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Abstract

Thermal imaging plays a crucial role in various applica-
tions, but the inherent low resolution of commonly available
infrared (IR) cameras limits its effectiveness. Conventional
super-resolution (SR) methods often struggle with thermal
images due to their lack of high-frequency details. Guided
SR leverages information from a high-resolution image, typ-
ically in the visible spectrum, to enhance the reconstruction
of a high-res IR image from the low-res input. Inspired by
SwinFusion, we propose SwinFuSR, a guided SR architec-
ture based on Swin transformers. In real world scenarios,
however, the guiding modality (e.g. RBG image) may be
missing, so we propose a training method that improves
the robustness of the model in this case. Our method has
few parameters and outperforms state of the art models in
terms of Peak Signal to Noise Ratio (PSNR) and Structural
SIMilarity (SSIM). In Track 2 of the PBVS 2024 Thermal
Image Super-Resolution Challenge, it achieves 3rd place
in the PSNR metric. Our code and pretained weights are
available at https://github.com/VisionICLab/SwinFuSR.

1. Introduction

Improving the quality of digital images is crucial in numer-
ous fields, from mobile photography [19] and healthcare
[14, 34, 36] to law enforcement [33]. Super-resolution (SR)
has emerged as a promising technique to achieve this goal,
allowing the reconstruction of high-resolution (HR) images
from their low-resolution (LR) counterparts. In the realm of
RGB images, SR has witnessed significant advancements
in recent years. Diverse techniques, ranging from tradi-
tional methods to deep learning, have been developed to

exploit information within LR images and generate realistic
detailed HR images.

Infrared (IR) images, capturing the heat emitted by ob-
jects, enable night vision and the ability to detect features
invisible to the naked eye. The IR modality is used for con-
tinuous and contactless monitoring of patients’ vital signs
in the intensive care units (ICU) [4, 41] and to integrate this
information into clinical decision support systems [52]. To
achieve this, IR acquisitions are often combined with RGB
images, and even 3D images [3]. High definition IR sen-
sors with spatial resolution of up to 1,024 × 768 pixels are
commercially available, but can cost tens of thousands of
dollars. Hence, lower resolution IR sensors tend to be used
instead in ICU rooms.

Thermal image super-resolution (TISR) tackles this chal-
lenge by increasing image resolution and revealing details
obscured in the LR image. This topic is increasingly studied
because of its many applications [18] including in medical
science [40, 46], agricultural management [5, 35] or even
space studies [15, 53]. Several challenges remain in fully
realizing the potential of IR super-resolution. One key chal-
lenge lies in the inherent differences between IR and RGB
images. IR images exhibit higher noise and poorer texture
information [18], making HR reconstruction more complex.

Guided thermal image super resolution (GTISR)
presents itself as a particularly promising approach for IR
image reconstruction. By relying on an HR reference im-
age as input, such as a corresponding visible spectrum im-
age, guided SR can improve the accuracy and consistency
of the reconstruction. In effect, HR RGB images are cost-
effective to obtain and have higher frequencies than IR im-
ages. To encourage researchers to innovate in this little-
explored field, the 19th IEEE Workshop on Perception Be-
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yond the Visible Spectrum introduced a challenge track
[38] in 2023 to generate x8 super-resolution thermal images
by using visible HR images as guidance. Candidates are
ranked according to Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) between im-
ages produced from the test set and the (non-public) ground
truth HR IR images.

In this paper, we draw inspiration from multimodal im-
age fusion based on Swin Transformers to propose Swin-
FuSR, a novel method for RGB-guided thermal image
super-resolution. Our contributions are two-fold:
• a lightweight transformer-based model that outperforms

other state of art GTISR methods.
• a modified training strategy that improves the robustness

of GTISR in the absence of the guiding modality.

2. Related Works
2.1. Visible image super-resolution

The first approaches to super resolution employed so-called
“traditional” approaches [18]. These methods either fo-
cused on the frequency domain, trying to model the rela-
tionship between the HR and LR images using mathemati-
cal models [1, 37, 42], or used dictionaries methods to map
LR patches to HR patches [49, 54, 57].

