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Abstract

Research in self-supervised learning (SSL) with natural
images has progressed rapidly in recent years and is now in-
creasingly being applied to and benchmarked with datasets
containing remotely sensed imagery. A common benchmark
case is to evaluate SSL pre-trained model embeddings on
datasets of remotely sensed imagery with small patch sizes,
e.g., 32 × 32 pixels, whereas standard SSL pre-training takes
place with larger patch sizes, e.g., 224 × 224. Furthermore,
pre-training methods tend to use different image normaliza-
tion preprocessing steps depending on the dataset. In this
paper, we show, across seven satellite and aerial imagery
datasets of varying resolution, that by simply following the
preprocessing steps used in pre-training (precisely, image siz-
ing and normalization methods), one can achieve significant
performance improvements when evaluating the extracted
features on downstream tasks – an important detail over-
looked in previous work in this space. We show that by
following these steps, ImageNet pre-training remains a com-
petitive baseline for satellite imagery based transfer learning
tasks – for example we find that these steps give +32.28 to
overall accuracy on the So2Sat random split dataset and
+11.16 on the EuroSAT dataset. Finally, we report compre-
hensive benchmark results with a variety of simple baseline
methods for each of the seven datasets, forming an initial

*Equal contribution

benchmark suite for remote sensing imagery.1

1. Introduction
With increasing frequency, self-supervised learning (SSL)
models, foundation models, and transfer learning methods
have been applied to remotely sensed imagery [6, 10, 11, 18,
19, 25, 31, 33, 35, 36, 39, 40, 42, 49, 53, 55, 56]. As such,
rigorous benchmarks are needed to identify the strengths and
weaknesses in the proposed methods.

A commonly used benchmark in any transfer learning
setup is the use of embeddings from a model that is pre-
trained on the ImageNet (ILSVRC2012) dataset [13] – due
to both the ease of implementation [9, 34] and strong per-
formance when generalizing to unseen data [27]. How-
ever, even with fully convolutional neural networks, the
size of image inputs to the model is an important factor that
should be controlled for at test/inference time. Common
large-scale benchmarks libraries like PyTorch Image Models
(timm) [57] and OpenCLIP [28] provide benchmark results
trained at varying image sizes and evaluate at the same sizes
as opposed to the original dataset size. Plainly put, models
that are pretrained on ImageNet images that have been re-
sized and cropped to a fixed image size (traditionally 224 ×
224 or 256 × 256), will produce the most relevant embed-
dings for transfer learning when they are given the same

1Experimental code, datasets, and model checkpoints are available at
github.com/isaaccorley/resize-is-all-you-need

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. The effect of input image size on EuroSAT downstream performance (overall accuracy) across different ResNet models. By
default, EuroSAT images are 64 × 64 pixels, however resizing to larger image sizes before embedding increases downstream accuracy under
a KNN (k = 5) classification model in all cases.

Figure 2. Difference in downstream task metrics, Overall Accuracy
(OA) (multiclass) or mean Average Precision (mAP) (multilabel),
after resizing images to 224 × 224 from the original, smaller, image
size. ImageNet pre-trained models, for example, often are trained
with 224 x 224 inputs and therefore do not produce useful embed-
dings with smaller image patches.

image size at test time.
Satellite missions such as Sentinel-2 [15] and Landsat-

8 [45] capture imagery over the Earth’s surface at relatively
low spatial resolutions, e.g. 10-60 meters/pixel, compared
to the resolution of objects in natural imagery. Because of
this, it is common for labeled datasets of remotely sensed
imagery to contain images of smaller sizes, e.g. 32 × 32 [59],
than traditional image classification datasets. Thus, if images
from these datasets are used as-is with ImageNet pretrained
models, then the results will be sub-optimal.

A similar story can be told with image normalization
methods. A standard preprocessing method for ImageNet
pre-trained models is to normalize all values in an image to a
[0, 1] range then perform channel-wise standardization with

ImageNet statistics. However, as remotely sensed imagery
usually has a higher bit-depth (or color-depth) than images
in standard vision datasets (12 or 16-bit depth vs. 8-bit
depth), different image normalizations methods are usually
applied. For example, a common method used with Sentinel-
2 imagery is to divide all values by 10,000 (to convert the
raw sensor values to reflectance values) then use these as
inputs in a network [35, 56]. If images that are normalized
with one method are used with a network that is pre-trained
under a different normalization method, then the results will
also be sub-optimal.

