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Due to the space limit, some formula derivation and ad-
ditional experiments could not be included in the main pa-
per. This supplementary material provides a comprehensive
demonstration of the experimental setup and comparative
analysis, structured as follows:

I PSF Derivation
2 Decoding Models
2.1 Structure of Decoding Models
2.2 Deep Unfolding Algorithm
3 Additional Experiments
3.1 Response Selection of WEM-P
3.2 Initialization of Ideal Encoding Models
3.3 Selection of Loss Functions
3.4 PSF Sizes and Kernel Sizes of PEM-I
3.5 Validation of ICVL dataset
4 Visualization of Ideal Encoding Patterns

1. PSF Derivation

Here, we describe the details of the PSF derivation for
PEM-P by following the general formulation in [1, 3, 6-9].

Scene light generates phase delays ¢(x, y, A) through the
DOE of the height map H (z,y):
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where An is the refractive index difference between the air
and the material of the optical element.

The incident point source with coordinates (z,y) at a
distance d from the DOE can be expressed as:
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The incident light gets phase modulated through the
DOE:

Udoe(l‘vyv)‘> = A(xay)UO(may7)\)eiQTﬂ¢(x7y7>\) (3)

where A(x, y) is the optical aperture.

*Corresponding author: Lizhi Wang.

Algorithm 1 Deep Unfolding Algorithm

Input: Sensor image I, optical encoding operation Q,
trade-off parameter 7
Qutput: Reconstructed spectral image Z
1: Initialize Zg from I, 4,
2. fork=1,2,...., K do
% Iy =argming |Lgy — QDI + 01 — Zis |
/ISolving the encoding Model-drived sub-problem
4 Zp=fy);
//Reconstructing with a Res-U-Net(depth=4)
5: end for

The modulated wavefield passes through the Fresnel
diffraction law to reach the sensor plane at a distance z from
the DOE:
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where f, and f, are the frequency variables of x and y,
respectively, and F denotes the Fourier transform.
The PSF P(x,y, \) is the squared intensity of the wave-
field:
P(z,y,\) ‘Usensor(xay»)‘)ﬁ o)

2. Decoding Models
2.1. Structure of Decoding Models

Sim-Conv-Net. The Sim-Conv-Net, shown in Figure la,
comprises four convolutional layers, and the filter size of
each convolutional kernel is 31.

Res-U-Net. The Res-U-Net, shown in Figure 1b, consists of
Res Units, the filter size indicated by the top number. Res-
U-Net integrates these concepts by incorporating residual
blocks into the U-Net architecture. This combination aims
to leverage the benefits of both residual connections for gra-
dient flow and U-Net for precise segmentation.
Unfolding-Net. The Unfolding-Net, shown in Figure Ic, is
based on the deep unfolding algorithm [4, 10-13] and con-
sists of a model-driven module and a data-driven module.
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Figure 1. The structure of decoding models.

The algorithmic process is shown in Algorithm 1, and the
final reconstruction result is obtained by iterating these two
modules several times. In the experiment, the number of
iterations K is 4.

2.2. Deep Unfolding Algorithm

In general, spectral image reconstruction aims at recovering
the potential spectral image / from the RGB sensor obser-
vation I,g, = Q(I) + n, where Q is a noise-independent
optical encoding operation and n is assumed to be additive
white Gaussian noise with a standard deviation of o.

From a Bayesian perspective [2], the solution I can be
obtained by solving a Maximum A Posteriori (MAP) esti-
mation problem.

I =arg max log p(Irg | I) + logp(I) (6)
1

where log p(I,4» | I) represents the log-likelihood of ob-
servation I,.gp, logp(I) delivers the prior of clean image I
and is independent of degraded image I,4,. Eq. 6 can be
reformulated as

I = argming||Ig — Q(I|[* + AR(I) (7)

where \ is a balance parameter. The data term enforces
alignment with the observation model, while the regulariza-
tion term enforces the desired spectral image prior R(-).

To separate non-differentiable regularization terms from
the data term in Eq. 7, the variable splitting technique is of-

ten used, introducing an auxiliary variable Z and reformu-
lating the equation as a constrained optimization problem.