2015 saw the emergence of deep learning-based meth-
ods using convolutional neural networks (CNNs) such as
SRCNN [9], FSRCNN [10] and ESPCN [43], which in-
troduced subpixel convolutional layers, a new upsampling
operation. The advent of residual networks [16] (to solve
the vanishing gradient problem in particular) led to new ar-
chitectures like VDSR [21], RED [32] and EDSR [26], the
latter proposing a new residual connection and winning the
NTIRE2017 Super-Resolution Challenge [45].

In 2017, SRGAN [23] achieved remarkable results by
applying a generative adversarial network (GAN) to the SR
task. One year later appeared ESRGAN[50], an enhanced
version of SRGAN.

Since transformers [47] have been adapted to the field
of computer vision with the Vision Transformer ViT [11],
the Swin transformer [29] resolved the computational com-
plexity problem of ViT by using shifted windows. With
this mechanism, SwinIR [24] applied the Swin architecture
to the image reconstruction task and outperformed the best
existing architectures. SwinIR’s main strength lies in its
Residual Swin Transformer Blocks, which extract highly
relevant features. More recently, the HAT [7] and SwinFIR
[56] architectures have proposed improvements to SwinIR
and represent the current state of the art in SR.

2.2. Thermal image super-resolution

Compared to RGB images, IR images are single channel,
have low gradients and “overlapping information between

high and low frequencies” [18]. To manage these charac-
teristics, specific architectures have been proposed for IR
images.

Before deep learning, frequency domain-based solutions
like [48] or dictionary-based methods [8] were proposed.
Then, inspired by the methods used in the visible spectrum,
[12] and [61] exploited CNNs and residual networks. Other
architectures have come up with the idea of using visible
information (more abundant data) to reconstruct the IR im-
age. For example, [55] used visible information in the loss
function, while PSRGAN [17] used a GAN framework and
transfer learning from RGB images to train their SR algo-
rithm.

More recently, approaches using transformers have ap-
peared, namely DASR [25] that exploits spatial and channel
attention. In the same spirit, [58] dynamically reweights the
output of attention and non-attention branches to improve
the resolution and restore high-frequency details, offering a
lightweight structure suitable for edge device deployment.

2.3. Guided thermal super-resolution

Unlike the methods presented above, guided methods take
two paired images as input: an LR thermal image (or target
image) and a higher-resolution guide image to help with the
SR task. One of the first GTISR works was introduced in
[60]; it used a dual-path residual network to merge features
from the visible and IR domains. More recently, CoRefu-
sion [20] has been proposed. Its architecture is composed
of two U-Nets [39] with residual connections to fuse both
modalities. A contrastive term is added to the loss function
and yields improved performance.

CoreFusion was part of the first GTISR track in the 2023
PBVS competition [38]. However, the winner of that com-
petition was GuidedSR [38]; this latter approach concate-
nates RGB and IR features from the shallow feature ex-
traction layers and uses Non-linear Activation Free (NAF)
blocks [6] to fuse RGB and IR information.

More recently, the authors of [44] described several SR
guided methods applied to thermal images and how trans-
forming the RGB guide image into a ”thermal-like image”
improves performance. They show that this substitution
boosts performance by a few percentage points in different
super-resolution guided architectures.

2.4. Multimodal image fusion

Multimodal image fusion aims at combining relevant in-
formation from images acquired with different sensors into
a single image. DL-based fusion methods can be divided
into three categories: early fusion, late fusion and hybrid
fusion[2]. The first one merges features before task re-
lated layers, the second one uses task related layers on each
modality before aggregating the information, while the last
one combines the first two approaches.
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SwinFusion [30] proposed to fuse images from two
modalities using Attention-guided Cross-domain Fusion
(ACF). Inspired by the Swin Transform block, this model
merges information from the two modality branches via
alternating modules of “self-attention-based intra-domain
fusion” and “cross-attention-based inter-domain fusion”
units.

The work in [27] proposed a Target-aware Dual Adver-
sarial Learning for object detection. The idea is to exploit
structural information in the IR image and textural details
from the visible image to improve object detection. This is
made possible by means of a generator and two discrimi-
nators that seek to retain relevant information from the two
modalities.