We demonstrate that it is vital to consider how an embed-
ding model was trained when using it for transfer learning
on downstream remote sensing tasks. For example, through
simple bilinear upsampling of input images from 64 × 64
to 224 × 224 on the EuroSAT RGB dataset [26], we find
that accuracy of the embeddings generated by a ImageNet
pretrained ResNet-50 [22] increases from 0.82 to 0.91. Sim-
ilarly, performing a channel-wise standardization instead of
re-scaling the image values to represent reflectance results in
a performance increase from 0.66 to 0.91 (when combined
with resizing to 224 × 224). Performing these steps cor-
rectly gives simple baselines, like ImageNet pre-training,
results that are competitive with previously published
methods. Additionally, we benchmark several simple meth-
ods, including MOSAIKS [44] and a simple image statistic
based feature extraction method, and find that they beat Im-
ageNet and/or remote sensing SSL pretraining methods on
several datasets.

While not particularly surprising, our results form a set
of strong baselines that can be used to benchmark future
methods for self-supervised learning with remotely sensed
imagery against. Further, our experimental setup is open-
sourced and can be easily appended to as the community
focuses on different geospatial machine learning tasks.
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Table 1. Results on the EuroSAT dataset [26] for multiclass clas-
sification using KNN (k = 5). We report Overall Accuracy (OA)
for both RGB and all MSI bands. We compare to fine-tuned perfor-
mance of several SSL methods taken from their respective papers.
*The Scale-MAE result uses a KNN-5 and is comparable to the
other KNN results.

Model Weights Size RGB MSI

ResNet50 MoCo 64 94.11 81.85
224 95.76 93.65

ResNet50 ImageNet 64 82.09 78.65
224 91.17 89.81

ResNet50 Random 64 59.92 ± 0.34 75.10 ± 0.23
224 73.76 ± 0.53 87.19 ± 0.81

RCF Random 64 78.85 ± 0.33 87.56 ± 0.35
224 76.90 ± 0.33 87.41 ± 0.12

RCF Empirical 64 81.47 ± 0.08 91.10 ± 0.11
224 77.88 ± 0.08 90.14 ± 0.15

Image Stat. - 64 76.94 89.56

ViT-L Scale-MAE [42] 64 96.00* -
ResNet18 GASSL [2] 64 89.51 -
ResNet18 SeCo [35] 64 93.14 -

ViT-L SatMAE [10] 224 98.94 -

Table 2. Results on the SAT-6 dataset [3] for multiclass classifi-
cation using KNN (k = 5). We report Overall Accuracy (OA)
and compare to the fully-supervised performance of DeepSAT and
DeepSATv2 models taken from their respective papers.

Model Weights Size OA

ResNet50 MoCo 34 98.15
224 99.86

ResNet50 ImageNet 34 96.55
224 99.89

ResNet50 Random 34 91.64 ± 0.66
224 98.57 ± 0.08

RCF Random 34 99.40 ± 0.06
224 99.29 ± 0.07

RCF Empirical 34 99.65 ± 0.02
224 98.85 ± 0.06

Image Stat. - 28 99.60

DeepSat [3] Sup. 28 93.92
DeepSatv2 [32] Sup. 28 99.84

Our main contributions are as follows:
• We propose a set of strong baseline methods for remote

sensing scene classification – including an ImageNet pre-
trained ResNet-50, random convolutional features (RCF),
and a simple image statistic feature extraction method –
that outperform self-supervised pretrained models on sev-
eral datasets. We have implemented these methods into
the open source TorchGeo library [46].

• We present a set of benchmark results across seven geospa-
tial machine learning datasets commonly used as down-
stream tasks for testing pre-trained model performance
with our baseline methods.