I = argming||Lgy — QD> + AR(Z),5.t.Z =1 (8)

Afterward, the constrained optimization problem can be
transformed into a nonconstrained optimization problem us-
ing the half quadratic splitting (HQS) method.

(I1.2)= arg min |y — QNP +nlZ—1I|>+AR(Z) (9)

where 7 is a penalty parameter. Eq. 9 can be split into two
subproblems as

I, = argming|[Irgp — QUDI* +nllI = Z—a|*  (10)
7y, = argmingu||Z — I||* + R(Z) (11)

The Ii-problem in Eq. 10 is a quadratic regularized least-
squares problem that ensures the data fidelity. The direct
solution can be given according to the specific encoding
model.

Iy, = argmin || Ig, — Q(I)[|* + n |7 — Zia|* (12)

The regularization Zi-problem in Eq. 11 is generally
solved using a data-driven module with a deep neural net-
work. This process can be expressed as:

Zi = [ (Ik) 13)

Concretely, we adopt the Res-U-Net(depth=4) as the data-
driven module.



AEM. Rewrite Eq.12 for AEM:
Iy = argmin | Ig — AID|? +n|I - Zi_1 > (14)

where A is the Mask of AEM and D represents the integra-
tion operation of the sensor. The solution is obtained using
the gradient descent method:

Iy = I—1—a(—2AD" (I g — Al 1) +20(Ix—1— Zx 1))
15)

where « is the step length of the gradient descent.

PEM. Rewrite Eq.12 for PEM:

Iy = argmin | L, — I @ PD|?> + ||l — Zi_1|* (16)

where P is the PSF of PEM and D represents the integration
operation of the sensor.
The solution is obtained using the gradient descent method:

I, = Ik,170&(72PD®(ITgbf.[kfl®PD)+277(I]€,17Zk,1))

)
where « is the step length of the gradient descent.
WEM. Rewrite Eq.12 for WEM:

Iy = argmin | Lgy — ID|* + 0|1 = Za|* - (18)

where D represents the integration operation of the sensor.
The solution is obtained using the gradient descent method:

Iy = Iy —a(=2D" (I — Ir—1 D) +20(Ij—1 — Zx—1))
(19)
where « is the step length of the gradient descent.

3. Additional Experiments
3.1. Response Selection of WEM-P

We compare the response dataset [5], which includes
28 camera responses, to the response of the FLIR
BFS_U3_04S2C_C camera in the WEM-P. According to Ta-
ble 1, the latter experiment performs the best. Therefore,
we select the response curve of the FLIR BFS_U3_04S2C_C
camera as the response curve for the WEM-P and other ex-
periments with fixed response curves.

3.2. Initialization of Ideal Encoding Models

The ideal model encoding possesses significant flexibility,
and the initialization considerably influences the experi-
mental outcomes. Therefore, we conduct experiments on
initializing AEM-I, PEM-I, and WEM-I encodings to deter-
mine the optimal initialization for the experimental setup.
To this end, we employ two types of initialization: constant
initialization and random initialization.

Initialization of AEM-I. Two constant initialization types,
all-0.5 and all-1, are used for AEM-I encoding. Two ran-
dom initialization types are applied by setting the mask to a
number between 0 and 1: uniform and Gaussian.

Table 1. Comparison of different response curves of WEM-P, with
the best results in bold.