2.5. Robustness to missing imaging modality

GTISR is subject to degraded performance when one of the
inputs, e.g. the guiding RGB image, is missing at inference
time. Little work in the literature addresses this issue di-
rectly for the thermal image SR task, but some studies have
examined it in other application areas.

In [51], the authors evaluated the impact of the type of
architecture, data augmentation and image fusion technique
on action recognition performance in the case of a missing
modality. They concluded that transformer-based fusion is
more robust in this situation than feature summation or con-
catenation. Meanwhile, [31] studied the impact of a miss-
ing modality (text, audio, or image) in training or testing
a GAN or autoencoder model. They proposed a Bayesian
meta-learning framework to better manage missing modali-
ties.

3. Method

In this paper, we propose a novel architecture, named Swin-
FuSR, as a contender for the PBVS 2024 TISR Track 2
challenge. The aim of this competition is to obtain a high-
resolution (x8) infrared image from a low-resolution IR im-
age and a medium-resolution RGB image.

3.1. Proposed architecture

As in many other super resolution transformer architectures
[7, 24, 38], our own, illustrated in Fig. 1, is composed of
three modules.

The first module extracts shallow features using convo-
lutional layers followed by N Swin Transformer (STL) lay-
ers. The second module focuses on deep feature extrac-
tion. Its role is to extract characteristics that are useful to
reconstruct the image by combining IR and RGB features.
L Attention-guided Cross-domain Fusion (ACF) blocks are
used to extract useful information from RGB and IR fea-
tures. Then, concatenation and convolution are performed
to merge the two branches. The third module carries out

deep feature reconstruction. It is composed of P Swin
Transformer layers to refine the merged features and three
convolution layers to return to image space.

In the first two modules, the architecture is divided into
two branches, similarly to SwinFusion [30]: one dedicated
to the RGB image and the other to the IR image. A bicubic
interpolation is performed on the IR image so that its di-
mensions (height (h) and width w) match those of its paired
RGB image. Inspired by [24, 50, 61], a skip connection
from the interpolated IR image to the reconstructed image
is introduced for faster convergence and better performance.
This gives the network an initial solution to improve upon.

3.2. Loss function

As a loss function, we use a combination of two differen-
tiable pixel losses commonly used to measure the similarity
between two images:
• An L1 loss (or MAE) allows for relatively stable conver-

gence and avoids gradient explosion [59]:

L1 =
1

n

n∑
i=1

|yi − ŷi| (1)

with n the number of pixels, yi the value of the ith pixel
in the ground-truth (GT) image and ŷi the value of the
ith pixel in the reconstruction.

• An L2 loss (or MSE) is more sensitive to higher recon-
struction errors but can make the reconstruction smoother
at the expense of valuable high-frequency details:

L2 =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

The lower these two metrics are, the closer the recon-
struction is to the GT.

We use the loss strategy proposed by GuidedSR, the win-
ning solution in the 2023 PBVS challenge, described in
[38].

Loss =

{
L1 for the first T epochs
L2 after

(3)

This strategy allows us to obtain good convergence proper-
ties with an L1 loss, then refine the optimization with an L2

loss.

3.3. Training strategy

Specific training strategies can help build missing modality
robustness into the model. The literature proposes two main
ways to handle this. The first one is to remove the entire por-
tion of the network dealing with the missing information; in
that case, the modalities must be processed independently
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Figure 1. Architecture of the proposed SwinFuSR model.

as in CoRefusion[20]. The second and simpler method is to
arbitrarily set the corresponding input values to the network
to a fixed value such as zero.

To reduce performance degradation in the case of a miss-
ing modality, we propose a new model training regime that
consists in randomly removing the training RGB images.
More formally, at each training iteration, the input I to the
network is given by:

I =

{
(IIRh,w, I

RGB
h,w ) if p < pth

(IIRh,w, Oh,w) otherwise
(4)

with IRGB
h,w the RGB image, IIRh,w its corresponding IR im-

age after bicubic interpolation, Oh,w an all-zero image, p a
random probability following a uniform distribution U(0, 1)
and pth a fixed threshold between 0 and 1.