• We demonstrate the importance of proper resizing and
normalization of images for optimal performance and fair
comparisons in geospatial machine learning benchmarks.

1.1. Related Work

Recent works have shown that while many new deep learning
architectures claim to achieve state-of-the-art performance
due to their proposed novel model design, they in fact only
do so because of inconsistencies in training strategies and
hyperparameters when comparing to baselines and prior
methods. Bello et al. [4] explored that by simply retrain-
ing with recent training techniques and tricks, the original
ResNet [22] architecture significantly outperforms its own
previous baselines and reaches a competitive top-1 ImageNet
accuracy. Du et al. [16] concluded the same findings for 3D
ResNets [52] for video recognition tasks. Goyal et al. [21]

examined the similar effects for numerous architectures in
the 3D point cloud classification field. Finally, Musgrave et
al. [37] repeat the same idea for metric learning methods. In
other words, when all models are on the same playing field,
performance gains from past methods over strong baselines
tend to become insignificant.

Previous papers that explore the effect of resizing inputs
on performance in convolutional neural networks include
Richter et al. [43] and Touvron et al. [51]. Both papers in-
vestigate different experimental setups by varying training
and testing at different image sizes and empirically show
that increasing the image size during inference improves
performance which begins to saturate around an image size
of 256 × 256. However, both works strictly explore natu-
ral images only with ImageNet pretraining as opposed to
remotely sensed imagery, as is the objective of this paper.
Wang et al. [56] provide the closest evidence of this case for
remote sensing data by performing a short experiment report-
ing linear probing results showing a boost in performance
while increasing the input image size.

2. Methods
In this study we extract feature representations (or embed-
dings) from remotely sensed image datasets using a variety
of methods (described below) while varying the image pre-
processing steps. Specifically, we vary the image size that is
passed through to the feature extractor using Pytorch’s [41]
torch.nn.functional.interpolate implementa-
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Table 3. Results on the So2Sat dataset [59] for multiclass classification using KNN (k = 5). We report Overall Accuracy (OA) for both
RGB and all MSI bands and for both the Random and Culture-10 splits. We compare to both fully-supervised and linear probing results for
several SSL methods.

Random Culture-10

Model Weights Size RGB MSI RGB MSI

ResNet50 MoCo 34 75.07 72.51 51.45 49.36
224 93.93 96.15 56.03 53.54

ResNet50 ImageNet 34 66.21 56.18 47.76 42.11
224 92.99 88.46 54.53 50.32

ResNet50 Random 34 46.19 ± 0.19 55.06 ± 0.35 29.10 ± 0.30 35.47 ± 0.18
224 71.74 ± 1.87 84.10 ± 0.32 34.16 ± 0.23 45.68 ± 0.50

RCF Random 34 72.67 ± 0.45 89.40 ± 0.14 30.92 ± 0.11 45.23 ± 0.33
224 74.22 ± 0.44 89.72 ± 0.11 31.19 ± 0.21 45.36 ± 0.36

RCF Empirical 34 71.00 ± 0.32 95.37 ± 0.06 35.32 ± 0.45 47.63 ± 0.10
224 51.66 ± 0.46 95.20 ± 0.02 27.36 ± 0.24 44.98 ± 0.16

Image Stat. - 32 83.84 91.09 38.36 47.93

ResNet50 MoCo [56] 224 - - - 61.80
ResNet50 DINO [5] 224 - - - 57.00

ViT-S DINO [5] 224 - - - 62.50
ViT-S MAE [24] 224 - - - 60.00

ResNet50 Sup. [56] 224 - - - 57.50
ViT-S Sup. [56] 224 - - - 59.30

tion with bilinear interpolation, and we vary the image nor-
malization method between channel-wise standardization
(i.e. the default practice for most ImageNet pretrained mod-
els), converting the input image values into a reflectance
value (i.e. the default practice for most Sentinel-2 pretrained
models), min-max normalization, or method specific nor-
malizations (e.g. the percentile normalization from [35]).
In datasets that have multispectral information we run ex-
periments using only the RGB channels, as well as all the
channels (MSI)2.

