
GPT4Motion: Scripting Physical Motions in Text-to-Video Generation via
Blender-Oriented GPT Planning

Jiaxi Lv1,2∗ Yi Huang1,2∗ Mingfu Yan1,2∗ Jiancheng Huang1,2 Jianzhuang Liu1

Yifan Liu1 Yafei Wen3 Xiaoxin Chen3 Shifeng Chen1†

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
2University of Chinese Academy of Sciences, 3VIVO AI Lab

{jx.lv1, yi.huang, mf.yan, jc.huang, jz.liu, yf.liu2, shifeng.chen}@siat.ac.cn
{yafei.wen, xiaoxin.chen}@vivo.com

Supplementary Material

GPT4Motion AnimateDiff [1] ModelScope [8] Text2Video-Zero [4] DirecT2V [2]

Figure 1. Comparison of the video results generated by different text-to-video models under different physical conditions. Best viewed
with Acrobat Reader for animation. 1

https://www.adobe.com/acrobat/pdf-reader.html


In this supplement material, we further compare the gen-
eration ability of GPT4Motion and four baselines for differ-
ent physical conditions in Sec. 1. In Sec. 2, we introduce
the quantitative metrics we used. In Sec. 3, we describe the
details of our settings for Blender. In Sec. 4 and Sec. 5, we
show how GPT-4 generates encapsulated Python functions
via prompts, and how GPT-4 incorporates its own knowl-
edge of physics to control the motion of objects, respec-
tively.

1. More Comparison with Baselines
In the main paper, we have compared GPT4Motion
with four baselines (AnimateDiff [1], ModelScope [8],
Text2Video-Zero [4], and DirecT2V [2]) on three scenarios
(rigid object drop and collision, cloth draping and swinging,
and liquid flow). Here, we further conduct an experiment on
dynamic effects of a T-shirt being blown by the wind under
three wind strengths. The results are shown in Figure 1,
where the seed is randomly chosen and fixed in all the gen-
erations. We can see that these baselines all fail to generate
videos that match the user prompts and are unable to control
the intensity of physical phenomena solely based on the lin-
guistic descriptions. In contrast, our GPT4Motion not only
precisely designs the parameters of Blender encapsulated
functions (such as wind strength) through GPT-4, but also
leverages Blender’s physics engine to simulate the complex
flapping and twisting dynamics of the T-shirt in the wind.

2. Quantitative Evaluation Metrics
Here, we introduce the metrics employed in the main paper:
1. Motion Smoothness [3]. This metric evaluates the

smoothness of motion in generated videos, ensuring it
conforms to the physical laws of the real world. The
evaluation utilizes motion priors from the video frame
interpolation model [5] to assess the smoothness of gen-
erated motions.

2. Temporal Flickering [3]. This metric identifies imperfec-
tions in temporal consistency within generated videos,
especially in local and high-frequency details. The
method involves analyzing static frames and comput-
ing the mean absolute difference across frames. These
values are then subtracted from 255 and normalized be-
tween 0 and 1.

3. CLIP-Score [6]. This metric is designed to assess Text-
Video Consistency. It leverages a pretrained ViT-B/32
CLIP model [7] as a feature extractor to calculate the
cosine similarity between each video frame and the as-
sociated text.

3. Blender Settings
We use Blender to generate two sequences of scene depth
maps and edge maps. The edge maps are obtained by

Blender’s built-in Freestyle1 feature, which is an advanced
rendering technique for non-photorealistic line drawings
from 3D scenes. It not only allows for various line styles,
such as hand-drawn or sketch, but also serves as an inde-
pendent rendering pass without losing edge information of
the scene and additional post-processing. Moreover, we
normalize the scene’s Z-channel and render it as an inde-
pendent depth map. Since the rendering of edge maps and
depth maps is unrelated to ray tracing, we choose Blender’s
“Workbench” rendering mode. This mode avoids the sub-
stantial computational resources required for ray tracing,
significantly enhancing rendering efficiency. In our ex-
periments, completing the entire rendering process using
Blender scripts takes only 2 to 3 minutes, with most of the
time spent on calculating physical effects.