Response curves PSNRT PSNR-SIT SAM| ERGAS|

FLIR_BFS-U3-0452C-C ~ 44.96 38.81 0.03988 6.23

Canon_1DMarkIII 43.54 38.47 0.0461 7.88
Canon_20D 43.26 38.73 0.0472 8.38
Canon_300D 43.93 38.58 0.0438 7.23
Canon_40D 43.43 38.45 0.0481 8.09
Canon_500D 44.01 38.41 0.0443 7.25
Canon_50D 43.88 38.27 0.0445 7.34
Canon_SDMarkII 44.04 38.57 0.0435 7.37
Canon_600D 43.81 38.40 0.0452 7.66
Canon_60D 43.98 38.41 0.0437 7.35
Hasselblad_H2 44.18 39.00 0.0416 7.35
Nikon_D3X 43.85 38.75 0.0439 7.50
Nikon_D200 43.74 38.72 0.0444 7.64
Nikon_D3 43.47 38.55 0.0462 797
Nikon_D300s 43.65 38.68 0.0452 7.73
Nikon_D40 44.29 38.63 0.0426 6.69
Nikon_D50 4431 38.76 0.0431 6.93
Nikon_D5100 43.33 38.57 0.0459 8.21
Nikon_D700 43.70 38.66 0.0444 7.90
Nikon_D80 43.24 38.55 0.0463 8.35
Nikon_D90 43.76 38.71 0.0441 7.63
Nokia_N900 44.05 38.52 0.0441 6.83
Olympus_E_PL2 43.84 38.63 0.0436 7.37
Pentax K_5 43.93 38.63 0.0436 7.63
Pentax_Q 44.30 38.65 0.0437 6.97
GS3-U3-50S5C-C 42.85 38.76 0.0542 9.30
GS2-FW-14S5C-C 44.19 38.94 0.0425 7.35
Phase_One 43.41 38.09 0.0465 7.56
SONY_NEX_5N 44.18 38.69 0.0439 7.05

Table 2. Comparison of the different initializations of the AEM-I,
with the best results in bold.

Initialization PSNR{ PSNR-SIt SAM| ERGAS|

One 44.64 38.58 0.0411 6.85
Onehalf 45.08 38.95 0.0405 6.24
Uniform 44.57 37.77 0.0394 5.84

Gaussian 44.97 38.30 0.0407 5.79

Table 3. Comparison of the different initializations of the PEM-I,
with the best results in bold.

Initialization PSNR{ PSNR-SIT SAM| ERGAS]

One 44.49 38.23 0.0419 6.67
Uniform 44.87 38.78 0.0412 6.39
Gaussian 44.90 38.68 0.0398 6.28

As shown in Table 2, the all-0.5 initialization setting has
the highest PSNR and PSNR-SI test results, so we use the
all-0.5 initialization as the experimental setup for the AEM-
I. As no apparent features are observed after compositing
the RGB image from the 31-channel mask, we select a chan-
nel mask for cropping to show the central region, as shown
in Figure 2a. The constant-initialized mask is distinguish-
able from channel to channel, and the random-initialized
mask remains morphologically randomly distributed.
Initialization of PEM-I. We utilize a constant initialization



Onehalf Uniform
R T

i

(a) Mask

Uniform Gaussion

(b) PSF

H" One

Figure 2. Visual comparison of masks of AEM-I and PSFs of PEM-I. The mask is zoomed in for better visualization.

Table 4. Comparison of the different initializations of the WEM-I
w/ P.C., with the best results in bold.

Initialization PSNRT PSNR-SIT SAM| ERGAS|

Random 44.26 38.84 0.0432 5.37
Constant 42.19 35.62 0.0522 8.67
Constant Random
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Figure 3. Visual comparison of WEM-I w/ P.C. response curves
with different initializations.

of all ones and uniform and Gaussian random initialization
for PEM-I.

Table 3 concludes that the PEM-I model performs best
with Gaussian random initialization for all evaluation met-
rics. Therefore, we select the Gaussian random initializa-
tion as the experimental setup for the PEM-I. Figure 2b
shows a composite RGB image of the 31-channel PSFs ob-
tained using this initialization, which exhibits a central con-
vergence pattern that leads to the best imaging quality.

Initialization of WEM-I. In WEM-I, a linear layer is
employed for encoding instead of a fixed RGB filter re-
sponse function. We try constant initialization of the re-
sponse curve of the FLIR BFS_U3_04S2C_C camera and
random initialization to initialize the weights of the con-
volution kernel in the WEM-I with positive constraints
(WEM-1 w/ P.C.).

Table 4 illustrates that random initialization yields bet-
ter imaging performance than constant initialization. More-
over, the response curve for constant initialization remains
unchanged from the initialization settings, while the re-
sponse curve for random initialization has a distinctive
shape, as shown in Figure 3. Consequently, random initial-
ization is used in WEM-I and WEM-I w/ P.C experiments.