We extract feature representations using the following
methods:

ResNet-50 Random init. [22] A vanilla ResNet-50 with
random weight initialization (following the default
torchvision settings). The features generated by this
and the following two ResNet-50 models are produced
by the final global average pool operation and are 2048-
dimensional.

ResNet-50 ImageNet [13] A ResNet-50 that is pretrained
on ImageNet with images of size 224 × 224 (default
torchvision pretrained weights).

ResNet-50 SSL4EO [56] A ResNet-50 that is pretrained
2Note that for processing multispectral (MSI) imagery through Ima-

geNet pretrained ResNets, we repeat the RGB weights in the first convo-
lutional layer to account for the additional input bands. For SSL4EO MSI
pretrained ResNets, we zero-pad channels to account for any bands not
made available in datasets.

using the MoCo-v2 [7, 23] self-supervised learning
method on the SSL4EO dataset with 224x224 images.

RCF (Random) [44] A feature extraction method that con-
sists of projecting the input to a lower dimensional
space using random convolutional features (RCF). We
use the implementation from TorchGeo with 512 con-
volutional filters and a 3x3 kernel size. In the results
we refer to this method as RCF with random weights.

MOSAIKS / RCF (Empirical) [44] A feature extraction
method similar to RCF but that initializes the weights
using ZCA whitened patches sampled randomly from
the training set. We use the implementation from Torch-
Geo with 512 convolutional filters and a 3x3 kernel
size. In the results we refer to this method as RCF with
empirical weights.

Image Statistics A hand crafted baseline method that con-
sists of simply computing per-channel pixel statistics
from the imagery. Given an image we compute the
mean, standard deviation, minimum, and maximum
value for each band and concatenate these into a simple
4c-dimensional feature representation, where c is the
number of input channels.

2.1. Evaluation

For evaluating the representation performance of a pretrained
model it is common to perform “linear probing” on a given

3165



Table 4. Results on the BigEarthNet dataset [47] for 19-class multilabel classification using KNN (k = 5). We report overall F1 score, and
overall mean average precision (mAP). For reference, we compare to the fully supervised S-CNN as well as fine-tuned results from the
GASSL, SeCo, and SatMAE SSL methods.

RGB MSI

Model Weights Size F1 mAP F1 mAP

ResNet50 MoCo 120 68.99 70.65 63.61 64.64
224 72.56 74.81 68.33 70.17

ResNet50 ImageNet 120 65.38 66.62 62.61 62.96
224 67.47 69.07 65.04 65.88

ResNet50 Random 120 52.34 ± 0.22 52.63 ± 0.19 60.48 ± 0.34 61.17 ± 0.50
224 57.05 ± 1.02 57.61 ± 1.13 64.94 ± 0.25 66.31 ± 0.32

RCF Random 120 54.48 ± 0.26 53.94 ± 0.26 69.98 ± 0.20 72.01 ± 0.28
224 54.37 ± 0.28 53.74 ± 0.23 70.06 ± 0.21 72.12 ± 0.29

RCF Empirical 120 57.40 ± 0.22 57.22 ± 0.23 73.31 ± 0.14 76.18 ± 0.19
224 53.36 ± 0.23 52.90 ± 0.22 73.41 ± 0.13 76.29 ± 0.15

Image Stat. - 120 61.67 62.00 69.42 71.29

S-CNN BigEarthNet [47] 120 67.59 - 70.98 -
ResNet50 GASSL [2] 120 - 80.20 - -
ResNet50 SeCo [35] 120 - 82.62 - -

ViT-L SatMAE [10] 224 - 82.13 - -

downstream task by training a linear model on the represen-
tations generated by the pre-trained model and measuring
the performance of this linear model. However, this method
is implemented very differently between papers – some pa-
pers use data augmentation [56] while others don’t, and
others use a variety of different optimizers (SGD, Adam,
LARS), regularization methods3, and learning rates / learn-
ing rate schedules. Therefore, for fair evaluation we fit a
K-Nearest-Neighbors (KNN) model [12] to extracted fea-
tures from various datasets, setting k = 5, as performed
similarly in [42, 53].

