10). Viewed from other angles, it can be observed
that E-first is sensitive to both ratio and displacement, de-
feating G-first at relatively high ratios with low speed mo-
tion, which is in accordance with intuition that long expo-
sure eliminates noises for still scenes under extreme dark
environments.

To help better apprehend differences between the two,
we plot in Figure 11 a heatmap of E-first’s mutual infor-
mation minus G-first’s. Color gradient and contours on this
difference map clearly show existence of turning points, or
in this case an equilibrium line, where the amount of la-
tent information that can be used to restore images in two
strategies are in close proximity to each other. This also
means that neither Gain-first nor Exposure-first can be an
once-and-for-all method, since on different side of the equi-
librium line performances of the two switch places, further
enhancing the value of empirical results presented in our
main paper. Further, it can be verified from the figure that
the equilibrium line intersects ratio10, ratio30, and ratio100
roughly at 7, 20 and 40 pixels of inter-frame displacement,
illustrating sensitivity to motion of E-first when compared
to G-first, validating our conclusions in the main paper that
Gain-first takes a leading role at ratio10 and ratio30 1, de-

1Frame rate at ratio30 drops to 15fps, increasing the likelihood for
inter-frame displacement to go beyond turning point value.

https://Gain-or-Exposure-Benchmark.github.io
https://Gain-or-Exposure-Benchmark.github.io


Figure 11. Difference between mutual information of E-first and
G-first. Positive values indicate advantages for E-first, and nega-
tive for G-first. Contours are plotted on Gaussian filtered differ-
ences, for better visualization.

Figure 12. Mutual information of all possible strategies at ra-
tio100. Red crosses indicate an optimal value M at each level
of inter-frame motion. Contours are plotted on Gaussian filtered
values, for better visualization.

clining at ratio100.

B.5. Mixed

To evaluate all possible combinations of gain and exposure,
we focus on the extreme case, i.e., ratio100, altering M and
gain accordingly to explore their effect on mutual infor-
mation. Specifically, we traverse the integer value from 1
to 100 for M , setting gain = ratio

M = 100
M at the same

time. An interactive 3D plot can be generated by our code,
whereas here we present its heatmap with contours in Fig-
ure 12. We use red crosses to display an optimal value of
M in that row, namely a best version of Mixed strategy at
that level of displacement. It can be seen that such opti-
mal solutions are clustered in area close to Exposure-first

Table 8. Metrics of test inputs, evaluating the starting point for
each experiment.

PSNR/SSIM G-first Mixed E-first

Ratio10 15fps
Overall 30.56/0.8046 30.08/0.8836 26.98/0.8490
Static 30.02/0.8002 32.37/0.9119 31.64/0.9174

Moving 31.10/0.8091 27.79/0.8553 22.32/0.7807

Ratio10 30fps
Overall 30.56/0.8032 29.91/0.8837 26.30/0.8430
Static 29.85/0.7923 31.98/0.9046 30.61/0.9040

Moving 31.27/0.8141 27.84/0.8628 21.99/0.7820

Ratio30 15fps
Overall 26.70/0.6920 29.12/0.8499 22.59/0.7704
Static 26.16/0.6759 30.53/0.8755 26.99/0.8847

Moving 27.25/0.7080 27.71/0.8243 18.20/0.6562

Ratio100 30fps
Overall 22.26/0.4322 27.50/0.6832 26.52/0.7630
Static 22.53/0.4512 27.36/0.6886 25.78/0.7467

Moving 21.99/0.4133 27.64/0.6778 27.25/0.7793

Table 9. Averaged metric increase for each experiment. They are
differences between metrics on test inputs as in Table 8 and metrics
on restored results averaged among 5 enhancement algorithms we
chose for each ratio and frame rate category.

PSNR/SSIM G-first Mixed E-first

Ratio10 15fps
Overall 5.828/0.1543 5.122/0.0672 5.248/0.0675
Static 6.134/0.1571 4.080/0.0453 3.430/0.0286

Moving 5.520/0.1514 6.164/0.0891 7.066/0.1064

Ratio10 30fps
Overall 6.190/0.1569 5.690/0.0692 5.988/0.0805
Static 6.200/0.1635 4.796/0.0522 3.998/0.0380

Moving 6.178/0.1502 6.580/0.0861 7.980/0.1229

Ratio30 15fps
Overall 6.726/0.2538 4.604/0.1001 3.562/0.0617
Static 5.702/0.2610 3.272/0.0796 2.250/0.0229

Moving 7.738/0.2467 5.936/0.1206 4.868/0.1004

Ratio100 30fps
Overall 9.434/0.4851 5.000/0.2487 4.568/0.1410
Static 8.794/0.4704 5.144/0.2542 7.336/0.2033

Moving 10.08/0.4995 4.856/0.2432 1.812/0.0786

when displacement is small, and biased towards Gain-first
with moving speed increasing. Yet, it never reaches to a
point where it reduces to completely Gain-first (M = 1)
or Exposure-first (M = 100), corroborating our conclusion
that under this ratio a joint-denoising-deblurring process on
the Mixed strategy images is preferred.

C. Additional Evaluations and Visualizations
C.1. Visualizing Quantitative Measurements

We include a visualization of all quantitative results from
our experiments in Figure 13 to better aid the understanding
of our conclusions.

C.2. Relative Metric Increase

In order to assess relative improvements in each strategy,
we calculated PSNR/SSIM between test inputs and their
GTs as reported in Table 8. Numbers in the table are in
accordance with the derivation we had in section B.4. We
can have their relative metric increases as shown in Ta-



PSNR SSIM LPIPS

Figure 13. Visualization of quantitative measurements. Number on the row labels denote 5 methods we chose, i.e., RVRT, BasicVSR++,
Restormer, Uformer, and LEDNet, under 4 experiment conditions: ratio10 15fps, ratio10 30fps, ratio30 15fps, and ratio100 30fps. Columns
include overll, static-shot, and moving-shot results of Gain-first, Mixed, and Exposure-first, integrating information from Table 3-5 in the
main paper.

ble 9 by comparing these values to restored result measure-
ments averaged among all five models, namely RVRT [9],
BasicVSR++ [4, 5], Restormer [15], Uformer [13], LED-
Net [16], for each experiment 2. It can be seen that Gain-
first has the most overall metric increase for all ratios, while
Exposure-first and Mixed have larger boost on moving shots
from ratio10 experiments.

D. Project Website Contents
We include more video samples for our collected dataset
and experiment results on the Project page, where the
dataset is publicly available. Other contents include a sum-
mary video and interactive 3D plots.
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