4. Experiments
4.1. Implementation details

To train our model, we used the dataset provided for the
second track of the PBVS 2024 TISR Challenge. It is
composed of 700 training samples and 200 validation sam-
ples, each sample being a 640x448 IR image, along with
its downsampled version by a factor of 8 and its paired
640x448 RGB image. The 100 testing samples are pro-
vided without the HR ground truths. These registered im-
ages were acquired by Balser (for RGB) and TAU2 (for IR)
cameras and represent images of outdoor urban scenes. We
evaluated our model’s performance on the training and val-
idation sets using the PSNR and SSIM metrics.

Following common practice for training transformer ar-
chitectures [24, 25, 30, 56], we used patches rather than the
entire image as input. The patch size used was 128x128 and
batch size was 16. The input patches were augmented with

random horizontal and vertical flips and random rotations.
Pixel values were normalized between 0 and 1.

The number of heads, the window size and the embed-
ding dimensions were set to 6, 9 and 60 respectively. We set
the network module depths to N = 2, L = 3 and P = 3,
according to the study detailed in Section 4.2.1 below.

For the training, the learning rate was set to 4×10−4 until
T = 3300, then reduced to 1× 10−4 for the remainder. We
used the Adam optimizer. The run lasted 72 hours (4300
epochs) on two Tesla V100 GPUs with 32.0 GB of VRAM
each.

4.2. Ablation study

4.2.1 Effect of the number of modules

To study the effect of the number of STL blocks (N ), ACF
blocks (L) and STL blocks (P ) in the extraction, fusion and
reconstruction modules respectively, we set as a baseline
N = 1, L = 2, P = 1 as in the original SwinFusion paper
[30]. Then, we increased for each module separately these
values by 1 and by 2 and observed the effect on performance
(PSNR and SSIM) (see Figure 2).

We can see that the increase in performance is most vis-
ible in the reconstruction module, suggesting that the latter
is the network bottleneck. Increasing the number of mod-
ules in the extraction and fusion modules by 1 each also im-
proves performance, but to a lesser degree. Based on these
results, we set the numbers of modules to N = 2, L = 3 and
P = 3 for the experiments in Section 5.1 below. For the re-
maining experiments, we set them to N = 1, L = 2 and P =
1 to limit required resources.

3030



Figure 2. Effect of module depth on overall performance.

4.2.2 Effects of skip connection

In SR, it is common to use skip connections between an ar-
tificial upsampling or early feature extraction layer and the
end of the network. We trained our model with and with-
out the skip connection in our SwinFuSR model (Figure 1).
Figure 3 shows the difference in performance.
The results demonstrate that using a skip connection im-
proves the convergence speed of the model and improves
final performance by 0.3%. It is important to note that this
performance enhancement does not come at the cost of ad-
ditional parameters in the model.

5. Results and discussion
5.1. RGB guided thermal image super-resolution

For a fair comparison between our solution and the existing
methods GuidedSR and CoRefusion, we retrained the lat-
ter two models on the PBVS24 Track 2 dataset, using the
same training setup as originally described in their respec-
tive papers [20, 38] (no pre-trained weights were available).
Quantitative results are provided in Table 1.

Figure 4 provides some qualitative results for guided SR

Figure 3. Performance with (blue) and without skip connection
(green).

Method PSNR SSIM #parameters
Bicubic 25.17 0.774 ∅
CoReFusion 27.27 0.835 46.31M
GuidedSR 27.22 0.834 116.35M
SwinFuSR (ours) 28.96 0.878 3.30M

Table 1. PSNR and SSIM on validation set.