3. Datasets

The datasets used throughout our experiments were selected
particularly due to their original image sizes being small to
show the effects of resizing. These datasets are commonly
benchmarked without resizing which makes them perfect
candidates for quantifying the effects of size vs performance.
We also select datasets which are from both low-resolution
satellite sources as well as high resolution aerial imagery.

EuroSAT The EuroSAT dataset [26] is a land cover classi-
fication dataset of patches extracted from MSI Sentinel-
2 [15] imagery. The dataset contains 27,000 64 × 64
10m spatial resolution images with 13 bands and labels
for 10 land cover categories. We use the dataset splits
defined in Neumann et al. [38].

3For example, by default the Adam optimizer in PyTorch will not apply
L2 regularization on the weights of the model (weight decay), while scikit-
learn linear models are trained with L2 regularization by default.

SAT-6 The SAT-6 dataset [3] is a land cover classification
dataset of patches extracted from aerial imagery from
the National Agriculture Imagery Program (NAIP) [17].
The dataset contains 405,000 28 × 28 RGBN patches
at 1m spatial resolution and labels for 6 land cover
categories. We use the train and test splits provided
with the dataset.

So2Sat The So2Sat dataset [59] is a local climate zone
(LCZ) classification dataset of patches extracted from
Sentinel-1 and Sentinel-2 imagery. For our experiments
we only utilize the Sentinel-2 bands. The dataset con-
tains 400,673 MSI patches with 10 bands and at 10m
spatial resolution. Each patch is of size 32 × 32 and
contains a single label from 17 total LCZ categories.
We use the train and test splits from the Random and
Culture-10 sets provided with the dataset.

BigEarthNet The BigEarthNet dataset [47] is a multi-label
land cover classification dataset of patches extracted
from MSI Sentinel-2 imagery. The dataset contains
590,326 120 × 120 10m spatial resolution images with
12 bands and labels for 19 land cover categories. We
use the splits provided with the dataset and defined
in [48].

TreeSatAI The TreeSatAI dataset [1] is a multi-sensor, mul-
tilabel tree species classification dataset of patches
extracted from aerial and MSI Sentinel-1 [50] and
Sentinel-2 imagery. For our experiments we only utilize
the Sentinel-2 bands. The dataset contains 50,381 10m
spatial resolution images with 12 spectral bands, which
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Table 5. Results on the TreeSatAI dataset [1] for multilabel classification using KNN (k = 5). We report overall F1 score and mean average
precision mAP. We compare to the fully-supervised LightGBM performance and fine-tuned Presto SSL method.

RGB MSI

Model Weights Size F1 mAP F1 mAP

ResNet50 MoCo 34 29.21 29.93 37.65 36.24
224 37.68 37.57 45.18 44.14

ResNet50 ImageNet 34 27.69 27.30 32.07 30.69
224 40.37 40.58 42.00 41.33

ResNet50 Random 34 29.37 ± 0.42 29.08 ± 0.18 36.47 ± 0.34 34.73 ± 0.15
224 35.42 ± 0.33 34.75 ± 0.43 49.09 ± 0.83 48.48 ± 0.89

RCF Random 34 33.15 ± 0.21 32.15 ± 0.09 52.24 ± 0.35 51.83 ± 0.33
224 32.37 ± 0.20 31.29 ± 0.18 52.49 ± 0.17 51.99 ± 0.43

RCF Empirical 34 31.70 ± 0.06 31.13 ± 0.17 56.00 ± 0.04 56.08 ± 0.25
224 28.93 ± 0.47 28.50 ± 0.23 55.60 ± 0.13 55.77 ± 0.29

Image Stat. - 20 38.39 37.19 51.97 51.56

LightGBM [29] - 20 - - 52.52 61.66
ViT Presto [53] 9 - - 50.32 67.78

are available in 6 × 6 or 20 × 20 sizes, and labels for 20
tree species categories. We use the train and test splits
provided with the dataset.

UC Merced The UC Merced (UCM) dataset [58] is a land
use classification dataset that consists of 2,100 256 ×
256 pixel aerial RGB images over 21 target classes.
We use the train/val/test splits defined in Neumann et
al. [38].