4. GPT-4’s Generation of Encapsulated Python
Functions for Blender

Blender incorporates an independent Python library, en-
abling the transformation of various manual processes
within the software to automate tasks through its Python
API. Leveraging GPT-4’s capabilities of grasping Blender’s
Python API, we can rapidly generate encapsulated Python
functions for Blender. This involves inputting specific func-
tional goals and the associated Blender operation steps into
GPT-4. Consequently, GPT-4 can autonomously create
Python code that corresponds to these steps, effectively en-
capsulating them into Python functions. One example is
given below.

User:
You are an expert in Blender
and Python. Please generate
encapsulated Blender Python
functions by following our
step-by-step instructions,
writing the Blender Python API
corresponding to each step,
designing each function’s
name, and explaining its
functionality and the meaning of
each parameter in the docstring.

GPT-4:
Sure, I’d be happy to help
with that. Please go ahead and
provide me with the step-by-step
instructions for the Blender
Python functions you need, and
I will write the corresponding
code for you.

1https://docs.blender.org/manual/en/latest/
render/freestyle/introduction.html

https://docs.blender.org/manual/en/latest/render/freestyle/introduction.html
https://docs.blender.org/manual/en/latest/render/freestyle/introduction.html


User:
Please build a function to
remove all objects, cameras and
lights from the initial scene.

GPT-4:
Certainly! To create a Blender
Python function that removes
all objects, cameras, and lights
from the initial scene, you can
define a function like this:

1 # bpy is the Python module used
for scripting within Blender

2 import bpy
3

4 def clear_scene():
5 """
6 Clears all objects from the

current Blender scene.
7

8 This function selects all
objects in the scene and
deletes them.

9 It is useful when starting a
new scene setup or
resetting the scene to a
blank state.

10

11 No inputs or outputs.
12

13 Typically called at the
beginning of a script
when starting a new scene
setup.

14 """
15 bpy.ops.object.select_all(

action='SELECT')
16 bpy.ops.object.delete()

You can call this function
whenever you need to clear the
scene of all types of objects.
Just make sure to be in the
correct context where the scene
is accessible.

User:
Please now create two physics
functions, one that adds
collision properties to the
inputted object, and another
that adds rigid body properties
to the object. Then, construct
a function to create a floor
that scales it up 50 times in

all directions, with physics
set to collision and rigid body
(passive, with elasticity set to
1).

GPT-4:

To accomplish this task, we’ll
create three functions in
Blender’s Python API:

1. Add Collision Properties:
This function will add
collision properties to a
specified object.

2. Add Rigid Body Properties:
This function will add rigid
body properties to a specified
object.

3. Create a Floor with Physics:
This function will create
a floor, scale it, and set
its physics properties to
collision and rigid body.

1 import bpy
2

3 def add_collision(obj):
4 """
5 Adds a collision modifier to

a Blender object if it
does not already have one
.

6

7 Parameters:
8 - obj (Blender Object): The

object to which the
collision modifier will
be added.

9

10 Returns:
11 - None, but the object will

have a collision modifier
added to it if it wasn't
present before.

12

13 This function is used in
physics simulations where
it's necessary for

objects to interact with
each other,

14 such as rigid body or soft
body simulations. The
collision modifier makes
the object a collider in
the physics

15 simulation, allowing other



objects to bounce off or
slide along its surface.

16 """
17 if "Collision" not in obj.

modifiers:
18 bpy.ops.object.

modifier_add(type='
COLLISION')

19

20 def add_rigid_body(obj, mass=1,
elasticity=0.5,
rigid_body_type='ACTIVE'):

21 """
22 Adds a rigid body physics

characteristic to a
Blender object.

23

24 Args:
25 - obj (Blender Object): The

object to which the rigid
body physics will be

applied.
26 - mass (float): The mass of

the object, default is 1.
27 - elasticity (float): The

restitution (bounciness)
of the object, default is
0.5.

28 - rigid_body_type (str): The
type of rigid body, can
be 'ACTIVE' or 'PASSIVE',
default is 'ACTIVE'.

29

30 Returns:
31 - None, but the object is now

a rigid body with the
specified physics
properties.