on an image from the PBVS2024 challenge dataset. We can
notice that SwinFuSR offers the closest output to the GT
and seems clearer than the other 2 reconstructions.
To test our solution on different kinds of images and to ver-
ify generalization capabilities, we applied guided SR on im-
ages from the Simultaneously-collected multimodal Lying
Pose (SLP) dataset [28]. This dataset is composed of low-
resolution (120x160) infrared and RGB image pairs of adult
subjects lying down in a hospital bed. Figure 5 shows the re-
sults of the x8 guided SR of an image from this dataset. Un-
fortunately no GT IR images of higher resolution are pro-
vided in SLP. Thus, we used the available images as is but
could not compare the SR results to reference HR images.
Qualitatively, all three SR solutions enhance the very low-
quality original image. Nevertheless, the details of the hand
generated by SwinFuSR seem to be the most accurate, even
if the shape of the hand seems unrealistic.
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(a) HR

(b) HR (c) LR /8 (d) GuidedSR

(e) Luminance (f) CoReFusion (g) SwinFuSR (ours)

Figure 4. GTISR on image 292 01 D4 from PBVS 2024 Track- dataset.

(a) Original LR image (b) LR (c) GuidedSR (d) CoReFusion (e) SwinFuSR (ours)

Figure 5. GTISR on sample image from SLP dataset [28].

(a) HR

(b) HR (c) LR /8 (d) SwinFuSR base

(e) GuidedSR (f) CoReFusion (g) SwinFuSR pth = 0.5

Figure 6. Unguided super resolution on image 044 02 D1 from PBVS 2024 Track 2 dataset.

Figure 7. Effect of training parameter pth on performance with (SwinFuSR guided) and without (SwinFuSR unguided) RGB input images
at inference on the PBVS24 validation set.
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5.2. Robustness to missing RGB modality

To evaluate our proposed training regime to improve ro-
bustness to missing RGB input, we trained our network
five times, each with a different probability threshold pth.
Figure 7 illustrates the performance with and without RGB
guide images at inference on the PBVS24 validation set.
pth = 0 means that during the training, all RGB guide im-
ages were used during the training.

First of all, we note that GuidedSR and CoReFusion have
a smaller drop in performance than SwinFuSR when remov-
ing the RGB guide images. We can explain this by the fact
that their baseline performance in guided SR is much lower
than SwinFuSR.

Second, we see that increasing pth substantially im-
proves the performance of SwinFuSR when no guide image
is used for inference (from -8.67% to -6.63% for PSNR and
from -7.44% to -5.68% for SSIM) when pth goes from 0
to 0.2, while only slightly reducing performance for guided
SR in terms of both metrics. This result suggests that drop-
ping RGB images during training with a certain probability
enables a trade-off between maintaining good performance
in guided SR and improving results in the absence of guide
images.
Figure 6 confirms visually that this training strategy can in-
crease performance in unguided SR. Indeed, Figure 6g is
much clearer than Figure 6d.

5.3. Discussion

Our model is much smaller in terms of parameters than the
two competing methods (CoReFusion and GuidedSR), but
is slower at inference (1.3s to go from 80x56 to 640x448
running on a PC equipped with an RTX 3080 GPU and 12
GB of VRAM). This limitation restricts the use of Swin-
FuSR for real-time inference. Moreover, model selection
(varying the number of blocks) is costly in terms of VRAM
usage, and required us to run those experiments on a GPU
cluster. These two drawbacks are probably due to the high
proportion of transformers in the network, which are known
to be particularly resource-hungry.
Another aspect to consider in order to efficiently use the
proposed architecture on other datasets is the fact that the
IR and RGB images must be registered. For this purpose,
several algorithms are available, such as the one proposed
in [13] or Elastix [22], the method used in the PBVS com-
petition. In future work, we will study the robustness of the
proposed model to IR-RGB registration errors.

6. Conclusion
This article proposes a new method for RGB guided thermal
image super resolution. Our solution, named SwinFuSR,
was submitted to Track 2 of the PBVS 2024 Thermal Im-
age Super-Resolution Challenge and achieved better quali-

tative and quantitative results than other state-of-the-art ar-
chitectures. We also present a novel training strategy that
improves robustness to missing guide images at inference
time. By randomly dropping a portion of the RGB images
during training, the model’s performance in unguided SR
improves significantly compared to the guided SR baseline.
In future work, we will explore how to make better use of
the RGB image data, for instance by generating pseudo-IR
images. In addition, we will examine how super resolution
can improve the performance of related tasks such as esti-
mating in-bed human pose.
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