RESISC45 The RESISC45 dataset [8] is a scene classi-
fication dataset that consists of 45 scene classes and
31,500 256 × 256 pixel aerial RGB images extracted
from Google Earth. We use the dataset splits defined in
Neumann et al. [38].

4. Results and Discussion
4.1. Fair Comparisons to ImageNet Pretraining

As stated in Section 1.1, prior research has shown the signif-
icance of resizing images during testing for ImageNet pre-
trained models. To emphasize this, we perform a short exper-
iment comparing features extracted from the EuroSAT [26]
dataset using a ResNet-18 pretrained with both the Seasonal
Contrast (SeCo) method [35] and ImageNet. For fair eval-
uation, we compute downstream task results at the original
image size 64 × 64 and resized to 224 × 224 with KNN and
linear probe methods.

For linear probing we utilize the exact same experimen-
tal setup and script as in [35] while only adding a resize
transformation. As seen in Table 6, depending on the model
used for evaluation, one pretraining method can appear bet-
ter than another. Furthermore, while increasing the image
size improves performance for both methods, it does not

Table 6. Comparison of SeCo [35] vs. ImageNet pretraining on
the EuroSAT validation set. We show Overall Accuracy results for
both KNN and linear probe at different image sizes.

Size Weights KNN (k = 3) KNN (k = 10) Linear Probe

64 SeCo 84.04 84.11 93.14
ImageNet 85.39 85.20 86.44

224 SeCo 86.57 85.63 96.30
ImageNet 90.54 90.63 93.13

improve equally. When reading the linear probing results
in [35], one would assume that the SSL pretrained model
clearly outperforms ImageNet pretraining. However, as we
can see, this is not the case, and further investigation are
needed. Further, in Table 8, we observe that an ImageNet
pretrained model outperforms the best reported results in
SatMAE [10] in the same experimental setup.

4.2. Image Size vs. Performance

Figure 1 shows how the performance of a variety ResNet-50
models varies with input image size on the EuroSAT dataset
when using just the RGB bands vs. all spectral bands as input.
We observe in all cases that the default dataset image size
(64 × 64 pixels) does not result in optimal performance. For
example, resizing from 64 × 64 to 256 × 256 results in a 10
point increase in accuracy in a ResNet-50 that is pretrained
on ImageNet. In Tables 1-5 we report performance from
each method at the native resolution of the dataset and after
resizing each image to 224x224 and observe performance
improvements across all methods in nearly all cases.

To visualize the effects of resizing (and standard normal-
ization), in Figure 3 we show t-SNE [54] plots of EuroSAT
RGB features extracted using a ResNet-50 pretrained on Im-
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Table 7. Results on the RESISC45 dataset [8] for multiclass clas-
sification using KNN (k = 5). We report Overall Accuracy (OA)
and compare to performance metrics of various remote sensing SSL
methods taken from their respective papers. *The Scale-MAE result
uses a KNN-5 and is comparable to the other KNN results.

Model Weights Size OA
ResNet-50 MoCo 256 73.24
ResNet-50 ImageNet 256 77.48
ResNet-50 Random 256 36.30 ± 0.25

RCF Random 256 42.29 ± 0.12
RCF Empirical 256 36.15 ± 0.36

Image Stat. - 256 34.03

ViT-L Scale-MAE [42] 256 85.0 *
ViT-L SatMAE [10] 256 77.1*
ViT-L ConvMAE [20] 256 78.8*

Table 8. Results on the UC Merced dataset [58] for multiclass classi-
fication using KNN (k = 5). We report Overall Accuracy (OA) and
compare to the linear probing performance of the Scale-MAE, Sat-
MAE, and ConvMAE methods taken from their respective papers.
*The Scale-MAE result uses a KNN (k = 5) and is comparable to
the other KNN results.