32

33 This function is crucial for
physics simulations,
defining how the object
behaves under physical
forces.

34 """
35 bpy.ops.object.select_all(

action='DESELECT')
36 obj.select_set(True)
37 bpy.context.view_layer.

objects.active = obj
38 bpy.ops.rigidbody.object_add

()
39 obj.rigid_body.type =

rigid_body_type
40 obj.rigid_body.mass = mass
41 obj.rigid_body.restitution =

elasticity
42 obj.rigid_body.

collision_shape = 'MESH'
43

44 def create_floor(elasticity=1):
45 """
46 Creates a floor plane in

Blender, scales it, and
sets it up with collision
and rigid body physics.

47 The created floor is scaled
to be large enough to act
as a ground plane for

most scenes.
48

49 Parameters:
50 - elasticity (float): The

restitution or '
bounciness' of the floor.
A value of 1 means

perfectly elastic, while
0 means no elasticity.
Default is 1.

51 """
52 bpy.ops.mesh.

primitive_plane_add(size
=1, enter_editmode=False,
align='WORLD', location

=(0, 0, 0))
53 floor = bpy.context.

active_object
54 floor.scale = (50, 50, 50)
55 floor.name = 'GROUND'
56 add_collision(floor)
57 add_rigid_body(floor,

rigid_body_type='PASSIVE'
, elasticity=elasticity)

These functions together allow
you to dynamically add physics
properties to objects and create
a large, physical floor in your
Blender scene. Remember to run
these functions in a Blender
Python scripting context where
the bpy module is accessible.

After generating the function, we enhance its usabil-
ity for GPT-4 by incorporating instructions (such as the
strength interval of the wind) in the function’s docstring.
This ensures that GPT-4’s usage aligns more closely with
our expectations.

5. Combination of Blender and GPT-4’s
Physics Knowledge

We discover that GPT4Motion can not only use GPT-4’s
semantic understanding and coding capabilities to gener-
ate Blender Python scripts, but it can also leverage GPT-4’s



physical knowledge to control object motion. For exam-
ple, when prompted with “a basketball thrown towards the
camera.”, we find that GPT-4 can calculate the time it takes
for the basketball to fall, based on the height difference be-
tween the initial position of the basketball and the camera.
This calculation helps to determine the initial velocity re-
quired for the basketball to fly to the camera. The speed
calculation code generated by GPT-4 is as follows:

1 # Setup the basketball
2 basketball = setup_object(
3 os.path.join(ASSETS_PATH, "

basketball.obj"),
4 "Basketball",
5 size=0.24, # Standard basketball

diameter in meters
6 mass=0.625, # Standard basketball

mass in kilograms
7 position=(0, 0, 4) # Initial

position for the basketball
8 )
9

10 # Calculate the initial velocity for the
basketball to hit the camera

11 g = 9.81 # Acceleration due to gravity
in m/sˆ2

12 camera_height = 1.8521
13 height_difference = 4 - camera_height
14 time_to_fall = math.sqrt(2 *

height_difference / g)
15 initial_horizontal_velocity = 13.665 /

time_to_fall # Distance to camera
along Y-axis

16

17 # Set the initial velocity and rotation
for the basketball

18 add_initial_velocity_for_rigid_body(
19 basketball,
20 initial_velocity=(0,

initial_horizontal_velocity, 0),
21 initial_rotation=(0, 0, 0) # No

initial rotation
22 )

In the above script, GPT-4 first calculates the height dif-
ference between the initial position of the basketball and the
camera, which determines the time required for the basket-
ball to fall to the same height as the camera. Subsequently,
GPT-4 calculates the distance between the basketball and
the camera along the Y-axis to determine the required ini-
tial velocity of the basketball. This process effectively inte-
grates basic principles of physics, such as the equations of
motion, to solve a practical problem in a simulated environ-
ment like Blender.