3.3. Selection of Loss Functions

In addition to the MAE loss function used in the main text
experiments, we also compare the effects of two additional
loss functions on the results: MSE loss and ERGAS loss.

Table 5 demonstrates that switching the loss function
has no impact on the consistency of individual systems.
MAE loss is the most appropriate loss function for training
joint encoder-decoder optimization computational spectral
imaging systems, compared to MSE loss and ERGAS loss.
Therefore, we select the MAE loss as the loss function for
the experiments in the main text. When MSE loss is used as
the loss function, the PEM-I encounters convergence prob-
lems. This is because MSE loss is not well-suited for mod-
els with a high degree of freedom. ERGAS loss provides
only a slight improvement in the ERGAS metric.

3.4. PSF Sizes and Kernel Sizes of PEM-I

We conduct experiments with varying PSF sizes and convo-
lutional kernel sizes of the decoding model. The compari-
son results are shown in Table 6 and Figure 4. The results
indicate that smaller learnable PSF and kernel sizes in the
decoding model can lead to greater convergence of PSF and
improve performance.

In summary, to achieve clear imaging quality in the
PEM, a concentrated PSF must be designed while main-
taining a slight variance of the PSF across the channels to
preserve spectral information.

3.5. Validation of ICVL Dataset

During training, we use the common practice of cropping
each image into multiple 512 x 512 patches, with suffi-
cient data to cover the training requirements. We conduct
three additional experiments under the WEM-P setting, re-
ducing the training set by 10% and 20%, and repartitioning
the training and validation sets. As shown in Table 7, the
fluctuation of the test results is within 1 dB for both reduc-
ing the amount of data in the training set and repartitioning
the dataset, proving the validity of the training data.



Table 5. Spectral imaging performance of systems using UEMs on different loss functions, with the best results in bold.

Physical Model Ideal Model

Loss Encoding Model | PSNRT PSNR-SIt SAM| ERGAS| | Encoding Model | PSNRT PSNR-SIT SAM| ERGAS/|
WEM-P 44.96 38.81 0.0399 6.23 WEM-I 45.25 38.51 0.0328 5.23
MAE AEM-P 40.21 32.66 0.0491 8.96 AEM-I 44.64 38.58 0.0411 6.85
PEM-P 33.75 26.02 0.0655 16.62 PEM-1 449 38.68 0.0398 6.28
WEM-P 43.94 37.74 0.0465 6.73 WEM-I 43.52 36.77 0.0448 6.63
MSE AEM-P 38.41 30.78 0.0611 10.47 AEM-1 43.48 37.2 0.0485 7.03
PEM-P 33.71 25.99 0.0689 16.7 PEM-I 43.16 36.75 0.0498 7.15
WEM-P 44.49 38.24 0.0427 6.3 WEM-I 44.11 38.29 0.0428 5.14
ERGAS AEM-P 39.9 32.37 0.0523 8.98 AEM-1 43.77 38.12 0.0448 5.4
PEM-P 34.14 26.77 0.0690 15.99 PEM-1 44.43 38.27 0.0430 6.43

Table 6. Comparison of the imaging quality of systems using the
PEM-I and the Sim-Conv-Net with different PSF and kernel size.
The best result is marked in bold, and the second-best result is
underlined in each column.

PSF Size Kernel Size PSNR{T PSNR-SIT SAM|

3 3 44.75 38.69 0.0409
3 5 44 37.54 0.0421
3 7 42.43 35.57 0.0471
3 9 41.54 34.35 0.0483
9 3 44.55 38.32 0.0417
9 5 44.01 37.47 0.0421
9 9 40.28 3291 0.0512
9 15 34.14 26.52 0.0776
16 3 44.4 38.05 0.0419
16 5 40.43 33.33 0.0568
64 3 40.6 33.24 0.0509

PSF Size: 3

Kernel Size: 3 Kernel Size: 5 Kernel Size: 7 Kernel Size: 9

Kernel Size: 3 Kernel Size: 5 Kernel Size: 9 Kernel Size:15

PSF Size : 9

Figure 4. Visual comparison of RGB PSFs of PEM-I with different
sizes of learnable PSF and different convolutional kernel sizes of
the decoding model.