Model Weights Size OA
ResNet50 MoCo 256 85.50
ResNet50 ImageNet 256 90.70
ResNet50 Random 256 47.94 ± 1.07

RCF Random 256 52.14 ± 0.24
RCF Empirical 256 56.90 ± 0.63

Image Stat. - 256 47.90

ViT-L Scale-MAE [42] 256 85.1*
ViT-L SatMAE [10] 256 84.2*
ViT-L ConvMAE [20] 256 81.7*

ageNet. The the plot shows that EuroSAT classes are clearly
separable at an input size of 224 x 224 while only partially
separable at 32 x 32. Additionally, when resizing but not
using any normalization, there are no clear clusters corre-
sponding to the dataset classes. While we use a NVIDIA
DGX server with 2x A100 GPUs to increase the speed of
our benchmarks, we note that none of these methods actually
require a GPU to perform inference or KNN classification
on extracted features.

4.3. Benchmarks

We perform thorough benchmarks using the methods de-
scribed in Section 2 on each dataset from Section 3, using
the evaluation metric common to that dataset, in Tables 1
through 8. In each experiment we fit a non-parametric k-
nearest neighbor model with k = 5 to the train set. For
deterministic methods we report a single value calculated
over the test set for each dataset, while for stochastic meth-
ods we report the average ± the standard deviation of the
metric calculated over the test set over 5 runs with different
random seeds. We bold the best performing of the baseline
methods by column and italicize the second best performing
method. Additionally, we show several fine-tuning, linear
probing, and fully-supervised baselines from original dataset
papers or other SSL remote sensing papers. Note that we per-
form these comparisons not with the goal of outperforming
them but for transparency of the difference in performance
in representation ability to the state-of-the-art. Finally, we
note that our evaluation method is the same as that of Reed et
al. [42] and indicate this with an asterisk where appropriate.

For the EuroSAT experiments we show results from
GASSL [2], SeCo [35], and SatMAE [10] self-supervised
methods that use fine-tuning on top of the pretrained network

(as reported by SatMAE). We note that methods which use
a (ViT) [14] model are unable to accept input images with
varying sizes and therefore we only report performance from
their original training image size.

For the SAT-6 experiments we compare to the perfor-
mance of the DeepSat [3] model proposed in the original
SAT-6 dataset paper as well as the DeepSatv2 [32] model
from a follow-up paper.

For the UC Merced experiments, we compare to the
performance of SatMAE [10], Scale-MAE [42], and Con-
vMAE [20] as reported in the Scale-MAE paper.

Our results show the following:
• SSL4EO MoCo-v2 pretrained weights have the best over-

all performance across downstream tasks. They rank in
the top-2 methods by performance for 6 out of the 7 RGB
datasets, and 3 out of 5 MSI datasets.

• The Scale-MAE pretrained model performs the best in
the EuroSAT and RESISC45 datasets, however is outper-
formed by ImageNet pretraining in the UCM dataset.

• The image statistic baseline outperforms ImageNet pre-
trained models on all but one of the MSI datasets (and it is
0.25% lower than ImageNet in this case).

• MOSAIKS (i.e. RCF with empirical weights) is a very
strong baseline on the MSI datasets and ranks in the top 2
methods by performance for 4 out of the 5 MSI datasets.

• In SAT-6 experiments, all methods except for the randomly
initialized ResNet-50 achieve greater than 99% accuracy.
Even the image statistic baseline achieves a 99.6% overall
accuracy. This suggests that the dataset is too simple
to be used as a benchmark for comparing models as it
will be difficult to observe statistically significant changes
in accuracy between 99.6% (any result worse than this
would suggest a model that is less expressive than simply
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Figure 3. t-SNE [54] plots of EuroSAT test set embeddings extracted using a ResNet50 pretrained on ImageNet with different preprocessing.
(left to right: 32 × 32 with normalization, 224 × 224 without normalization, 224 × 224 with normalization)

extracting image statistics) and 100%. Nevertheless, future
work could explore this dataset in other settings, such as
few-shot learning.

• Resizing images does not result in significantly changed
downstream performance with the RCF methods (as com-
pared to the ResNet based models). We hypothesize that
this method is largely scale invariant – however leave fur-
ther experiments (such as varying convolutional size with
input size, etc.) to future work.