References
[1] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu

Qiao, Dahua Lin, and Bo Dai. Animatediff: Animate
your personalized text-to-image diffusion models with-
out specific tuning. arXiv preprint arXiv:2307.04725,
2023. 1, 2

[2] Susung Hong, Junyoung Seo, Sunghwan Hong,
Heeseong Shin, and Seungryong Kim. Large language
models are frame-level directors for zero-shot text-to-
video generation. arXiv preprint arXiv:2305.14330,
2023. 1, 2

[3] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang,
Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui
Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu
Qiao, and Ziwei Liu. VBench: Comprehensive bench-
mark suite for video generative models. arXiv preprint
arXiv:2311.17982, 2023. 2

[4] Levon Khachatryan, Andranik Movsisyan, Vahram
Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. Text2video-
zero: Text-to-image diffusion models are zero-shot
video generators. In ICCV, 2023. 1, 2

[5] Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou,
Chun-Le Guo, and Ming-Ming Cheng. Amt: All-
pairs multi-field transforms for efficient frame interpo-
lation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9801–
9810, 2023. 2

[6] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang,
Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng,
Raymond Chan, and Ying Shan. Evalcrafter: Bench-
marking and evaluating large video generation models.
2023. 2

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International Conference on Ma-
chine Learning, pages 8748–8763, 2021. 2

[8] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya
Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elscope text-to-video technical report. arXiv preprint
arXiv:2308.06571, 2023. 1, 2


	. More Comparison with Baselines
	. Quantitative Evaluation Metrics
	. Blender Settings
	. GPT-4's Generation of Encapsulated Python Functions for Blender
	. Combination of Blender and GPT-4's Physics Knowledge

	anm14: 
	14.7: 
	14.6: 
	14.5: 
	14.4: 
	14.3: 
	14.2: 
	14.1: 
	14.0: 
	anm13: 
	13.7: 
	13.6: 
	13.5: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	anm12: 
	12.15: 
	12.14: 
	12.13: 
	12.12: 
	12.11: 
	12.10: 
	12.9: 
	12.8: 
	12.7: 
	12.6: 
	12.5: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	anm11: 
	11.15: 
	11.14: 
	11.13: 
	11.12: 
	11.11: 
	11.10: 
	11.9: 
	11.8: 
	11.7: 
	11.6: 
	11.5: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	anm10: 
	10.80: 
	10.79: 
	10.78: 
	10.77: 
	10.76: 
	10.75: 
	10.74: 
	10.73: 
	10.72: 
	10.71: 
	10.70: 
	10.69: 
	10.68: 
	10.67: 
	10.66: 
	10.65: 
	10.64: 
	10.63: 
	10.62: 
	10.61: 
	10.60: 
	10.59: 
	10.58: 
	10.57: 
	10.56: 
	10.55: 
	10.54: 
	10.53: 
	10.52: 
	10.51: 
	10.50: 
	10.49: 
	10.48: 
	10.47: 
	10.46: 
	10.45: 
	10.44: 
	10.43: 
	10.42: 
	10.41: 
	10.40: 
	10.39: 
	10.38: 
	10.37: 
	10.36: 
	10.35: 
	10.34: 
	10.33: 
	10.32: 
	10.31: 
	10.30: 
	10.29: 
	10.28: 
	10.27: 
	10.26: 
	10.25: 
	10.24: 
	10.23: 
	10.22: 
	10.21: 
	10.20: 
	10.19: 
	10.18: 
	10.17: 
	10.16: 
	10.15: 
	10.14: 
	10.13: 
	10.12: 
	10.11: 
	10.10: 
	10.9: 
	10.8: 
	10.7: 
	10.6: 
	10.5: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	anm9: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	anm8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.15: 
	7.14: 
	7.13: 
	7.12: 
	7.11: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.80: 
	5.79: 
	5.78: 
	5.77: 
	5.76: 
	5.75: 
	5.74: 
	5.73: 
	5.72: 
	5.71: 
	5.70: 
	5.69: 
	5.68: 
	5.67: 
	5.66: 
	5.65: 
	5.64: 
	5.63: 
	5.62: 
	5.61: 
	5.60: 
	5.59: 
	5.58: 
	5.57: 
	5.56: 
	5.55: 
	5.54: 
	5.53: 
	5.52: 
	5.51: 
	5.50: 
	5.49: 
	5.48: 
	5.47: 
	5.46: 
	5.45: 
	5.44: 
	5.43: 
	5.42: 
	5.41: 
	5.40: 
	5.39: 
	5.38: 
	5.37: 
	5.36: 
	5.35: 
	5.34: 
	5.33: 
	5.32: 
	5.31: 
	5.30: 
	5.29: 
	5.28: 
	5.27: 
	5.26: 
	5.25: 
	5.24: 
	5.23: 
	5.22: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