4. Visualization of Ideal Encoding Patterns

Due to the limited space, we demonstrate a few channels of
PSF and mask in the main paper. We further provide the
full version here. Figure 5 shows the full visualization of
the 31 channels of the AEM-I masks. Figure 6 shows the

Table 7. Spectral imaging performance of systems using the
WEM-P on ICVL datasets.

Dataset PSNRT PSNR-SIt SAM| ERGAS|
ICVL 44.96 38.81 0.0399 6.23
ICVL-90%Training set ~ 44.77 38.76 0.0402 6.36
ICVL-80%Training set ~ 44.18 38.36 0.0437 6.59
ICVL-Redividing 44.65 38.65 0.0413 6.49

full visualization of the 31 channels of the PEM-I PSFs.

References

(1]

(2]

(4]

(5]

(6]

(71

Seung-Hwan Baek, Hayato Ikoma, Daniel S Jeon, Yuqi
Li, Wolfgang Heidrich, Gordon Wetzstein, and Min H
Kim. Single-shot hyperspectral-depth imaging with learned
diffractive optics. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 2651—
2660, 2021. 1

BAYES. An essay towards solving a problem in the doctrine
of chances. Biometrika, 45(3-4):296-315, 1958. 2

Julie Chang and Gordon Wetzstein. Deep optics for monocu-
lar depth estimation and 3d object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 10193-10202, 2019. 1

Weisheng Dong, Peiyao Wang, Wotao Yin, Guangming Shi,
Fangfang Wu, and Xiaotong Lu. Denoising prior driven deep
neural network for image restoration. /[EEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 41(10):
2305-2318, 2018. 1

Jun Jiang, Dengyu Liu, Jinwei Gu, and Sabine Siisstrunk.
What is the space of spectral sensitivity functions for digi-
tal color cameras? In IEEE Workshop on Applications of
Computer Vision (WACV), pages 168-179, 2013. 3

Lingen Li, Lizhi Wang, Weitao Song, Lei Zhang, Zhiwei
Xiong, and Hua Huang. Quantization-aware deep optics for
diffractive snapshot hyperspectral imaging. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 19780-19789, 2022. 1
Christopher A Metzler, Hayato Ikoma, Yifan Peng, and Gor-
don Wetzstein. Deep optics for single-shot high-dynamic-
range imaging. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1375-1385, 2020.



(8]

(9]

(10]

[11]

[12]

(13]

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun,
Stephen Boyd, Wolfgang Heidrich, Felix Heide, and Gor-
don Wetzstein. End-to-end optimization of optics and image
processing for achromatic extended depth of field and super-
resolution imaging. ACM Transactions on Graphics (TOG),
37(4):1-13, 2018.

Qilin Sun, Ethan Tseng, Qiang Fu, Wolfgang Heidrich,
and Felix Heide. Learning rank-1 diffractive optics for
single-shot high dynamic range imaging. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1386-1396, 2020. 1

Lizhi Wang, Chen Sun, Ying Fu, Min H Kim, and Hua
Huang. Hyperspectral image reconstruction using a deep
spatial-spectral prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8032-8041, 2019. 1

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.
Learning deep cnn denoiser prior for image restoration. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3929-3938,
2017.

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-
ing network for image super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3217-3226, 2020.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc
Van Gool, and Radu Timofte. Plug-and-play image restora-
tion with deep denoiser prior. /EEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 44(10):6360—
6376,2021. 1



Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

Channel 6 Channel 7 Channel 8 Channel 9 Channel 10 Channel 11

Channel 12 Channel 13 Channel 14 Channel 15 Channel 16 Channel 17
e . P LT

. > .

Channel 18 Channel 19 Channel 21 Channel 22 Channel 23
s WL . ¥ ad

Channel 24 Channel 25 Channel 26 Channel 27 Channel 28 Channel 29

Channel 30

Figure 5. Visualization of the AEM-I masks.
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Figure 6. Visualization of the PEM-I PSFs.
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