• For 2 out of 5 datasets with MSI bands, adding the ad-
ditional MSI bands degrades ResNet-50 ImageNet pre-
trained performance. However, in all cases, adding MSI
information increases the ResNet-50 random init. perfor-
mance. This further highlights the difference in distribu-
tions between ImageNet, natural imagery, and remotely
sensed imagery.

• In the So2Sat dataset, switching from the Random set to
the Culture-10 set decreases the accuracy of RCF methods
more than the pre-trained models. We hypothesize that
this is because the Culture-10 set tests geographic gener-
alization, and RCF will only be able to use color/texture
from the train set while the pre-trained models could poten-
tially group similar patches across sets to similar feature
representations.

5. Best Practices
To recap, below is a list of best practices we believe all
remote sensing pre-training research should include in their
analyses. While these may seem obvious, it is critical to
follow these guidelines to produce accurate and transparent
benchmarks for understanding the strengths and weaknesses
of methods proposed to the community.
1. Always compare to simple baseline: Performance

across datasets can be misleading, therefore always com-
pare a simple and effective baseline. We recommend
an ImageNet pretrained model, random convolutional
features, and image statistics.

2. Resize & Normalize: Resize and normalize inputs to the
same parameters as during training, e.g., when comparing
to ImageNet pretrained models, normalize to the range
[0, 1], normalize to scale inputs to µ = 0 and σ = 1, and

resize inputs to 224 × 224.
3. Prefer KNN over Linear Probing and Fine-tuning:

Linear probing has the potential to overstate feature rep-
resentation ability due to the numerous hyperparameters
and ways to perform linear probing experiments. Addi-
tionally, while fine-tuning compares pretrained weights
as an initialization, this tends to not be the purest indicator
for representation ability and has been shown to under-
perform for out-of-distribution downstream tasks [30].
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Jégou. Fixing the train-test resolution discrepancy. Advances
in neural information processing systems, 32, 2019. 3

[52] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 3

[53] Gabriel Tseng, Ivan Zvonkov, Mirali Purohit, David Rolnick,
and Hannah Kerner. Lightweight, pre-trained transformers for
remote sensing timeseries. arXiv preprint arXiv:2304.14065,
2023. 1, 5, 6

[54] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 6, 8

[55] Di Wang, Jing Zhang, Bo Du, Gui-Song Xia, and Dacheng
Tao. An empirical study of remote sensing pretraining. IEEE
Transactions on Geoscience and Remote Sensing, 2022. 1

[56] Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Cheny-
ing Liu, Conrad M Albrecht, and Xiao Xiang Zhu. Ssl4eo-
s12: A large-scale multi-modal, multi-temporal dataset for
self-supervised learning in earth observation. arXiv preprint
arXiv:2211.07044, 2022. 1, 2, 3, 4, 5

[57] Ross Wightman, Nathan Raw, Alexander Soare, Aman
Arora, Chris Ha, Christoph Reich, Fredo Guan, Jakub Kacz-
marzyk, mrT23, Mike, SeeFun, contrastive, Mohammed
Rizin, Hyeongchan Kim, Csaba Kertész, Dushyant Mehta,
Guillem Cucurull, Kushajveer Singh, hankyul, Yuki Tat-
sunami, Andrew Lavin, Juntang Zhuang, Matthijs Holle-
mans, Mohamed Rashad, Sepehr Sameni, Vyacheslav Shults,
Lucain, Xiao Wang, Yonghye Kwon, and Yusuke Uchida.

3171



rwightman/pytorch-image-models: v0.8.10dev0 Release,
2023. 1

[58] Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial
extensions for land-use classification. In Proceedings of the
18th SIGSPATIAL international conference on advances in
geographic information systems, pages 270–279, 2010. 6, 7

[59] Xiao Xiang Zhu, Jingliang Hu, Chunping Qiu, Yilei Shi,
Jian Kang, Lichao Mou, Hossein Bagheri, Matthias Haberle,
Yuansheng Hua, Rong Huang, et al. So2sat lcz42: A bench-
mark data set for the classification of global local climate
zones [software and data sets]. IEEE Geoscience and Remote
Sensing Magazine, 8(3):76–89, 2020. 2, 4, 5

3172


